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Computer experiments

Many statistical challenges are posed by computer experiments, and many
of these have only recently begun to be tackled by statisticians.

For example, for deterministic computer experiments, the usual statistical
concepts of replication, randomization and blocking are irrelevant.

Instead we must explicitly account for uncertainty ourselves.

Methods to quantify, analyse and incorporate uncertainty in the
application of computer experiments are attracting increasing attention
amongst users of simulation. I shall talk about a couple of areas that are
actively being worked on:

Meta-modelling

Model error
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Complex computer experiments

Throughout this talk, think of the simulator as a deterministic function

η : X → Y

Typically, both the input and output space will be vectors (often of high
dimension)

We think of two input types

Control inputs x - e.g., location, time, output index, etc.

Model parameters θ - e.g., model constants, unknown initial
conditions, fudge factors, etc.

and write y = η(x , θ) for the model output (possibly a temporal-spatial
field)

Richard Wilkinson (Nottingham) Challenges in Computer Experiments July 2010 4 / 43



Challenges

Some typical problems we might be interested in:

Calibration
◮ How do we estimate unknown model parameters θ given observations

D of the physical system?

Prediction
◮ Given all the unknowns, what is our best prediction and how confident

are we in it?

Uncertainty analysis
◮ How does uncertainty about the model inputs θ feed through the

model?

Sensitivity analysis
◮ How can we apportion variation in the output to variation in the input

parameters? In other words, what inputs are driving the output?
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Incorporating and accounting for uncertainty

Perhaps the biggest challenge faced is incorporating uncertainty in
computer experiments.

We are used to dealing with uncertainty in physical experiments. But if
your computer model is deterministic, there is no natural source of
variation and so the experimenter must carefully assess where errors might
arise.

Types of uncertainty in computer experiments:

Observation errors

Parametric uncertainty

Model error

Code uncertainty
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Representation of uncertainty

Probability (Bayesian) can be used to represent uncertainty.

Under minimal rationality assumptions, probability can be shown to
be the only rational way to represent uncertainty.
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Representation of uncertainty

Probability (Bayesian) can be used to represent uncertainty.

Under minimal rationality assumptions, probability can be shown to
be the only rational way to represent uncertainty.

Probability is subjective probability - distributions represent degrees
of belief of individuals. There is no escaping this interpretation in
many applications!

All uncertainty quantities θ can be given distributions π(θ) that
represent our (an experts?) uncertainty about the value - this
doesn’t mean that they are random quantities, just that we don’t
know their value.

◮ Even unknown function will be described by probability distributions
across a class of unknown functions
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Representation of uncertainty

Probability (Bayesian) can be used to represent uncertainty.

Under minimal rationality assumptions, probability can be shown to
be the only rational way to represent uncertainty.

Probability is subjective probability - distributions represent degrees
of belief of individuals. There is no escaping this interpretation in
many applications!

All uncertainty quantities θ can be given distributions π(θ) that
represent our (an experts?) uncertainty about the value - this
doesn’t mean that they are random quantities, just that we don’t
know their value.

◮ Even unknown function will be described by probability distributions
across a class of unknown functions

Bayesian approach uses the principle of conditionality, and always
(where possible) conditions on our data.
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Bayesian Inference

The basics of Bayesian inference are very simple.

If quantity θ is unknown we describe our uncertainty by prior
distribution π(θ).

Suppose we have data D from model π(D|θ)

Then conditional on observing this data, our posterior distribution is

π(θ|D) =
π(θ)π(D|θ)

π(D)

In general we just use the relationship

posterior ∝ prior × likelihood (model)

Given a model and prior the entire Bayesian statistical approach is fully
specified. In practice, computational difficulties add interest!
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Meta-modelling
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Code uncertainty
For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.
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Code uncertainty
For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.

Consequently, we will only know the simulator output at a finite number
of points.

We call this code uncertainty.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , η(θi ))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of η(θ).
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Code uncertainty
For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.

Consequently, we will only know the simulator output at a finite number
of points.

We call this code uncertainty.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , η(θi ))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of η(θ).

If θ is multidimensional, then even short run times can rule out brute
force approaches

dim(θ) ∈ R
10 then 1000 simulator runs is only enough for one point

in each corner of the design space.

The design of computational experiments is an active field in statistics.
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Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this meta-model an emulator of our simulator.
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Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this meta-model an emulator of our simulator.

There are many types of emulator.

ideally an emulator should come with an assessment of its accuracy

rather than just predicting η(θ) it should predict π(η(θ)|Dsim) - our
uncertainty about the simulator value given the ensemble Dsim.

Gaussian process emulators are most popular choice for emulator. Built
using

an ensemble of model runs Dsim = {(θi , η(θi ))}i=1,...,N

expert opinion about the simulator output.
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Meta-modelling
Gaussian Process Emulators

Gaussian processes provide a flexible nonparametric distributions for our
prior beliefs about the functional form of the simulator:

η(·) ∼ GP(m(·), σ2c(·, ·))

where m(·) is the prior mean function, and c(·, ·) is the prior covariance
function (semi-definite).
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Meta-modelling
Gaussian Process Emulators

Gaussian processes provide a flexible nonparametric distributions for our
prior beliefs about the functional form of the simulator:

η(·) ∼ GP(m(·), σ2c(·, ·))

where m(·) is the prior mean function, and c(·, ·) is the prior covariance
function (semi-definite).

Definition If f (·) ∼ GP(m(·), c(·, ·)) then for any collection of inputs
x1, . . . , xn the vector

(f (x1), . . . , f (xn))
T ∼ MVN(m(x), σ2Σ)

where Σij = c(xi , xj).
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Meta-modelling
Gaussian Process Emulators

Gaussian processes are invariant under Bayesian updating.

If we observe the ensemble of model runs Dsim, then update our prior
belief about η in light of the ensemble of model runs:

η(·)|Dsim ∼ GP(m∗(·), σ2c∗(·, ·))

where m∗ and c∗ are the posterior mean and covariance functions (simple
functions of Dsim, m and c).
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Gaussian Process Illustration
Zero mean
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Gaussian Process Illustration
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Emulator choices

η(x) = h(x)β + u(x)

emulator = mean structure + residual
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η(x) = h(x)β + u(x)

emulator = mean structure + residual

u(x) can be taken to be a zero-mean Gaussian process

u(·) ∼ GP(0, c(·, ·))

Emulator choices:

mean structure h(x)
◮ 1, x , x2, . . ., Legendre polynomials?

Richard Wilkinson (Nottingham) Challenges in Computer Experiments July 2010 17 / 43



Emulator choices

η(x) = h(x)β + u(x)

emulator = mean structure + residual

u(x) can be taken to be a zero-mean Gaussian process

u(·) ∼ GP(0, c(·, ·))

Emulator choices:

mean structure h(x)
◮ 1, x , x2, . . ., Legendre polynomials?

covariance function c(·, ·)
◮ Stationary? Smooth?
◮ Length-scale?
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Calibration
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Calibration
Inverse problems

For forwards models we specify parameters θ and i.c.s and the model
generates output Dsim. Usually, we are interested in the inverse-problem,
i.e., observe data Dfield , want to estimate parameter values.
Different terminology:

Calibration

Parameter
estimation

Inverse-problem

Bayesian
inference
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Calibration

In a Bayesian approach, we can think of the calibration problem as an
inverse probability problem, and find π(θ|D, η).
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Calibration

In a Bayesian approach, we can think of the calibration problem as an
inverse probability problem, and find π(θ|D, η).
What does this represent? Or rather, what do we believe we are doing?

Does θ have a physical interpretation, i.e., are we estimating physical
parameters?

Or is θ interpretted statistically? i.e., θ is the value that best explains
the data given the model - cf. the coefficients in a linear regression.

e.g., ocean physics models must be run with viscosity several orders of
magnitude too large.
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In a Bayesian approach, we can think of the calibration problem as an
inverse probability problem, and find π(θ|D, η).
What does this represent? Or rather, what do we believe we are doing?

Does θ have a physical interpretation, i.e., are we estimating physical
parameters?

Or is θ interpretted statistically? i.e., θ is the value that best explains
the data given the model - cf. the coefficients in a linear regression.

e.g., ocean physics models must be run with viscosity several orders of
magnitude too large.
When can we interpret the value found for θ as a physical value?
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Does θ have a physical interpretation, i.e., are we estimating physical
parameters?

Or is θ interpretted statistically? i.e., θ is the value that best explains
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Calibration

In a Bayesian approach, we can think of the calibration problem as an
inverse probability problem, and find π(θ|D, η).
What does this represent? Or rather, what do we believe we are doing?

Does θ have a physical interpretation, i.e., are we estimating physical
parameters?

Or is θ interpretted statistically? i.e., θ is the value that best explains
the data given the model - cf. the coefficients in a linear regression.

e.g., ocean physics models must be run with viscosity several orders of
magnitude too large.
When can we interpret the value found for θ as a physical value?

If the model is a perfect representation of the system

When the model is imperfect, but we have a description (that we
believe) of the discrepancy between model and system.
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All models are wrong, but some are useful
Kennedy and O’Hagan 2001

Suppose we have a computer model η(x , θ) that we wish to use to
make predictions of a physical system ζ(x) using observations D(x).

◮ θ are model parameters we wish to learn
◮ x are control/index parameters, e.g., time, location etc.
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All models are wrong, but some are useful
Kennedy and O’Hagan 2001

Suppose we have a computer model η(x , θ) that we wish to use to
make predictions of a physical system ζ(x) using observations D(x).

◮ θ are model parameters we wish to learn
◮ x are control/index parameters, e.g., time, location etc.

Standard approach to calibration is the best-input approach, where
we assume there is a single ‘best’ value of θ, which we call θ̂. The
model run at θ̂, the hat-run η(θ̂), is the best model prediction.
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All models are wrong, but some are useful
Kennedy and O’Hagan 2001

Suppose we have a computer model η(x , θ) that we wish to use to
make predictions of a physical system ζ(x) using observations D(x).

◮ θ are model parameters we wish to learn
◮ x are control/index parameters, e.g., time, location etc.

Standard approach to calibration is the best-input approach, where
we assume there is a single ‘best’ value of θ, which we call θ̂. The
model run at θ̂, the hat-run η(θ̂), is the best model prediction.

Usual statistical assumption is that

D(t) = η(t, θ̂) + et

where e· is a white noise (iid) error process. This is a poor
assumption for most models: if the model is imperfect, then residuals
D − η(θ) may be correlated, even if the real measurement error
process is iid.
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Bayesian Calibration Framework II

Instead, assume that we observe reality plus measurement error.

D(t) = ζ(t) + e(t)

Often, e(·) will be a white noise process with known mean and
variance.
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Bayesian Calibration Framework II

Instead, assume that we observe reality plus measurement error.

D(t) = ζ(t) + e(t)

Often, e(·) will be a white noise process with known mean and
variance.

Introduce a model error (discrepancy) term. Assume that reality is
the best model prediction plus an error

ζ(t) = η(t, θ̂) + δ(t).

Note δ does not depend on θ.
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Bayesian Calibration Framework II

Instead, assume that we observe reality plus measurement error.

D(t) = ζ(t) + e(t)

Often, e(·) will be a white noise process with known mean and
variance.

Introduce a model error (discrepancy) term. Assume that reality is
the best model prediction plus an error

ζ(t) = η(t, θ̂) + δ(t).

Note δ does not depend on θ.

Argue that η(·, θ̂) and δ(·) are independent. Kennedy and O’Hagan
2001 use Gaussian processes to model both the model η and the
error δ.
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Example: UVic Earth System Climate Model
With Nathan Urban (Penn State)

UVic ESCM is an intermediate complexity model with a general
circulation ocean and dynamic/thermodynamic sea-ice components
coupled to a simple energy/moisture balance atmosphere. It has a
dynamic vegetation and terrestrial carbon cycle model (TRIFFID) as well
as an inorganic carbon cycle.

Inputs: Q10 = respiration sensitivity to temperature (carbon source)
and Kc = CO2 fertilization of photosynthesis (carbon sink).
Output: time-series of CO2 values, cumulative carbon flux
measurements, ...
48 member ensemble, grid design D, output Dsim (48 × n).
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The U.Vic Model

60 field measurements, Dfield :
◮ 40 instrumental CO2 measurements from 1960-1999
◮ 17 ice core CO2 measurements
◮ 3 cumulative ocean carbon flux measurements
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Multivariate Models
Wilkinson 2010

The output from UVic is a temporal spatial field of predicted CO2 values.

To emulate this we need an extension of the univariate GP method
produced previously.
If model outputs are highly correlated we can reduce the dimension of the
output by projecting the data onto some lower dimensional manifold Ypc .
We can then emulate the function that maps the input space Θ to the
reduced dimensional output space Ypc .

Θ Y

Ypc

η(·)

PCA
PCA−1ηpc(·)
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Emulator Diagnostics
Cross-validation plots, instrumental data only (1960:1999), using 3PCs (99.2% of
variance explained)
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UVic Model Discrepancy

The calibration framework used is:

Dfield (t) = η(θ, t) + δ(t) + e(t)

The model predicts the underlying trend, but real climate fluctuates
around this. We model

discrepancy as an AR1 process: δ(0) ∼ N(0, σ2
δ ), and

δ(t) = ρδ(t − 1) + N(0, σ2
δ ).

Measurement error as heteroscedastic independent random noise
e(t) ∼ N(0, λ(t)).
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Results

After several hours of MCMC (Metropolis-within-Gibbs) we find

Fluxes and CO2calibration curve
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The data are equally well explained by a range of parameter values.
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Learning Model Error
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Learning Model Error

In some situations the modellers will be able to describe clearly what form
they expect the model error to take. Often however, we will need to learn
the form and magnitude of the model error.
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Learning Model Error

In some situations the modellers will be able to describe clearly what form
they expect the model error to take. Often however, we will need to learn
the form and magnitude of the model error.

Consider the dynamic model η where we have state vector xt which
evolves through time

xt+1 = η(xt , ut)

and suppose we observe
yt = xt + et

where et ∼ N(0, σ2).
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Learning Model Error

In some situations the modellers will be able to describe clearly what form
they expect the model error to take. Often however, we will need to learn
the form and magnitude of the model error.

Consider the dynamic model η where we have state vector xt which
evolves through time

xt+1 = η(xt , ut)

and suppose we observe
yt = xt + et

where et ∼ N(0, σ2).
We ask whether there is a model error term δ that could be learnt:

State evolution: xt+1 = η(xt , ut) + δ(xt , ut) + ǫt
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Toy Example: Freefall

Consider an experiment where we drop a weight
from a tower and measure its position xt every
∆t seconds.

Noisy observation: yn ∼ N(xn, σ
2
obs)
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Toy Example: Freefall

Consider an experiment where we drop a weight
from a tower and measure its position xt every
∆t seconds.

Noisy observation: yn ∼ N(xn, σ
2
obs)

Suppose we are given a computer model based on

dv

dt
= g
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Toy Example: Freefall

Consider an experiment where we drop a weight
from a tower and measure its position xt every
∆t seconds.

Noisy observation: yn ∼ N(xn, σ
2
obs)

Suppose we are given a computer model based on

dv

dt
= g

Which gives predictions at the observations of

xn+1 = xn + vk∆t + 1
2g(∆t)2

vn+1 = vn + g∆t
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Toy Example: Freefall

Assume that the ‘true’ dynamics include a
Stokes’ drag term

dv

dt
= g − kv
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Toy Example: Freefall

Assume that the ‘true’ dynamics include a
Stokes’ drag term

dv

dt
= g − kv

Which gives single time step updates

xn+1 = xn +
1

k
(
g

k
− vt)(e

−k∆t − 1) +
g∆t

k

vn+1 = (vn −
g

k
)e−k∆t +

g

k
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Model Error Term

In this toy problem, the true discrepancy function can be calculated.

It is a two dimensional function

δ =

(

δx

δv

)

= ζ − f

giving the difference between the one time-step ahead dynamics of
reality and the prediction from our model.

If we expand e−k∆t to second order we find

δ(x , v , t) =

(

δx

δv

)

=

(

0
−gk(∆t)2

2

)

− vt

(

k(∆t)2

2

k∆t(1 − k∆t
2 )

)
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Model Error Term

In this toy problem, the true discrepancy function can be calculated.

It is a two dimensional function

δ =

(

δx

δv

)

= ζ − f

giving the difference between the one time-step ahead dynamics of
reality and the prediction from our model.

If we expand e−k∆t to second order we find

δ(x , v , t) =

(

δx

δv

)

=

(

0
−gk(∆t)2

2

)

− vt

(

k(∆t)2

2

k∆t(1 − k∆t
2 )

)

This is solely a function of v .

Note, to learn δ we only have the observations y1, . . . , yn of
x1, . . . , xn - we do not observe v .
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Expected form of the discrepancy

Forget the previous slide.
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There are three variables in this problem, displacement, velocity and time
(x , v , t) so we might think to model δ as a function of these three terms.
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Expected form of the discrepancy

Forget the previous slide.

There are three variables in this problem, displacement, velocity and time
(x , v , t) so we might think to model δ as a function of these three terms.

However, the principal of universality says that nature is consistent
throughout all space and time (background independence), so with a little
thought we might reason that δ should be independent of x and t.
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Expected form of the discrepancy

Forget the previous slide.

There are three variables in this problem, displacement, velocity and time
(x , v , t) so we might think to model δ as a function of these three terms.

However, the principal of universality says that nature is consistent
throughout all space and time (background independence), so with a little
thought we might reason that δ should be independent of x and t.

With input from an experienced user of our model, it is feasible we might
be able to get other information such as that δ approximately scales with
v , or at least that the error is small at low speeds and large at high speeds.
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Parametric approach

Start with a parametric model for δ, e.g.,

δx(x) =

p
∑

i=0

αix
i +

q
∑

i=0

βiv
i + ǫ

where ǫ ∼ N(0, τ), with θx = (τ, α0, . . . , αp, β0, . . . , βq) unknown (and
similarly for δv ).
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where ǫ ∼ N(0, τ), with θx = (τ, α0, . . . , αp, β0, . . . , βq) unknown (and
similarly for δv ).

The problem now looks like a missing data problem:

π(x0:t , y0:t |θ) = π(y0:t |x0:t)π(x0:t |θ)

is easy to work with when x0:t and y0:t are known. However x0:t is
missing and π(y0:t |θ) is unknown.
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δx(x) =

p
∑
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αix
i +

q
∑

i=0

βiv
i + ǫ

where ǫ ∼ N(0, τ), with θx = (τ, α0, . . . , αp, β0, . . . , βq) unknown (and
similarly for δv ).

The problem now looks like a missing data problem:

π(x0:t , y0:t |θ) = π(y0:t |x0:t)π(x0:t |θ)

is easy to work with when x0:t and y0:t are known. However x0:t is
missing and π(y0:t |θ) is unknown.

The EM algorithm can be used to estimate the best fitting model for
δ from the specified class of models.
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An EM algorithm for estimating δ

We iterate between the E and M steps:

E-step: Calculate

Q(θ, θ(m)) = EX0:T

[

log π(X0:T , y0:T |θ) | y0:T , θ(m)
]

M-step: Maximize Q and set

θ(m+1) = arg maxθQ(θ, θ(m))
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◮ This expectation is taken with respect to the distribution
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[

log π(X0:T , y0:T |θ) | y0:T , θ(m)
]

◮ This expectation is taken with respect to the distribution
π(x0:T | y0:T , θ(m))

◮ This is the smoothing distribution from the fully specified model, and
is not known analytically. However, it can be sampled from and the
Monte Carlo expectation used for Q (stochastic EM algorithm, Wei
and Tanner 1990).

M-step: Maximize Q and set

θ(m+1) = arg maxθQ(θ, θ(m))

Richard Wilkinson (Nottingham) Challenges in Computer Experiments July 2010 36 / 43



An EM algorithm for estimating δ

We iterate between the E and M steps:

E-step: Calculate

Q(θ, θ(m)) = EX0:T

[

log π(X0:T , y0:T |θ) | y0:T , θ(m)
]

◮ This expectation is taken with respect to the distribution
π(x0:T | y0:T , θ(m))

◮ This is the smoothing distribution from the fully specified model, and
is not known analytically. However, it can be sampled from and the
Monte Carlo expectation used for Q (stochastic EM algorithm, Wei
and Tanner 1990).

M-step: Maximize Q and set

θ(m+1) = arg maxθQ(θ, θ(m))

◮ For the linear parametric model assumed here, it can be shown that
this step reduces to fitting a linear regression model.
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Comments
This gives a sequence θ(0), θ(1), . . . that tends to the maximum likelihood
estimates argmaxθπ(y0:t |θ).

We can think of this as two steps which we loop around

1 Given an estimate for θ (and hence δ), estimate the true trajectory
x0:T from π(x0:T | y0:T , θ).

2 Given samples from π(x0:T | y0:T , θ), estimate a value for θ.

The EM algorithm suggests that this converges to the mle (subject to
problems with the expectation being approximated by a Monte Carlo
sum).
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This gives a sequence θ(0), θ(1), . . . that tends to the maximum likelihood
estimates argmaxθπ(y0:t |θ).

We can think of this as two steps which we loop around

1 Given an estimate for θ (and hence δ), estimate the true trajectory
x0:T from π(x0:T | y0:T , θ).

2 Given samples from π(x0:T | y0:T , θ), estimate a value for θ.

The EM algorithm suggests that this converges to the mle (subject to
problems with the expectation being approximated by a Monte Carlo
sum).

We require samples from the smoothing distribution π(x0:T |y0:T , θ)

We can generate approximate samples using the KF and its
extensions, but this can be difficult to achieve good results

Sequential Monte Carlo methods can be used to generate a more
accurate approximation.
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Filtering - π(xt |y0:t)

The bootstrap filter

1 Initialize t=1
For i = 1, . . . ,N sample x

(i)
1 ∼ π(x1), set t = 2

2 Importance step

◮ For i = 1, . . . , N , sample

x̃
(i)
t ∼ π(xt |x

(i)
t−1) ∼ f (xt−1) + δ(xt−1)

◮ Calculate the importance weights

w̃ (i) ∝ π(yt |x̃
(i)
t ) = φ(yt ; xt , σ

2
obs)

3 Selection step

◮ Sample with replacement N particles (x
(i)
t , i = 1, . . . , N) from

(x̃
(i)
t , i = 1, . . . , N) according to the importance weights.

◮ Set t = t + 1 and go to step 2. Reset all weights to be proportional to
1.
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Smoothing π(x0:T | y0:T )
Godsill, Doucet and West 2004

Assume we have filtered particles {x
(i)
t }i=1,...,N,t=1,...,T with

x
(i)
t ∼ π(xt |y0:t) (assume all weights are ∝ 1 because of gratuitous

resampling in the filter).

Smoothing

Choose x̃T = x
(i)
T at random from filtered particles at time T .

For t = T − 1 to 1:
◮ Calculate w

(i)
t|t+1 ∝ π(x̃t+1|x

(i)
t ) for each i

◮ Choose x̃t = x
(i)
t with probability w

(i)
t|t+1

Then x̃1:T is an approximate realization from π(x1:T |y1:T ).

NB The marginal smoother of Fearnhead, Wyncoll and Tawn (2008) gives
all we require (i.e., pairs (xt , xt+1)) and may be more efficient.
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Results from freefall example
k=0.1

We take a sequence of 100 measurements of x ,
taken every 0.25 seconds.

We assume the discrepancy is linear in v and x .

We use 1000 filtering particles and 3 smoothed
trajectories giving 3 × 100 observations of δ.

We then iterate through the EM algorithm.

Richard Wilkinson (Nottingham) Challenges in Computer Experiments July 2010 40 / 43



Measurement error σobs = 0.25m
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Measurement error σobs = 0.25m
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Measurement error σobs = 1m
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Summary

Computer experiments are increasingly being used to learn about the
world and to make decisions.

The statistical analysis of computer experiments is vitally important in
many cases, yet the theory is still in its infancy.

The incorporation of uncertainty is key if models are to be used in a
decision process

This involves the quantification of model error

Meta-modelling is an important tool which is increasingly being used
to overcome computational difficulties
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