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Introduction

How can we estimate a model’s error (discrepancy) from data?

When using dynamical systems we are often in a sequential
prediction setting where we make predictions before then observing
the outcome.

Embedded in this process is information about how well the model
performs.

We can specify a class of models for the error, and then try to learn
about the error from our predictions and the realised data.

The work here is at an early stage and only been tried on simple models.

Welcome any comments/questions etc throughout.
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Mathematical Framework

Suppose we have

State vector xt which evolves through time. Let x0:T denote
(x0, x1, . . . , xT ).
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Mathematical Framework

Suppose we have

State vector xt which evolves through time. Let x0:T denote
(x0, x1, . . . , xT ).

Computer model f which encapsulates our beliefs about the
dynamics of the state vector

xt+1 = fφ(xt , ut)

which depends on forcings ut and parameters φ. We treat f as a
black-box.

R.D. Wilkinson (University of Nottingham) Estimating model error April 2010 3 / 34



Mathematical Framework

Suppose we have

State vector xt which evolves through time. Let x0:T denote
(x0, x1, . . . , xT ).

Computer model f which encapsulates our beliefs about the
dynamics of the state vector

xt+1 = fφ(xt , ut)

which depends on forcings ut and parameters φ. We treat f as a
black-box.

Observations
zt = h(xt)

where h(·) usually contains some stochastic element

In data assimilation we try to make use of the data and the computer
model. If the model is wrong, we should take this into account.
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Moving from white to coloured noise

Common data assimilation approach

State evolution: xt+1 = fφ(xt , ut) + ǫt where ǫt are iid rvs.
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Moving from white to coloured noise

Common data assimilation approach

State evolution: xt+1 = fφ(xt , ut) + ǫt where ǫt are iid rvs.

Aim is to find quantities such as
◮ Filtering distribution π(xt |z0:t)
◮ Smoothing distribution π(x0:T |z0:T )
◮ Forward predictions π(xT+t |z0:T )

where π(·|·) denotes a conditional probability distribution. We
implicitly assume that these distributions are conditional on
knowledge of forcings and the model, i.e., π(xt |z0:t , f , φ, u0:t)
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Moving from white to coloured noise

Common data assimilation approach

State evolution: xt+1 = fφ(xt , ut) + ǫt where ǫt are iid rvs.

Aim is to find quantities such as
◮ Filtering distribution π(xt |z0:t)
◮ Smoothing distribution π(x0:T |z0:T )
◮ Forward predictions π(xT+t |z0:T )

where π(·|·) denotes a conditional probability distribution. We
implicitly assume that these distributions are conditional on
knowledge of forcings and the model, i.e., π(xt |z0:t , f , φ, u0:t)

Instead of the white noise model error considered above, we ask whether
there is a stronger signal that could be learnt:

State evolution: xt+1 = fφ(xt , ut) + δ(xt , ut) + ǫt

Observations: zt = h(xt) as above.
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The hope is that by learning the model discrepancy we will produce more
accurate predictions

smaller error

uncertainty bounds that we believe - fewer surprises.
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The hope is that by learning the model discrepancy we will produce more
accurate predictions

smaller error

uncertainty bounds that we believe - fewer surprises.

Why this is difficult?

x0:T is usually unobserved, but given observations z0:T and a fully
specified model we can infer x0:T .

When we want to learn the discrepancy δ(x) we are in the situation
where we estimate δ from x0:T , but where we must estimate x0:T

from a description of δ.
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Toy Example
Consider the following simple 1D example:

Reality: xt+1 = −x2
t + xt + ut with forcing model

ut =

{

0 w.p. 0.6

U w.p. 0.4 where U ∼ Exp(10)
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Toy Example
Consider the following simple 1D example:

Reality: xt+1 = −x2
t + xt + ut with forcing model

ut =

{

0 w.p. 0.6

U w.p. 0.4 where U ∼ Exp(10)

Computer model: xt+1 = φxt + ut
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Toy Example
Consider the following simple 1D example:

Reality: xt+1 = −x2
t + xt + ut with forcing model

ut =

{

0 w.p. 0.6

U w.p. 0.4 where U ∼ Exp(10)

Computer model: xt+1 = φxt + ut

Observations zt = xt + Vt where Vt ∼ N(0, σ2
obs ).
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Toy Example
Consider the following simple 1D example:

Reality: xt+1 = −x2
t + xt + ut with forcing model

ut =

{

0 w.p. 0.6

U w.p. 0.4 where U ∼ Exp(10)

Computer model: xt+1 = φxt + ut

Observations zt = xt + Vt where Vt ∼ N(0, σ2
obs ).

In this case the discrepancy is known exactly: δ(x) = x(1 − φ) − x2
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The difficulty of learning δ is highlighted by looking at xt+1 − f (xt) where
xt is an uncorrected trajectory generated from the model.
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At first sight this would suggest a white noise error isn’t too bad.
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Once we correct the state vector after each model time step a much
clearer picture emerges.
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Parametric approach

Start with a parametric model for δ, e.g., δ(x) =
∑p

i=0 βix
i + ǫ where

ǫ ∼ N(0, τ), with θ = (τ, β0, . . . , βp) unknown.
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Parametric approach

Start with a parametric model for δ, e.g., δ(x) =
∑p

i=0 βix
i + ǫ where

ǫ ∼ N(0, τ), with θ = (τ, β0, . . . , βp) unknown.

The problem now looks like a missing data problem:

π(x0:t , z0:t |θ) = π(z0:t |x0:t)π(x0:t |θ)

is easy to work with when x0:t and z0:t are known. However x0:t is
missing and π(z0:t |θ) is unknown.

R.D. Wilkinson (University of Nottingham) Estimating model error April 2010 8 / 34



Parametric approach

Start with a parametric model for δ, e.g., δ(x) =
∑p

i=0 βix
i + ǫ where

ǫ ∼ N(0, τ), with θ = (τ, β0, . . . , βp) unknown.

The problem now looks like a missing data problem:

π(x0:t , z0:t |θ) = π(z0:t |x0:t)π(x0:t |θ)

is easy to work with when x0:t and z0:t are known. However x0:t is
missing and π(z0:t |θ) is unknown.

The EM algorithm can be used to estimate the best fitting model for
δ from the specified class of models.
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An EM algorithm for estimating δ

We iterate between the E and M steps:

E-step: Calculate

Q(θ, θ(m)) = EX0:T

[

log π(X0:T , z0:T |θ) | z0:T , θ(m)
]

M-step: Maximize Q and set

θ(m+1) = arg maxθQ(θ, θ(m))
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An EM algorithm for estimating δ

We iterate between the E and M steps:

E-step: Calculate

Q(θ, θ(m)) = EX0:T

[

log π(X0:T , z0:T |θ) | z0:T , θ(m)
]

◮ This expectation is taken with respect to the distribution
π(x0:T | z0:T , θ(m))

M-step: Maximize Q and set

θ(m+1) = arg maxθQ(θ, θ(m))
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An EM algorithm for estimating δ

We iterate between the E and M steps:

E-step: Calculate

Q(θ, θ(m)) = EX0:T

[

log π(X0:T , z0:T |θ) | z0:T , θ(m)
]

◮ This expectation is taken with respect to the distribution
π(x0:T | z0:T , θ(m))

◮ This is the smoothing distribution from the fully specified model, and
is not known analytically. However, it can be sampled from and the
Monte Carlo expectation used for Q.

M-step: Maximize Q and set

θ(m+1) = arg maxθQ(θ, θ(m))
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An EM algorithm for estimating δ

We iterate between the E and M steps:

E-step: Calculate

Q(θ, θ(m)) = EX0:T

[

log π(X0:T , z0:T |θ) | z0:T , θ(m)
]

◮ This expectation is taken with respect to the distribution
π(x0:T | z0:T , θ(m))

◮ This is the smoothing distribution from the fully specified model, and
is not known analytically. However, it can be sampled from and the
Monte Carlo expectation used for Q.

M-step: Maximize Q and set

θ(m+1) = arg maxθQ(θ, θ(m))

◮ For the linear parametric model assumed here, it can be shown that
this step reduces to fitting a linear regression model.

R.D. Wilkinson (University of Nottingham) Estimating model error April 2010 9 / 34



Comments

This gives a sequence θ(0), θ(1), . . . that tends to the maximum likelihood
estimates argmaxθπ(z0:t |θ).

We can think of this as two steps which we loop around

1 Given an estimate for θ (and hence δ), estimate the true trajectory
x0:T from π(x0:T | z0:T , θ).

2 Given samples from π(x0:T | z0:T , θ), estimate a value for θ.

The EM algorithm suggests that this converges to the mle (subject to
problems with the expectation being approximated by a Monte Carlo
sum).
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Comments

This gives a sequence θ(0), θ(1), . . . that tends to the maximum likelihood
estimates argmaxθπ(z0:t |θ).

We can think of this as two steps which we loop around

1 Given an estimate for θ (and hence δ), estimate the true trajectory
x0:T from π(x0:T | z0:T , θ).

2 Given samples from π(x0:T | z0:T , θ), estimate a value for θ.

The EM algorithm suggests that this converges to the mle (subject to
problems with the expectation being approximated by a Monte Carlo
sum).

Restricting ourselves to a parametric family for δ is likely to be
unsatisfactory in many cases. Is there a non-parametric version?
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Gaussian Processes

Gaussian processes (GPs) provide a convenient semi-parametric model of
functions.

They are characterised by a prior mean and covariance functions,
m(x) and c(x , x ′) respectively.

Write f ∼ GP(m(·), c(·, ·)) to denote that (f (x1), . . . , f (xn))
T has a

multivariate normal distribution with mean (m(x1), . . . ,m(xn))
T and

covariance matrix with ijth entry c(xi , xj).

Importantly, the GP property is invariant under conditioning. That is,
if f ∼ GP(m(·), c(·, ·)) then conditional on observing the function
value at various locations D = {y1 = f (x1), . . . , yn = f (xn)} we find
that f still has a Gaussian process distribution but with updated
mean and covariance functions

f | D ∼ GP(m∗(·), c∗(·, ·))
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Gaussian Processes
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Iterative batch method for estimating δ

We can either use a Gibbs style sampler to estimate δ, or an EM type
algorithm as before:

1 Given a model for the discrepancy, we can sample from π(x0:T |z0:T )
using a particle smoother.

2 Given samples x
(1)
0:T , . . . , x

(N)
0:T we can fit a GP model to the observed

discrepancies

d
j
i = x

(j)
i+1 − fφ(x

(j)
i , ui).
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Iterative batch method for estimating δ

We can either use a Gibbs style sampler to estimate δ, or an EM type
algorithm as before:

1 Given a model for the discrepancy, we can sample from π(x0:T |z0:T )
using a particle smoother.
For example, the method of Godsill et al. (2004) involves

◮ A forward filtering sweep to find marginals π(xt |z0:t)
◮ Followed by a backward smoothing sweep to find smoothed posteriors

π(x0:T |z0:T ).

2 Given samples x
(1)
0:T , . . . , x

(N)
0:T we can fit a GP model to the observed

discrepancies

d
j
i = x

(j)
i+1 − fφ(x

(j)
i , ui).
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Filtering - π(xt |z0:t)

The bootstrap filter

1 Initialize t=1
For i = 1, . . . ,N sample x

(i)
1 ∼ π(x1), set t = 2

2 Importance step

◮ For i = 1, . . . , N , sample

x̃
(i)
t ∼ π(xt |x

(i)
t−1) ∼ f (xt−1) + δ(xt+1)

◮ Calculate the importance weights

w̃ (i) ∝ π(zt |x̃
(i)
t ) = φ(zt ; xt , σ

2
obs)

3 Selection step

◮ Sample with replacement N particles (x
(i)
t , i = 1, . . . , N) from

(x̃
(i)
t , i = 1, . . . , N) according to the importance weights.

◮ Set t = t + 1 and go to step 2. Reset all weights to be proportional to
1.
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Smoothing π(x0:T | z0:T )

Assume we have filtered particles {x
(i)
t }i=1,...,N,t=1,...,T with

x
(i)
t ∼ π(xt |z0:t) (assume all weights are ∝ 1 because of gratuitous

resampling in the filter).

Smoothing

Choose x̃T = x
(i)
T at random from filtered particles at time T .

For t = T − 1 to 1:
◮ Calculate w

(i)
t|t+1 ∝ π(x̃t+1|x

(i)
t ) for each i

◮ Choose x̃t = x
(i)
t with probability w

(i)
t|t+1

Then x̃1:T is an approximate realization from π(x1:T |z1:T ).
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Algorithm Summary

A heuristic algorithm for learning δ(·)

1 Using the white noise discrepancy model, draw sample trajectories

x
(j)
0:T from π(x0:T |z0:T ).

2 Using these realizations, estimate values of δ1(·) and fit a Gaussian
process model for δ1.

3 At stage m, use discrepancy δm to sample from π(x0:T |z0:T , δm).

4 Use realizations x
(j)
0:T from step 3 to estimate δm+1:

δm+1(x
(j)
t ) = x

(j)
t+1 − fφ(x

(j)
t )

5 Fit a GP model to these data. Return to step 3.
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Fitting a GP discrepancy model
The particle filter and smoother require a reasonable number of particles
in order to give accurate results. This leaves the problem of how to fit a
GP to a large amount of noisy data.
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Fitting a GP discrepancy model
The particle filter and smoother require a reasonable number of particles
in order to give accurate results. This leaves the problem of how to fit a
GP to a large amount of noisy data.
Thin by splitting the input range into intervals and sampling a small
number of points from each interval.
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Fitting a GP discrepancy model
The particle filter and smoother require a reasonable number of particles
in order to give accurate results. This leaves the problem of how to fit a
GP to a large amount of noisy data.
Thin by splitting the input range into intervals and sampling a small
number of points from each interval.

Estimate length scale, variance and nugget term using max-likelihood or
map estimates.
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Results for toy model: sequence of discrepancy estimates
σmodel/σobs = 7.14
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Sequence of discrepancy estimates
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Sequence of discrepancy estimates
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Sequence of discrepancy estimates
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Sequence of discrepancy estimates
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Sequence of discrepancy estimates
σmodel/σobs = 7.14
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Sequence of discrepancy estimates
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Sequence of discrepancy estimates
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Sequence of discrepancy estimates
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Sequence of discrepancy estimates
σmodel/σobs = 7.14
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Filtering Distributions
σmodel/σobs = 7.14

Move from
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Filtering Distributions
σmodel/σobs = 7.14

To
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Similar sized model and measurement error
σmodel/σobs = 1.6
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Similar sized (small) model and measurement error
σmodel/σobs = 1.6
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Small model error, large observation error
σmodel/σobs = 0.036
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Concluding remarks
Using a non-white model discrepancy can improve forecasts and state
estimates. The discrepancy can be learnt from observation alone.
Approach is computationally intensive. Even for these toy models,
100 iterations of the algorithm can take a few minutes.
In higher dimensional problems (esp. if dim(x) > dim(z)) it can be
hard to discover if a systematic model error exists.
Our aim is to perform Bayesian inference (data are conditioned on;
use all available information), but we compromise in places:

◮ Coherent subjectivists are well-calibrated in the long-run (Dawid
1984). However, when we use complex models, it is hard/impossible
to be a good Bayesian - we tend to operate in periods of revolution.
We tend to use a model for a while until it is discarded or upgraded
and then stick with the new version for a while - calibration scores can
be useful tools.

◮ Sequential approaches are extremely costly, which is why we’ve used a
batch approach here.

◮ If the modellers have beliefs about the shape of the model error, it is
possible to incorporate this into our a priori description of the GP
model.

R.D. Wilkinson (University of Nottingham) Estimating model error April 2010 33 / 34



Thank you for listening!
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