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Talk plan

(a) Uncertainty quantification (UQ) for computer experiments
(b) Design
(c) Calibration - history matching and ABC



Computer experiments

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?



Computer experiments

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?
@ how do we relate simulators to reality?
@ how do we estimate tunable parameters?
@ how do we deal with computational constraints?
@ how do we make uncertainty statements about the world that

combine models, data and their corresponding errors?

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.



Uncertainty Quantification (UQ) for computer experiments

e Calibration
» Estimate unknown parameters 6
» Usually via the posterior distribution 7(6|D)
» Or history matching
@ Uncertainty analysis
» f(x) a complex simulator. If we are uncertain about x, e.g.,
X ~ 7(x), what is 7(f(X))?
@ Sensitivity analysis
» X =(Xq,...,Xy)". Can we decompose Var(f(X)) into contributions
from each Var(X;)?
> If we can improve our knowledge of any X;, which should we choose to
minimise Var(f(X))?
@ Simulator discrepancy
» f(x) is imperfect. How can we quantify or correct simulator
discrepancy.



Surrogate/Meta-modelling
Emulation



Code uncertainty

For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.



Code uncertainty

For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.

Consequently, we will only know the simulator output at a finite number
of points.

@ We call this code uncertainty.
@ All inference must be done using a finite ensemble of model runs

Dsim = {(0i, f(0:))}i=1,..n

@ If # is not in the ensemble, then we are uncertainty about the value
of ().



Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this meta-model an emulator of our simulator.



Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’
We call this meta-model an emulator of our simulator.
Gaussian process emulators are most popular choice for emulator.

@ Built using an ensemble of model runs Dgjp, = {(0;, f(0i))}i=1,..n

@ They give an assessment of their prediction accuracy 7(f(6)|Dsim)



Gaussian Process lllustration

Zero mean
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Gaussian Process lllustration

Ensemble of model evaluations
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Gaussian Process lllustration
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Challenges

Design: if we can afford n simulator runs, which parameter values
should we run it at?

High dimensional inputs
» If 8 is multidimensional, then even short run times can rule out brute
force approaches

@ High dimensional outputs
» Spatio-temporal.

(]

Incorporating physical knowledge

Difficult behaviour, e.g., switches, step-functions, non-stationarity...



Uncertainty quantification for Carbon

Capture and Storage
EPSRC: transport
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Technical challenges:

@ How do we find non-parametric Gaussian process models that i) obey
the fugacity constraints ii) have the correct asymptotic behaviour



Storage @.Panacea

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field)

f(K)

Outputs:
Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),

Surface Flux=6.43, ...
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Design



Design

We build GPs using data {x;, y;}7_;

o Call the collection X, = {x;}7_; C R the design
For observational studies we have no control over the design, but we do
for computer experiments!

@ GP predictions made using a good design will be better than those
using a poor design (Cf location of inducing points for sparse GPs)

What are we designing for?
@ Global prediction
e Calibration

e Optimization - minimize the Expected Improvement (EI)?



Design for global prediction
e.g. Zhu and Stein 2006
For a GP with known hyper parameters, space filling designs are good as
the minimize the average prediction variance
@ Latin hypercubes, maximin/minimax, max. entropy
However, if we only want to estimate hyperparameters then maximize
2

detZ(0) = —detE <§02 f(X;G))

Usually, we want to make good predictions after having estimated
parameters, and a trade-off between these two criteria has been proposed.
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Sequential design

The designs above are all ‘one-shot’ designs and can be wasteful.
Instead we can use adaptive/sequential designs/active learning and add a
point at a time:

@ Choose location x,4+1 to maximize some criterion/acquisition rule

C(x) = Clx [ {xi, yi}i=1)
e Generate ypi1 = f(Xpt+1)

For optimization, we've seen that a good criterion for minimizing f(x) is
to choose x to maximize the expected improvement criterion

C(x) =E[(,_min yi = f(x))+]



Sequential design for global prediction
Gramacy and Lee 2009, Beck and Guillas 2015

Many designs work on minimizing some function of the predictive
variance/MSE
s2(x) = Var(f(x)|D,)
@ Active learning MacKay (ALM): choose x at the point with largest
predictive variance
Ca(x) = 57(x)
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Sequential design for global prediction

Gramacy and Lee 2009, Beck and Guillas 2015
Many designs work on minimizing some function of the predictive
variance/MSE

s2(x) = Var(f(x)|D,)

n

@ Active learning MacKay (ALM): choose x at the point with largest
predictive variance
Ca(x) = 57(x)
This tends to locate points on the edge of the domain.

@ Active learning Cohn (ALC): choose x to give largest expected
reduction in predictive variance

Colx) = / $2(x') — 52, (x')dx’

ALC tends to give better designs than ALM, but has cost
O(n® + Nyer Neangn?) for each new design point



Sequential design for global prediction
MICE: Beck and Guillas 2015
The Mutual Information between Y and Y’ is

Z(Y; Y') = H(Y) = H(Y | V') = KL(py.y[Ipypy)

Choose design X, to maximize mutual information between f(X,) and
f(Xcand \ Xn) where Xcang is a set of candidate design points.
A sequential version for GPs reduces to choosing x to maximize
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Calibration, history matching and
ABC



Inverse problems

@ For most simulators we specify parameters 6 and i.c.s and the
simulator, f(0), generates output X.

@ The inverse-problem: observe data D, estimate parameter values 6
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Two approaches

Probabilistic calibration History matching
Find the posterior distribution Find the plausible parameter set
Po:

m(0|D) x w(0)m(D|0)

FO) e PoVOEDP
for likelihood function (9) € Po 0

n(D|0) = [ =(D|X,0)m(X]0)dX where Pp is some plausible set of

which relates the simulator simulation outcomes that are
output, to the data,e.g., consistent with simulator
discrepancy and measurement
D=X-+e+e¢ error, e.g.,

where e ~ N(0, 02) represents

simulator discrepancy, and Pp={X:|D—-X|<3(ce+0¢)}
€ ~ N(0,02) represents

measurement error on the data

Calibration aims to find a distribution representing plausible parameter
values, whereas history matching classifies space as plausible or
implausible.



Calibration - Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

@ they do not require explicit knowledge of the likelihood function

e inference is done using simulation from the model (they are
‘likelihood-free').

ABC methods are popular in biological disciplines, particularly genetics.
They are

Simple to implement

@ Intuitive

@ Embarrassingly parallelizable
°

Can usually be applied



Rejection ABC

Uniform Rejection Algorithm
@ Draw 6 from 7(6)
e Simulate X ~ f(6)
@ Accept 0 if p(D,X) <€




Rejection ABC

Uniform Rejection Algorithm
@ Draw 6 from 7(6)
e Simulate X ~ f(6)
@ Accept 0 if p(D, X) <e

€ reflects the tension between computability and accuracy.

@ As e — 00, we get observations from the prior, 7(6).

e If e =0, we generate observations from 7(6 | D).

Rejection sampling is inefficient, but we can adapt other MC samplers
such as MCMC and SMC.



theta vs D Density

Density
00 02 04 06 08 10 12 14

0 ~ U[-10,10], X ~ N(2(8 +2)8(6 — 2),0.1 + 6?)
p(D, X) = |D — X]|, D=2
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Density

theta vs D

T
T 2T 0O

T T T T
80 90 ¥0 20 00

T
Ausuaq
| |
B ' '
aun o 1 [l
W e 28e |
Du&wﬁwﬁwm I o1
o nwﬁ mww% T
< g Ik 3

theta

theta



e=25

Density

theta vs D
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Density

theta vs D
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Limitations of Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee is costly and can require more simulation than is possible.



Limitations of Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee is costly and can require more simulation than is possible.

However,
@ Most methods sample naively - they don't learn from previous
simulations.
@ They don’t exploit known properties of the likelihood function, such
as continuity
@ They sample randomly, rather than using careful design.
We can use methods that don't suffer in this way, but at the cost of
losing the guarantee of success.



Likelihood estimation

Wilkinson 2013
It can be shown that ABC replaces the true likelihood 7(D|#) by an ABC
likelihood

masc(D|0) = /7r(DX)7r(X|9)dX

where 7(D|X) is the ABC acceptance kernel.
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#apc(DI0) ~ > #(DIX)

where X; ~ m(X|6).



Likelihood estimation

Wilkinson 2013
It can be shown that ABC replaces the true likelihood 7(D|#) by an ABC
likelihood

wagc(D|0) = /w(D\X)w(X|0)dX
where 7(D|X) is the ABC acceptance kernel.
We can estimate this using repeated runs from the simulator
. 1
#apc(DI0) ~ > #(DIX)

where X; ~ m(X|6).

For many problems, we believe the likelihood is continuous and smooth,
so that magc(D|#) is similar to magc(D]0") when 6 — 6’ is small

We can model L(0) = magc(D|0) and use the model to find the posterior
in place of running the simulator.



History matching waves
Wilkinson 2014

The likelihood is too difficult to model, so we model the log-likelihood
instead.

1(6) = log L(6)
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@ In each wave, build a GP model that can rule out regions of space as
implausible.



History matching waves
Wilkinson 2014

The likelihood is too difficult to model, so we model the log-likelihood
instead.

1(6) = log L(6)

However, the log-likelihood for a typical problem ranges across too wide a
range of values.

Consequently, most GP models will struggle to model the log-likelihood
across the parameter space.

@ Introduce waves of history matching.

@ In each wave, build a GP model that can rule out regions of space as
implausible.

When this works, it can give huge savings in the number of simulator runs
required.



Example: Ricker Model

The Ricker model is one of the prototypic ecological models.

@ used to model the fluctuation of the observed number of animals in
some population over time

@ It has complex dynamics and likelihood, despite its simple
mathematical form.

Ricker Model
@ Let N; denote the number of animals at time t.

Nt+1 = rNte_NH'e’

where e; are independent N(0, c2) process noise

@ Assume we observe counts y; where

vt ~ Po(¢N)

Used in Wood to demonstrate the synthetic likelihood approach.
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Diagnostics for GP 1 - threshold = 5.6
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Results - Design 2 - 314 pts -
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Diagnostics for GP 2 - threshold = -21.8
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149 design points

Design 2

Design 3 - 149 pts - 62% of space implausible
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Diagnostics for GP 3 - threshold = -20.7
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Design 4 - 400 pts - 95%
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Diagnostics for GP 4 - threshold = -16.4
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MCMC Results

Comparison with Wood 2010, synthetic likelihood approach

Wood’s MCMC posterior Green = GP posterior
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Computational details

@ The Wood MCMC method used 10° x 500 simulator runs

@ The GP code used (128 + 314 + 149 + 400) = 991 x 500 simulator
runs

» 1/100th of the number used by Wood's method.
By the final iteration, the Gaussian processes had ruled out over 98% of
the original input space as implausible,

@ the MCMC sampler did not need to waste time exploring those
regions.



Design for calibration

with James Hensman



Implausibility

When using emulators for history-matching and ABC, the aim is to

accurately classify space as plausible or implausible by estimating the
probability

p(0) = B(6 € Py)

based upon a GP model of the simulator or likelihood

F(0) ~ GP(m(-), ¢(-;-))



Implausibility

When using emulators for history-matching and ABC, the aim is to

accurately classify space as plausible or implausible by estimating the
probability

p(0) = P(0 € Py)
based upon a GP model of the simulator or likelihood

F(0) ~ GP(m(-), ¢(-;-))

The key determinant of emulator accuracy is the design used

n_{ehf( )I 1



Entropic designs

Calibration doesn't need a global approximation to the simulator - this is
wasteful

@ Instead build a sequential design 61,605, ... using the current
classification

p(6) = P(6 € Py|D,)

to guide the choice of design points



Entropic designs

Calibration doesn't need a global approximation to the simulator - this is
wasteful

@ Instead build a sequential design 61,605, ... using the current
classification

p(0) = P(6 € Py|Dn)
to guide the choice of design points
First idea: add design points where we are most uncertain

@ The entropy of the classification surface is
E(0) = —p(0) log p(6) — (1 — p(6)) log(1 — p(0))
@ Choose the next design point where we are most uncertain.

Ony1 = argmax E(6)



Toy 1d example f(#) = sin6

Sin(x)

- - truth
— plausible
— GPmean
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014 — entropy

Add a new design point (simulator evaluation) at the point of greatest
entropy



Toy 1d example f(6) = sin6
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Toy 1d example f(6) = sin6
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Toy 1d example f(#) = sinf - After 10 and 20 iterations

lteration10

— prob. of matching data

teration20

This criterion spends too long resolving points at the edge of the
classification region.



Expected average entropy
Chevalier et al. 2014

Instead, we can find the average entropy of the classification surface

E, = / E(0)d0

where n denotes it is based on the current design of size n.

@ Choose the next design point, 6,41, to minimise the expected
average entropy
Ont+1 = argmin J,(0)

where
J,,(Q) = IE:(En-i-lwn-i-l = 9)



Toy 1d example f(6) = sin 6 - Expected entropy
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Toy 1d example f(#) = sin 6 - Expected entropy




Toy 1d example f(#) = sin 6 - Expected entropy
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Toy 1d: min expected entropy vs max entropy
After 10 iterations, choosing the point of maximum entropy

we have found the plausible region to reasonable accuracy.



Toy 1d: min expected entropy vs max entropy
After 10 iterations, choosing the point of maximum entropy

we have found the plausible region to reasonable accuracy.
Whereas maximizing the entropy has not

nnnnnnnnnn

— prob. of matching data

In 1d, a simpler space filling criterion would work just as well.



Solving the optimisation problem

Finding 6 which minimises J,(0) = E(Ep+1|0n+1 = 0) is expensive.
@ Even for 3d problems, grid search is prohibitively expensive
@ Dynamic grids help



Solving the optimisation problem

Finding 6 which minimises J,(0) = E(Ep+1|0n+1 = 0) is expensive.
@ Even for 3d problems, grid search is prohibitively expensive

@ Dynamic grids help

We can use Bayesian optimization to find the optima:

O Evaluate J,(#) at a small number of locations
@ Build a GP model of J,(-)

@ Choose the next 0 at which to evaluate J, so as to minimise the
expected-improvement (EI) criterion

© Return to step 2.



History match
Can we learn the following plausible set?

e A sample from a GP on R?.
e Find xst. —2<f(x)<0
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Iteration 10
Left=p(0), middle= E(6), right = J(0)
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lterations 15
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http://youtu.be/FF3KhKh6NHg

EPm: climate model
@ 3d problem

@ DTecrit_conv - critical temperature gradient that triggers convection
o GAMMA - emissivity parameter for water vapour

o Calibrate to global average surface temperature
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Conclusions

Gaussian processes are widely used in the analysis of complex computer
models

o

Good design can lead to substantial improvements in accuracy
Design needs to be specific to the task required

Space-filling designs are inefficient for calibration and history
matching problems.

Entropy based designs give good trade-off between exploration and
defining the plausible region

Bayesian optimisation techniques allow us to solve the hard
computation needed to use optimal entropic designs

Using emulators of the likelihood function, although adding another
layer of approximation, does enable progress in hard problems.
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o

Good design can lead to substantial improvements in accuracy
Design needs to be specific to the task required

Space-filling designs are inefficient for calibration and history
matching problems.

Entropy based designs give good trade-off between exploration and
defining the plausible region

Bayesian optimisation techniques allow us to solve the hard
computation needed to use optimal entropic designs

Using emulators of the likelihood function, although adding another
layer of approximation, does enable progress in hard problems.

Thank you for listening!

r.d.wilkinson@sheffield.ac.uk



