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Talk plan

(a) Uncertainty quantification (UQ) for computer experiments

(b) Design

(c) Calibration - history matching and ABC



Computer experiments

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality?

how do we estimate tunable parameters?

how do we deal with computational constraints?

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors?

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.
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Uncertainty Quantification (UQ) for computer experiments

Calibration
I Estimate unknown parameters θ
I Usually via the posterior distribution π(θ|D)
I Or history matching

Uncertainty analysis
I f (x) a complex simulator. If we are uncertain about x , e.g.,

X ∼ π(x), what is π(f (X ))?

Sensitivity analysis
I X = (X1, . . . ,Xd)>. Can we decompose Var(f (X )) into contributions

from each Var(Xi )?
I If we can improve our knowledge of any Xi , which should we choose to

minimise Var(f (X ))?

Simulator discrepancy
I f (x) is imperfect. How can we quantify or correct simulator

discrepancy.



Surrogate/Meta-modelling
Emulation



Code uncertainty

For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.

Consequently, we will only know the simulator output at a finite number
of points.

We call this code uncertainty.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , f (θi ))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of f (θ).
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Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this meta-model an emulator of our simulator.

Gaussian process emulators are most popular choice for emulator.

Built using an ensemble of model runs Dsim = {(θi , f (θi ))}i=1,...,N

They give an assessment of their prediction accuracy π(f (θ)|Dsim)
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Gaussian Process Illustration
Zero mean
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Challenges

Design: if we can afford n simulator runs, which parameter values
should we run it at?

High dimensional inputs
I If θ is multidimensional, then even short run times can rule out brute

force approaches

High dimensional outputs
I Spatio-temporal.

Incorporating physical knowledge

Difficult behaviour, e.g., switches, step-functions, non-stationarity...



Uncertainty quantification for Carbon Capture and Storage
EPSRC: transport
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Storage

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field)

y
f (K )y

Outputs:
Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),
...
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CCS examples
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield
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Design



Design

We build GPs using data {xi , yi}ni=1

Call the collection Xn = {xi}ni=1 ⊂ Rd the design

For observational studies we have no control over the design, but we do
for computer experiments!

GP predictions made using a good design will be better than those
using a poor design (Cf location of inducing points for sparse GPs)

What are we designing for?

Global prediction

Calibration

Optimization - minimize the Expected Improvement (EI)?



Design for global prediction
e.g. Zhu and Stein 2006

For a GP with known hyper parameters, space filling designs are good as
the minimize the average prediction variance

Latin hypercubes, maximin/minimax, max. entropy

However, if we only want to estimate hyperparameters then maximize

det I(θ) = − detE
(
∂2

∂θ2
f (X ; θ)

)

Usually, we want to make good predictions after having estimated
parameters, and a trade-off between these two criteria has been proposed.

36 Z. ZHU AND M. L. STEIN

Figure 1. Plots of designs for prediction with unknown parameters. For all the plots ϕ = 0.5 and σ2 = 1.

the plug-in kriging predictor and the plug-in kriging variance at the evaluation grid E. The
true MSPE of the plug-in kriging prediction and the MSE of the ratio M(s; θ̂)/M(s; θ) are
shown in Table 1. The table shows that the true MSPE of the plug-in prediction for DEA

and DAKV designs are very close, but the DEA designs give better estimates of MSPE. The
improvement is always substantial and sometimes dramatic.

In practice, the true parameters of the process are unknown and it is desirable to have
a design that has good performance for a range of parameters. As a simple example, we
calculated the relative efficiency for the six parameter combinations considered in Figure
1, and found that the design for ν = 0.5 and τ 2 = 0.01 minimizes the maximum rela-
tive efficiency among the six designs, which we will refer to as the minimax design. The
maximum relative efficiency is 1.045, meaning that, in the worst case, the EA criterion for
the minimax design is 4.5% larger than that for the best design we obtained for the true
parameter values. In Table 2, simulation results for the minimax design are compared with
the DAKV design for several different parameters. In all cases the minimax design gives

Table 1. Comparison of DEA (estimation adjusted, (2.16)) and DAKV (average kriging variance) Designs
Using Simulation

(ν, τ2) (0.5, 0.01) (1.0, 0.01) (1.0, 0.10) (3.0, 0.10)

Design DEA DAKV DEA DAKV DEA DAKV DEA DAKV

True MSPE 0.111 0.108 0.109 0.115 0.260 0.253 0.167 0.167
MSE of Ratio 0.273 1.273 0.438 1.318 0.217 0.317 0.159 0.270

Notes: Results are based on 500 simulations. For all designs ϕ = 0.5, σ2 = 1 and the sample size n = 30.



Sequential design

The designs above are all ‘one-shot’ designs and can be wasteful.
Instead we can use adaptive/sequential designs/active learning and add a
point at a time:

Choose location xn+1 to maximize some criterion/acquisition rule

C (x) ≡ C (x | {xi , yi}ni=1)

Generate yn+1 = f (xn+1)

For optimization, we’ve seen that a good criterion for minimizing f (x) is
to choose x to maximize the expected improvement criterion

C (x) = E[( min
i=1,...,n

yi − f (x))+]



Sequential design for global prediction
Gramacy and Lee 2009, Beck and Guillas 2015

Many designs work on minimizing some function of the predictive
variance/MSE

s2n(x) = Var(f (x)|Dn)

Active learning MacKay (ALM): choose x at the point with largest
predictive variance

Cn(x) = s2n(x)

This tends to locate points on the edge of the domain.

Active learning Cohn (ALC): choose x to give largest expected
reduction in predictive variance

Cn(x) =

∫
s2n(x ′)− s2n∪x(x ′)dx ′

ALC tends to give better designs than ALM, but has cost
O(n3 + NrefNcandn

2) for each new design point
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Sequential design for global prediction
MICE: Beck and Guillas 2015

The Mutual Information between Y and Y ′ is

I(Y ;Y ′) = H(Y )−H(Y | Y ′) = KL(py ,y ′ ||pypy ′)

Choose design Xn to maximize mutual information between f (Xn) and
f (Xcand \ Xn) where Xcand is a set of candidate design points.
A sequential version for GPs reduces to choosing x to maximize

Cn(x) =
s2n(x)

scand\(n∪x)(x , τ2)

20 JOAKIM BECK AND SERGE GUILLAS
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Figure 10. Left: comparison between algorithms for the Oscillatory function over [0, 1]4. Right: the
performance with MICE-150 for different choices of τ2

s .
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performance with MICE-150 for different choices of τ2

s .

5.2. Piston simulation function. Here we consider a 7-dimensional example from [2],
where the output describes the circular motion of a piston within a cylinder; it obeys the
following equations:

y(x) = 2π

�

x1

x2 + x2
3

x4x5
x6

x7
g1(x)

, where g1(x) =
x3

2x2

��

g2
2(x) + 4x2

x4x5

x6
x7 − g2(x)

�

g2(x) = x3x4 + 19.62x1 −
x2x5

x3

Here y(x) is the cycle time (s) which varies with seven input variables. The design space
is given by x1 ∈ [30, 60] (piston weight, kg), x2 ∈ [1000, 5000] (spring coefficient, N/m),
x3 ∈ [0.005, 0.020] (piston surface area, m2), x4 ∈ [90000, 110000] (atmospheric pressure,
N/m2), x5 ∈ [0.002, 0.010] (initial gas volume, m3), x6 ∈ [340, 360] (filling gas temper-
ature, K) and x7 ∈ [290, 296] (ambient temperature, K). The nonlinearity makes this
deterministic computer experiment problem challenging to emulate. MICE-300 yields a
slight improvement over MICE-150, see Figure 12. MICE with 300 candidate points is
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Figure 12. Results for the 7-D Piston Simulation function.

not that much more expensive than with 150; in fact, it is significantly cheaper compu-
tationally than ALC with 150. Again, the proposed algorithm MICE performs the best.
For high-dimensional problems, ALM tends to be the worst, probably due to the high
percentage of points on the boundary.

6. Application to a tsunami simulator. There is a pressing need in tsunami modeling
for uncertainty quantification with the specific purpose of providing accurate risk maps or
issuing informative warnings. Sarri, Guillas and Dias [27] were the first to demonstrate
that statistical emulators can be used for this purpose. Recently, Sraj et al. [32] studied
the propagation of uncertainty in Manning’s friction parameterization to the prediction
of sea surface elevations, for the Tohoku 2011 tsunami event. They used a polynomial
chaos (PC) expansion as the surrogate model of a low resolution tsunami simulator. Note
that Bilionis and Zabaras [3] showed that GP emulators can outperform PC expansions
when small to moderate-sized training data are considered. Stefanakis et al. [33] used an
active experimental design approach for optimization to study if small islands can protect
nearby coasts from tsunamis.

We consider here the problem of predicting the maximum free-surface elevation of a
tsunami wave at the shoreline, for a wide range of scenarios, following a subaerial landslide
at an adjoining beach across a large body of shallow water. A tsunami wave simulator is
used. A landslide of seafloor sediments, initially at the beach, has a Gaussian shaped mass
distribution, and generates tsunami waves that propagates towards the opposite shoreline
across from the beach (see Figure 13). The sea-floor bathymetry is changing over time,
and is used as input to the tsunami simulator. The floor motion is described by the
change in bathymetry of the sloping beach over time, h(x, t) = H(x) − h0(x, t), where
H(x) = x tan β is the static uniformly sloping beach, and h0(x, t) = δ exp

�

−(x̃ − t̃)2
�

is

the perturbation with respect to H(x, t). Here x̃ = 2 xµ2

δ tan φ1
, t̃ =

�

g
δµt, δ is the maximum

vertical slide thickness, µ is the ratio of the thickness and the slide length, and tanφ1 is
the beach slope. The free surface elevation is defined as z(x, t) = −h(x, t). It is assumed
the initial water surface is undisturbed, that is, z(x, 0) = 0 for all x. The slope tanφ2 of
the beach at the opposite shoreline is chosen so that the distance between the shorelines



Calibration, history matching and
ABC



Inverse problems

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .

The inverse-problem: observe data D, estimate parameter values θ



Two approaches
Probabilistic calibration
Find the posterior distribution

π(θ|D) ∝ π(θ)π(D|θ)

for likelihood function
π(D|θ) =

∫
π(D|X , θ)π(X |θ)dX

which relates the simulator
output, to the data,e.g.,

D = X + e + ε

where e ∼ N(0, σ2e ) represents
simulator discrepancy, and
ε ∼ N(0, σ2ε ) represents
measurement error on the data

History matching
Find the plausible parameter set
Pθ:

f (θ) ∈ PD ∀ θ ∈ Pθ
where PD is some plausible set of
simulation outcomes that are
consistent with simulator
discrepancy and measurement
error, e.g.,

PD = {X : |D −X | ≤ 3(σe + σε)}

Calibration aims to find a distribution representing plausible parameter
values, whereas history matching classifies space as plausible or
implausible.



Calibration - Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).

ABC methods are popular in biological disciplines, particularly genetics.
They are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied



Rejection ABC

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).

Rejection sampling is inefficient, but we can adapt other MC samplers
such as MCMC and SMC.
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ε = 7.5
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ε = 5
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ε = 2.5
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Limitations of Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee is costly and can require more simulation than is possible.

However,

Most methods sample naively - they don’t learn from previous
simulations.

They don’t exploit known properties of the likelihood function, such
as continuity

They sample randomly, rather than using careful design.

We can use methods that don’t suffer in this way, but at the cost of
losing the guarantee of success.
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Likelihood estimation
Wilkinson 2013

It can be shown that ABC replaces the true likelihood π(D|θ) by an ABC
likelihood

πABC (D|θ) =

∫
π(D|X )π(X |θ)dX

where π(D|X ) is the ABC acceptance kernel.

We can estimate this using repeated runs from the simulator

π̂ABC (D|θ) ≈ 1

N

∑
π(D|Xi )

where Xi ∼ π(X |θ).

For many problems, we believe the likelihood is continuous and smooth,
so that πABC (D|θ) is similar to πABC (D|θ′) when θ − θ′ is small

We can model L(θ) = πABC (D|θ) and use the model to find the posterior
in place of running the simulator.
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History matching waves
Wilkinson 2014

The likelihood is too difficult to model, so we model the log-likelihood
instead.

l(θ) = log L(θ)

However, the log-likelihood for a typical problem ranges across too wide a
range of values.

Consequently, most GP models will struggle to model the log-likelihood
across the parameter space.

Introduce waves of history matching.

In each wave, build a GP model that can rule out regions of space as
implausible.

When this works, it can give huge savings in the number of simulator runs
required.
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Example: Ricker Model

The Ricker model is one of the prototypic ecological models.

used to model the fluctuation of the observed number of animals in
some population over time

It has complex dynamics and likelihood, despite its simple
mathematical form.

Ricker Model

Let Nt denote the number of animals at time t.

Nt+1 = rNte
−Nt+er

where et are independent N(0, σ2e ) process noise

Assume we observe counts yt where

yt ∼ Po(φNt)

Used in Wood to demonstrate the synthetic likelihood approach.



Results - Design 1 - 128 pts



Diagnostics for GP 1 - threshold = 5.6



Results - Design 2 - 314 pts - 38% of space implausible



Diagnostics for GP 2 - threshold = -21.8



Design 3 - 149 pts - 62% of space implausible



Diagnostics for GP 3 - threshold = -20.7



Design 4 - 400 pts - 95% of space implausible



Diagnostics for GP 4 - threshold = -16.4



MCMC Results
Comparison with Wood 2010, synthetic likelihood approach

3.0 3.5 4.0 4.5 5.0

0
1

2
3

4
5

6
7

Wood’s MCMC posterior

r

D
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8

0
.0

1
.0

2
.0

3
.0

Green = GP posterior

sig.e

D
e
n
s
it
y

5 10 15 20

0
.0

0
.2

0
.4

Black = Wood’s MCMC

phi

D
e
n
s
it
y



Computational details

The Wood MCMC method used 105 × 500 simulator runs

The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs

I 1/100th of the number used by Wood’s method.

By the final iteration, the Gaussian processes had ruled out over 98% of
the original input space as implausible,

the MCMC sampler did not need to waste time exploring those
regions.



Design for calibration
with James Hensman



Implausibility

When using emulators for history-matching and ABC, the aim is to
accurately classify space as plausible or implausible by estimating the
probability

p(θ) = P(θ ∈ Pθ)

based upon a GP model of the simulator or likelihood

f (θ) ∼ GP(m(·), c(·, ·))

The key determinant of emulator accuracy is the design used

Dn = {θi , f (θi )}Ni=1
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Entropic designs
Calibration doesn’t need a global approximation to the simulator - this is
wasteful

Instead build a sequential design θ1, θ2, . . . using the current
classification

p(θ) = P(θ ∈ Pθ|Dn)

to guide the choice of design points

First idea: add design points where we are most uncertain

The entropy of the classification surface is

E (θ) = −p(θ) log p(θ)− (1− p(θ)) log(1− p(θ))

Choose the next design point where we are most uncertain.

θn+1 = arg maxE (θ)
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Toy 1d example f (θ) = sin θ

Add a new design point (simulator evaluation) at the point of greatest
entropy



Toy 1d example f (θ) = sin θ



Toy 1d example f (θ) = sin θ



Toy 1d example f (θ) = sin θ



Toy 1d example f (θ) = sin θ - After 10 and 20 iterations

This criterion spends too long resolving points at the edge of the
classification region.



Expected average entropy
Chevalier et al. 2014

Instead, we can find the average entropy of the classification surface

En =

∫
E (θ)dθ

where n denotes it is based on the current design of size n.

Choose the next design point, θn+1, to minimise the expected
average entropy

θn+1 = arg min Jn(θ)

where
Jn(θ) = E(En+1|θn+1 = θ)



Toy 1d example f (θ) = sin θ - Expected entropy
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Toy 1d: min expected entropy vs max entropy
After 10 iterations, choosing the point of maximum entropy

we have found the plausible region to reasonable accuracy.

Whereas maximizing the entropy has not

In 1d, a simpler space filling criterion would work just as well.
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Solving the optimisation problem

Finding θ which minimises Jn(θ) = E(En+1|θn+1 = θ) is expensive.

Even for 3d problems, grid search is prohibitively expensive

Dynamic grids help

We can use Bayesian optimization to find the optima:

1 Evaluate Jn(θ) at a small number of locations

2 Build a GP model of Jn(·)
3 Choose the next θ at which to evaluate Jn so as to minimise the

expected-improvement (EI) criterion

4 Return to step 2.
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History match
Can we learn the following plausible set?

A sample from a GP on R2.
Find x s.t. −2 < f (x) < 0



Iteration 10
Left=p(θ), middle= E(θ), right = J̃(θ)



Iterations 15
Left=p(θ), middle= E(θ), right = J̃(θ)



Iterations 20 and 24

Video

http://youtu.be/FF3KhKh6NHg


EPm: climate model
3d problem
DTcrit conv - critical temperature gradient that triggers convection
GAMMA - emissivity parameter for water vapour
Calibrate to global average surface temperature
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Conclusions
Gaussian processes are widely used in the analysis of complex computer
models

Good design can lead to substantial improvements in accuracy

Design needs to be specific to the task required

Space-filling designs are inefficient for calibration and history
matching problems.

Entropy based designs give good trade-off between exploration and
defining the plausible region

Bayesian optimisation techniques allow us to solve the hard
computation needed to use optimal entropic designs

Using emulators of the likelihood function, although adding another
layer of approximation, does enable progress in hard problems.

Thank you for listening!

r.d.wilkinson@sheffield.ac.uk
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