
Efficient history matching and calibration of complex
simulators using Bayesian optimization

Richard Wilkinson, James Hensman

School of Mathematical Sciences
University of Nottingham/University of Sheffield

August 10, 2015



Outline

1 Calibration/history matching

2 ABC and emulation

3 Entropic designs



Inverse problems

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .

The inverse-problem: observe data D, estimate parameter values θ



Two approaches
Probabilistic calibration
Find the posterior distribution

π(θ|D) ∝ π(θ)π(D|θ)

for likelihood function
π(D|θ) =

∫
π(D|X , θ)π(X |θ)dX

which relates the simulator
output, to the data,e.g.,

D = X + e + ε

where e ∼ N(0, σ2
e ) represents

simulator discrepancy, and
ε ∼ N(0, σ2

ε ) represents
measurement error on the data

History matching
Find the plausible parameter set
Pθ:

f (θ) ∈ PD ∀ θ ∈ Pθ
where PD is some plausible set of
simulation outcomes that are
consistent with simulator
discrepancy and measurement
error, e.g.,

PD = {X : |D −X | ≤ 3(σe + σε)}

Calibration aims to find a distribution representing plausible parameter
values, whereas history matching classifies space as plausible or
implausible.



Intractability

For complex problems we often run into difficulties:

Computational intractability/code uncertainty: if f (θ) is expensive to
evaluate, then we can only evaluate π(D|θ) at a small number of θ
values.

I e.g., climate models, ground-water flow problems, engineering ...

Mathematical intractability: for many complex stochastic simulators
π(D|θ) can’t be evaluated (unknown is subjective). I.e., if the
analytic distribution of the simulator, f (θ), run at θ is unknown.

I Typical in biological problems, particularly genetics, epidemiology,
ecology etc.



Emulators for deterministic simulators
Sacks et al. 1989, Kennedy and O’Hagan 2001

If f (θ) is expensive to evaluate, then we can only afford a limited
ensemble of simulator evaluations

D = {θi , f (θi )}ni=1

We are uncertain about f (θ) for θ not in the design

An emulator is a cheap statistical surrogate f̃ (θ) which approximates f (θ).

Gaussian processes (GP) are a common choice: f̃ (·) ∼ GP(m(·), c(·, ·))
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We can then use f̃ in place of f in any analysis.
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History-matching
Craig et al. 2001, Vernon et al. 2010

History matching is used in the analysis of computer experiments to rule
out regions of space as implausible.

1 Build an emulator using a design of simulator runs set

2 Relate the simulator to the data where ε

D = ζ + e + ε

where ε is simulator discrepancy and e is measurement error

3 Declare θ implausible if, e.g.,

‖ D − Ef̃ (θ) ‖> 3σ

where σ2 is the combined variance implied by the emulator,
discrepancy and measurement error.

4 Add more design points in plausible region (more simulator runs),
build a better emulator

5
...
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Calibration - Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).

ABC methods are popular in biological disciplines, particularly genetics.
They are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied



Rejection ABC

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).

Rejection sampling is inefficient, but we can adapt other MC samplers
such as MCMC and SMC.
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ε = 7.5
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ε = 5
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Limitations of Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee is costly and can require more simulation than is possible.

However,

Most methods sample naively - they don’t learn from previous
simulations.

They don’t exploit known properties of the likelihood function, such
as continuity

They sample randomly, rather than using careful design.

We can use methods that don’t suffer in this way, but at the cost of
losing the guarantee of success.
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Likelihood estimation
Wilkinson 2013

It can be shown that ABC replaces the true likelihood π(D|θ) by an ABC
likelihood

πABC (D|θ) =

∫
π(D|X )π(X |θ)dX

where π(D|X ) is the ABC acceptance kernel.

We can estimate this using repeated runs from the simulator

π̂ABC (D|θ) ≈ 1

N

∑
π(D|Xi )

where Xi ∼ π(X |θ).

For many problems, we believe the likelihood is continuous and smooth,
so that πABC (D|θ) is similar to πABC (D|θ′) when θ − θ′ is small

We can model L(θ) = πABC (D|θ) and use the model to find the posterior
in place of running the simulator.
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History matching waves
Wilkinson 2014

The likelihood is too difficult to model, so we model the log-likelihood
instead.

l(θ) = log L(θ)

However, the log-likelihood for a typical problem ranges across too wide a
range of values.

Consequently, most GP models will struggle to model the log-likelihood
across the parameter space.

Introduce waves of history matching.

In each wave, build a GP model that can rule out regions of space as
implausible.

When this works, it can give huge savings in the number of simulator runs
required.
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Implausibility

When using emulators for history-matching and ABC, the aim is to
accurately classify space as plausible or implausible by estimating the
probability

p(θ) = P(θ ∈ Pθ)

based upon a GP model of the simulator or likelihood

f (θ) ∼ GP(m(·), c(·, ·))

The key determinant of emulator accuracy is the design used

Dn = {θi , f (θi )}Ni=1

Usual design choices are space filling designs

Maximin latin hypercubes, Sobol sequences



Implausibility

When using emulators for history-matching and ABC, the aim is to
accurately classify space as plausible or implausible by estimating the
probability

p(θ) = P(θ ∈ Pθ)

based upon a GP model of the simulator or likelihood

f (θ) ∼ GP(m(·), c(·, ·))

The key determinant of emulator accuracy is the design used

Dn = {θi , f (θi )}Ni=1

Usual design choices are space filling designs

Maximin latin hypercubes, Sobol sequences



Entropic designs
However, space filling designs are good for global approximations, but
wasteful for history-matching.

Instead build a sequential design θ1, θ2, . . . using the current
classification

p(θ) = P(θ ∈ Pθ|Dn)

to guide the choice of design points

First idea: add design points where we are most uncertain

The entropy of the classification surface is

E (θ) = −p(θ) log p(θ)− (1− p(θ)) log(1− p(θ))

Choose the next design point where we are most uncertain.

θn+1 = arg maxE (θ)
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Toy 1d example f (θ) = sin θ

Add a new design point (simulator evaluation) at the point of greatest
entropy
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Toy 1d example f (θ) = sin θ - After 10 and 20 iterations

This criterion spends too long resolving points at the edge of the
classification region.



Expected average entropy
Chevalier et al. 2014

Instead, we can find the average entropy of the classification surface

En =

∫
E (θ)dθ

where n denotes it is based on the current design of size n.

Choose the next design point, θn+1, to minimise the expected
average entropy

θn+1 = arg min Jn(θ)

where
Jn(θ) = E(En+1|θn+1 = θ)



Toy 1d example f (θ) = sin θ - Expected entropy
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Toy 1d: min expected entropy vs max entropy
After 10 iterations, choosing the point of maximum entropy

we have found the plausible region to reasonable accuracy.

Whereas maximizing the entropy has not

In 1d, a simpler space filling criterion would work just as well.
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Solving the optimisation problem

Finding θ which minimises Jn(θ) = E(En+1|θn+1 = θ) is expensive.

Even for 3d problems, grid search is prohibitively expensive

Dynamic grids help

We can use Bayesian optimization to find the optima:

1 Evaluate Jn(θ) at a small number of locations

2 Build a GP model of Jn(·)
3 Choose the next θ at which to evaluate Jn so as to minimise the

expected-improvement (EI) criterion

4 Return to step 2.
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History match
Can we learn the following plausible set?

A sample from a GP on R2.
Find x s.t. −2 < f (x) < 0



Iteration 10
Left=p(θ), middle= E(θ), right = J̃(θ)



Iterations 15
Left=p(θ), middle= E(θ), right = J̃(θ)



Iterations 20 and 24

Video

http://youtu.be/FF3KhKh6NHg


EPm: climate model
3d problem
DTcrit conv - critical temperature gradient that triggers convection
GAMMA - emissivity parameter for water vapour
Calibrate to global average surface temperature
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Difficulties

Currently, each wave considered in turn. Classification errors in
earlier waves can never be corrected. Is it possible to use a design
criterion that operates across waves?

We have to estimate GP hyper-parameters. Designs optimal for
history-matching, are non-optimal for GP hyper-parameter estimation
- do we need a design that is a trade-off?

Efficient calculation of the posterior given the final emulator:
HMC-NUTS, . . .

How do we marginalise across GP hyper-parameters?
...



Conclusions

The challenge for ABC is to develop more efficient methods to allow
inference in more expensive models.

Using emulators of the likelihood function, although adding another
layer of approximation, does enable progress in hard problems.

Space-filling designs are inefficient for calibration and history
matching problems.

Entropy based designs give good trade-off between exploration and
defining the plausible region

Bayesian optimisation techniques allow us to solve the hard
computation needed to use optimal entropic designs

Thank you for listening!

r.d.wilkinson@nottingham.ac.uk
www.maths.nottingham.ac.uk/personal/pmzrdw/
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