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The need for simulation based methods
Baker (1977):

‘Computerese is the new lingua franca of science’

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality? (model error)

how do we estimate tunable parameters? (calibration)

how do we deal with computational constraints? (stat. comp.)

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors? (UQ)

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.



Calibration
Focus on simulator calibration:

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .
We are interested in the inverse-problem, i.e., observe data D, want
to estimate parameter values θ that explain this data.

For Bayesians, this is a
question of finding the
posterior distribution

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝
prior × likelihood

The likelihood isn’t be the
simulator pdf



Intractability

π(θ|D) =
π(D|θ)π(θ)

π(D)

A Bayesian inference problem is intractable if

π(D|θ)

is unknown and can’t be evaluated (unknown is subjective). I.e., if the
analytic distribution of the simulator, f (θ), run at θ is unknown.
Note, this is worse than the usual normalising constant intractability
Example:

The density of the
cumulative process of a
branching process is
unknown in general.
We could probably
impute everything, but
this will be costly.
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Approximate Bayesian computation (ABC) algorithms are a collection of
Monte Carlo algorithms used for calibrating simulators

they do not require explicit knowledge of the likelihood function
π(x |θ)

instead, inference is done using simulation from the model
(consequently they are sometimes called ‘likelihood-free’).

ABC methods are becoming very popular in the biological sciences.

Heuristic versions of the algorithm exist in most modelling communities.
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Approximate Bayesian computation (ABC) algorithms are a collection of
Monte Carlo algorithms used for calibrating simulators

they do not require explicit knowledge of the likelihood function
π(x |θ)

instead, inference is done using simulation from the model
(consequently they are sometimes called ‘likelihood-free’).

ABC methods are becoming very popular in the biological sciences.

Heuristic versions of the algorithm exist in most modelling communities.
ABC methods can be crude but they have an important role to play.

Scientists are building simulators (intractable ones), and fitting them
to data .

◮ There is a place for simple methods that can be credibly applied.
◮ Likelihood methods for complex simulators are complex.
◮ Modelling is something that can be done well by scientists not trained

in complex statistical methods.
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Uniform ABC algorithms

Uniform ABC

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ǫ

For reasons that will become clear later, call this Uniform ABC.

As ǫ → ∞, we get observations from the prior, π(θ).

If ǫ = 0, we generate observations from π(θ | D)

ǫ reflects the tension between computability and accuracy.

The hope is that πABC (θ) ≈ π(θ|D,PSH) for ǫ small, where PSH is
perfect simulator hypothesis
There are uniform ABC-MCMC, ABC-SMC, ABC-EM, ABC-EP,
ABC-MLE algorithms, etc.



Two ways of thinking

We think about linear regression in two ways

Algorithmically: find the straight line that minimizes the sum of the
squared errors.

Probability model: we have a linear model with Gaussian errors, and
we estimate the parameters using maximum-likelihood.



Two ways of thinking

We think about linear regression in two ways

Algorithmically: find the straight line that minimizes the sum of the
squared errors.

Probability model: we have a linear model with Gaussian errors, and
we estimate the parameters using maximum-likelihood.

We think about the Kalman filter in two ways:

Algorithmically: linear quadratic estimation - find the best guess at
the trajectory using linear dynamics and a quadratic penalty function

Probability model: the (Bayesian) solution to the linear Gaussian
filtering problem.



Two ways of thinking

We think about linear regression in two ways

Algorithmically: find the straight line that minimizes the sum of the
squared errors.

Probability model: we have a linear model with Gaussian errors, and
we estimate the parameters using maximum-likelihood.

We think about the Kalman filter in two ways:

Algorithmically: linear quadratic estimation - find the best guess at
the trajectory using linear dynamics and a quadratic penalty function

Probability model: the (Bayesian) solution to the linear Gaussian
filtering problem.

The same dichotomy exists for ABC.



Algorithmic view of ABC

I’d suggest that most of the early ABC developments have been in the
algorithmic tradition.

1 Find a good metric, ρ - e.g., L2 norm

2 Find a good ǫ - e.g., best 1% of simulations?

3 Find a good summary S(D)

The choices made are usually not motivated by modelling considerations.

Poor choices for any of these aspects can have unintended consequences.



Choice of metric ρ

Consider the following system

Xt+1 = Xt + N(0, σ2) (1)

Yt = Xt + N(0, τ2) (2)

where we want to estimate measurement error τ and model error σ.
Default choice of metric (or similar)

ρ(Y , yobs) =
∑

(yobs
t − Yt)

2

or instead we could use the CRPS (a proper scoring rule)

ρ(yobs ,F (·)) =
∑

crps(yobs
t ,Ft(·)) =

∑

t

∫

(Ft(u) − Iyt≤u)2du

where Ft(·) is the distribution function of Yt |y1:t−1.
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Choice of tolerance ǫ

Suppose X1, . . . ,Xn ∼ N(µ, σ2), known variance σ2, µ ∼ U[a, b].
The mean of the data is sufficient for µ and so we can compare data sets
by comparing means. Using ρ(D,X) = |D̄ − X̄| gives the following ABC:

Pick µ from the prior distribution,

Simulate X1, . . . ,Xn from N(µ, σ2),

Accept µ if |X̄ − D̄| ≤ ǫ.



Choice of tolerance ǫ

Suppose X1, . . . ,Xn ∼ N(µ, σ2), known variance σ2, µ ∼ U[a, b].
The mean of the data is sufficient for µ and so we can compare data sets
by comparing means. Using ρ(D,X) = |D̄ − X̄| gives the following ABC:

Pick µ from the prior distribution,

Simulate X1, . . . ,Xn from N(µ, σ2),

Accept µ if |X̄ − D̄| ≤ ǫ.

Calculation of πABC (µ) and π(µ|D) is possible, and we can show that

VarABC (µ) ≈ σ2

n
+

1

3
ǫ2

dTV (πABC (µ), π(µ|D)) ≈ cnǫ2

σ2
+ o(ǫ2)

The tolerance required for a given accuracy depends on the size of the
posterior variance σ2/n. For small posterior variances we shall need to use
a smaller value of ǫ, whereas for large variances we can use a larger ǫ.



Choice of tolerance
Depending on how the problem is set up, it is possible to use too-small a
value for ǫ (e.g., when taking the best 1%).
e.g., inferring the parameters of a dynamic model with Guassian noise:

X1:T ∼ SDE (θ) Dt ∼ N(Xt , σ
2)

The default ABC algorithm (Toni et al. 2009) is
θ ∼ π(θ); X1:T ∼ SDE (θ) (don’t simulate measurement error)
Accept θ if ρ(D1:T ,X1:T ) ≤ ǫ

ρ(D1:T ,X1:T ) as X1:T ∼ f (θ̂) and as D1:T ∼ π(D1:T |X̂1:T )



Choice of summary S

ABC algorithms usually include the use of summary statistics, S(D).

Accept θ if ρ(S(D),S(X )) < δ

Considerable research effort has focused on automated methods to choose
good summaries (sufficiency is not typically achievable)

great if X is some fairly homogenous field of output which we expect
the model to reproduce well

less useful if X is a large collection of different quantities.

Instead ask, what aspects of the data do we expect our model to be able
to reproduce? And with what degree of accuracy? S(D) may be highly
informative about θ, but if the model was not built to reproduce S(D)
then why should we calibrate to it?

Cf. Simon Wood’s (2010) rejection of phase sensitive summaries in
dynamical models



Calibration framework

Lets now consider the probabilistic interpretation of ABC.

The Bayesian calibration framework from the computer experiment
literature:

Relate the best-simulator run (X = f (θ̂)) to reality ζ

Relate reality ζ to the observations D.

θ̂ f (θ̂) ζ D

simulator error measurement error

See, for example, Kennedy and O’Hagan (2001) or Goldstein and Rougier
(2009).



Calibration framework
Mathematically, we can write the likelihood as

π(D|θ) =

∫

π(D|x)π(x |θ)dx

where

π(D|x) is a pdf relating the simulator output to reality - call it the
acceptance kernel.

π(x |θ) is the likelihood function of the simulator (ie not relating to
reality)

The posterior is

π(θ|D) =
1

Z

∫

π(D|x)π(x |θ)dx. π(θ)

where Z =
∫∫

π(D|x)π(x |θ)dxπ(θ)dθ



Calibration framework
Mathematically, we can write the likelihood as

π(D|θ) =

∫

π(D|x)π(x |θ)dx

where

π(D|x) is a pdf relating the simulator output to reality - call it the
acceptance kernel.

π(x |θ) is the likelihood function of the simulator (ie not relating to
reality)

The posterior is

π(θ|D) =
1

Z

∫

π(D|x)π(x |θ)dx. π(θ)

where Z =
∫∫

π(D|x)π(x |θ)dxπ(θ)dθ

To simplify matters, we can work in joint (θ, x) space

π(θ, x |D) =
π(D|x)π(x |θ)π(θ)

Z



How does ABC relate to calibration?
Wilkinson 2008 and forthcoming

Consider how this relates to ABC:

πABC (θ, x) := π(θ, x |D) =
π(D|x)π(x |θ)π(θ)

Z

Lets sample from this using the rejection algorithm with instrumental
distribution

g(θ, x) = π(x |θ)π(θ)



Generalized ABC (GABC)
Wilkinson 2008, Fearnhead and Prangle 2012

The rejection algorithm then becomes

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ) (ie (θ,X ) ∼ g(·))
2 Accept (θ,X ) if

U ∼ U[0, 1] ≤ πABC (θ, x)

Mg(θ, x)
=

π(D|X )

maxx π(D|x)



Generalized ABC (GABC)
Wilkinson 2008, Fearnhead and Prangle 2012

The rejection algorithm then becomes

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ) (ie (θ,X ) ∼ g(·))
2 Accept (θ,X ) if

U ∼ U[0, 1] ≤ πABC (θ, x)

Mg(θ, x)
=

π(D|X )

maxx π(D|x)

In uniform ABC we take

π(D|X ) =

{

1 if ρ(D,X ) ≤ ǫ

0 otherwise

this reduces the algorithm to

2’ Accept θ ifF ρ(D,X ) ≤ ǫ

ie, we recover the uniform ABC algorithm.



Uniform ABC algorithm

This allows us to interpret uniform ABC. Suppose X ,D ∈ R

Proposition

Accepted θ from the uniform ABC algorithm (with ρ(D,X ) = |D − X |)
are samples from the posterior distribution of θ given D where we assume
D = f (θ) + e and that

e ∼ U[−ǫ, ǫ]

In general, uniform ABC assumes that

D|x ∼ U{d : ρ(d , x) ≤ ǫ}

We can think of this as assuming a uniform error term when we relate the
simulator to the observations.



Uniform ABC algorithm

This allows us to interpret uniform ABC. Suppose X ,D ∈ R

Proposition

Accepted θ from the uniform ABC algorithm (with ρ(D,X ) = |D − X |)
are samples from the posterior distribution of θ given D where we assume
D = f (θ) + e and that

e ∼ U[−ǫ, ǫ]

In general, uniform ABC assumes that

D|x ∼ U{d : ρ(d , x) ≤ ǫ}

We can think of this as assuming a uniform error term when we relate the
simulator to the observations.

ABC gives ‘exact’ inference under a different model!
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algorithm with a fixed budget for the number of simulator runs.

But for GABC it opens new algorithms:

GABC - Importance sampling

1 θi ∼ π(θ) and Xi ∼ π(x |θi ).

2 Give (θi , xi ) weight wi = π(D|xi ).
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Importance sampling GABC

In uniform ABC, importance sampling simply reduces to the rejection
algorithm with a fixed budget for the number of simulator runs.

But for GABC it opens new algorithms:

GABC - Importance sampling

1 θi ∼ π(θ) and Xi ∼ π(x |θi ).

2 Give (θi , xi ) weight wi = π(D|xi ).

IS-GABC has a larger effective sample size than Rej-GABC, or equivalently

VarRej(w) ≥ VarIS(w)

This allows us to see part of the Beaumont et al. 2002 as using weighted
averages with a partial rejection control to estimate posterior integrals
Generalisations of the MCMC-ABC and SMC-ABC algorithms to this
framework are available.
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Using ABC is equivalent to adding additional variability into the model.

∃ many interesting papers saying how to make this variability small

Instead ask, given that we are stuck with this additional variability,
can we use it in a useful manner, or if not, how can we make sure it
does little harm?
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Acceptance kernel π(D|X ) as an extension of modelling

Using ABC is equivalent to adding additional variability into the model.

∃ many interesting papers saying how to make this variability small

Instead ask, given that we are stuck with this additional variability,
can we use it in a useful manner, or if not, how can we make sure it
does little harm?

How do we relate the simulator to the observations π(D|S)

Measurement/sampling error on D
◮ Measurement error may be built into the simulator. Could we remove

it and use the ABC to do this?

Discrepancy between the simulator and reality
◮ In a deterministic model setting, Goldstein and Rougier 2008, and

Kennedy and O’Hagan 2001 (amongst others), have offered advice for
thinking about model discrepancies.

◮ For statistical models, simulator error is a less clear concept.
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Comments

Prior specification of the distribution of the model error is hard!

For many models, the variance of the model and measurement error
may not be large enough to make the ABC acceptance rate high
enough to generate any successes. This is telling us something has
been mis-specified and we need to rethink the choices we have made.

It can help us interpret our results, and highlight where we may being
doing something undesirable with the modeling or inference.

It can help guide our choice of metric. We don’t expect any model to
perfectly fit the data, and ABC can be viewed as adding in enough
variability to allow a fit to be found. Given that we are adding in
variability, we can control where it is placed.



Dating Primate Divergences



Estimating the Primate Divergence Time
Wilkinson, Steiper, Soligo, Martin, Yang, Tavaré 2011
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Reconciling molecular and fossil records?
Molecules vs morphology

Genetic estimates of the primate divergence time are approximately
80-100 mya:

◮ Uses dna from extant primates, along with the concept of a molecular
clock, to estimate the time needed for the genetic diversification.

◮ Calibrating the molecular clock relies on other fossil evidence to date
other nodes in the mammalian tree.

◮ Dates the time of geographic separation
A direct reading of the fossil record suggests a primate divergence
time of 60-65 mya:

◮ The fossil record, especially for primates, is poor.
◮ Fossil evidence can only provide a lower bound on the age.
◮ Dates the appearance of morphological differences.
◮ Prevailing view: the first appearance of a species in the fossil record is

”... accepted as more nearly objective and basic than opinions as to
the time when the group really originated”, Simpson, 1965.

◮ Oldest primate fossil is 55 million years old.

The date has consequences for human-chimp divergence, primate and
dinosaur coexistence etc.



Why is this difficult?
Non-repeatable event



Data
Robert Martin (Chicago) and Christophe Soligo (UCL)

Epoch k Time at base Primate fossil Anthropoid fossil
of Interval k counts (Dk) counts (Sk)

Extant 0 0 376 281
Late-Pleistocene 1 0.15 22 22
Middle-Pleistocene 2 0.9 28 28
Early-Pleistocene 3 1.8 30 30
Late-Pliocene 4 3.6 43 40
Early-Pliocene 5 5.3 12 11
Late-Miocene 6 11.2 38 34
Middle-Miocene 7 16.4 46 43
Early-Miocene 8 23.8 34 28
Late-Oligocene 9 28.5 3 2
Early-Oligocene 10 33.7 22 6
Late-Eocene 11 37.0 30 2
Middle-Eocene 12 49.0 119 0
Early-Eocene 13 54.8 65
Pre-Eocene 14 0

The oldest primate fossil is 54.8 million years old.

The oldest anthropoid fossil is 37 million years old.



Speciation - Dynamical system model

An inhomogeneous binary Markov branching process used to model
evolution:

Assume each species lives for a random period of time
σ ∼ Exponential(λ)

Specify the offspring distribution; if a species dies at time t replace it
by Lt new species where P(Lt = 0) = p0(t), P(Lt = 2) = p2(t).



Offspring distribution
If a species dies at time t replace it by Lt new species where
P(Lt = 0) = p0(t), P(Lt = 2) = p2(t).

Determine the offspring probabilities by fixing the expected
population growth E(Z (t)) = f (t;λ) and using the fact that

E(Z (t) = n|Z (0) = 2) = 2 exp

(

λ

∫ t

0
(m(u) − 1)du

)

where m(u) = ELu.

For example, assume logistic
growth and set

EZ (t) =
2

γ + (1 − γ) exp(−ρt)

Treat γ and ρ as unknown
parameters and infer them in
the subsequent analysis. 0 10 20 30 40 50 60
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Fossil Find Model

Recall that time is split into geologic epochs. We have two different
models for the number of fossils found in each epoch {Di}, given an
evolutionary tree T . The simplest is

Binomial Model: each species that is extant for any time in epoch i
has a probability αi of being preserved as a fossil. So that

P(Di |T ) = Bin(Ni , αi )

where Ni = no. species alive during epoch i

We can also include known mass extinction events such as the K-T crash.



Specify the divergence time

Assume

the primates diverged 54.8 + τ million years ago.
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Prior Distributions

We give all parameters prior distributions:

Temporal gaps between the oldest fossil and the root of the primate
and anthropoid trees τ ∼ U[0, 100] and τ∗ ∼ U[0, 100].

Expected life duration of each species 1/λ ∼ U[2, 3]

Growth parameters γ ∼ [0.005, 0.015] and ρ ∼ U[0, 0.5].

Sampling fractions αi ∼ U[0, 1] (or sampling rates βi ∼ Γ(a, b)).

The aim is to find the posterior distribution of the parameters given the
data D, namely P(θ|D) ∝ P(D|θ)π(θ).



Prior Distributions

We give all parameters prior distributions:

Temporal gaps between the oldest fossil and the root of the primate
and anthropoid trees τ ∼ U[0, 100] and τ∗ ∼ U[0, 100].

Expected life duration of each species 1/λ ∼ U[2, 3]

Growth parameters γ ∼ [0.005, 0.015] and ρ ∼ U[0, 0.5].

Sampling fractions αi ∼ U[0, 1] (or sampling rates βi ∼ Γ(a, b)).

The aim is to find the posterior distribution of the parameters given the
data D, namely P(θ|D) ∝ P(D|θ)π(θ).

The likelihood function P(D|θ) is intractable.

⇓

MCMC, IS, etc, not possible!
So we use ABC instead.



Choice of metric
We started by using

ρ(D,X ) =

14
∑

i=0

(Di − Xi)
2

This is equivalent to assuming uniform error on a ball of radius
√

δ
about D.
It also assumes that errors on each Di are dependent in some
non-trivial manner.
The error on each Di is assumed to have the same variance.



Choice of metric
We started by using

ρ(D,X ) =

14
∑

i=0

(Di − Xi)
2

This is equivalent to assuming uniform error on a ball of radius
√

δ
about D.
It also assumes that errors on each Di are dependent in some
non-trivial manner.
The error on each Di is assumed to have the same variance.

We could move to assuming independent errors by accepting only if

(Di − Xi)
2 ≤ δi for all i

which is equivalent to using the acceptance probability
∏

I(Di−Xi )2≤δi

which we can interpret to be that the error on Di is uniformly distributed
on [

√
δi ,

√
δi ], independently of other errors.
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Uncertainty in the data

The number of extant primates is uncertain:

Martin (1993) listed 235 primate species

Groves (2005) listed 376 primate species

Wikipedia yesterday listed 424 species including
◮ the GoldenPalace.com monkey
◮ the Avahi cleesei lemur.

On top of this, there is uncertainty regarding

whether a bone fragment represents a new species, e.g., homo
floresiensis (the hobbit man), or a microcephalic human

whether two bone fragments represent the same species

which epoch the species should be assigned to.

....

None of these potential sources of errors are accounted for in the model -
we only model sampling variation.



Uncertainty in the model
Modelling inevitably involves numerous subjective assumptions. Some of
these we judge to be less important.

Binary trees

Splitting rather than budding

Memoryless age distribution

Other assumptions are potentially more influential, particularly where
features have been ignored.

Early Eocene warming (the Paleocene-Eocene Thermal Maximum)

Warming in the mid-miocene

Small mass-extinction events in the Cenozoic

We assumed logistic growth for the expected diversity, ignoring smaller
fluctuations (we did include the K-T crash).



Uncertainty in the model
Modelling inevitably involves numerous subjective assumptions. Some of
these we judge to be less important.

Binary trees

Splitting rather than budding

Memoryless age distribution

Other assumptions are potentially more influential, particularly where
features have been ignored.

Early Eocene warming (the Paleocene-Eocene Thermal Maximum)

Warming in the mid-miocene

Small mass-extinction events in the Cenozoic

We assumed logistic growth for the expected diversity, ignoring smaller
fluctuations (we did include the K-T crash).
How can we use this information?

Given that we must add additional uncertainty when using ABC, add
it on the parts of the data we are most uncertain about.



Choice of metric
We know that the data from some epochs is more reliable:

Presumably classification and dating errors are more likely in well
sampled epochs - any fossil that is possibly a Cretaceous primate is
likely to be well studied, so perhaps we are more confident that
D14 = 0 than that D7 = 46.
Similarly, large Di presumably have a larger error than small values of
Di .



Choice of metric
We know that the data from some epochs is more reliable:

Presumably classification and dating errors are more likely in well
sampled epochs - any fossil that is possibly a Cretaceous primate is
likely to be well studied, so perhaps we are more confident that
D14 = 0 than that D7 = 46.
Similarly, large Di presumably have a larger error than small values of
Di .

Similarly, we know the computer model prediction is more unreliable in
some epochs.

We ignored warm periods in the Eocene and Miocene. During these
times primates are believed to have moved away from the tropics,
perhaps allowing for more speciation (due to additional space and
resources).
The majority of primate fossils come from the UK, US, France and
China, despite our belief that primates originated in the Africa and
the observation that nearly all extant species live in tropical or
subtropical regions.



An improved metric

We can account for some of these issues by using the generalised ABC
algorithm, using an acceptance probability of the form

πǫ(X |D) =

14
∏

i=0

πi (Xi |Di )

where πi (Xi |Di ) depends on our belief about measurement and model
error on Di (e.g. interval 14 - the Cretaceous - is likely to have smaller
classification error).

Similarly, the model ignores several known features in the Cenozoic, such
as warming events. Consequently, we could reduce the importance of the
prediction for intervals 11-13 (the Eocene) by allowing a larger error
variance during these intervals (we could also allow biases).



An improved metric
In practice, it is a difficult elicitation exercise to specify the errors, and to
convolve all the different sources of error.

It is also a difficult computational challenge. Two ideas that might help:

We can use the fact that we know the distribution of Di given Ni ,
the number of simulated species, to help break down the problem
(removing the sampling process from the simulation). For example,
using the acceptance probability

P(accept) ∝ π(Di |Xi ) =

{

1 if Di = Xi

0 otherwise

is equivalent to using

P(accept) =

(

Ni

Di

)

αDi

i (1 − αi)
Ni−Di

πǫ(X |D) =
∏14

i=0 πi(Xi |Di ) provides a sequential structure to the
problem that allows particle methods to be used.



An integrated molecular and palaeontological analysis

The primate fossil record does not precisely constrain the primate
divergence time



Propagating uncertainty forwards
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Scientists are building simulators (intractable ones), and fitting them to
data

There is a place for simple (crude?) inference methods such as ABC
Likelihood inference is hard, but modelling is something that can be
done well by scientists unfamiliar with statistical methods.



Conclusions
Scientists are building simulators (intractable ones), and fitting them to
data

There is a place for simple (crude?) inference methods such as ABC
Likelihood inference is hard, but modelling is something that can be
done well by scientists unfamiliar with statistical methods.
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modelling approaches.

view ABC as implicitly defining a probability model for the
relationship between the data and the simulator.
We can generalise ABC algorithms to move beyond the use of
uniform error structures - model error etc

◮ Relating simulators to reality is hard, even with expert knowledge.

If done wisely, hopefully ABC can be viewed not as an approximate
form of Bayesian inference, but instead as coming closer to the
inference we want to do.



Conclusions
Scientists are building simulators (intractable ones), and fitting them to
data

There is a place for simple (crude?) inference methods such as ABC
Likelihood inference is hard, but modelling is something that can be
done well by scientists unfamiliar with statistical methods.

We can improve the application of ABC algorithms by treating them as
modelling approaches.

view ABC as implicitly defining a probability model for the
relationship between the data and the simulator.
We can generalise ABC algorithms to move beyond the use of
uniform error structures - model error etc

◮ Relating simulators to reality is hard, even with expert knowledge.

If done wisely, hopefully ABC can be viewed not as an approximate
form of Bayesian inference, but instead as coming closer to the
inference we want to do.

Thank you for listening!



Advantages of GABC

GABC

allows us to make the inference we want to make
◮ - makes explicit the assumptions about the relationship between

simulator and observations.
◮ - moves ABC from being an algorithm, to an extension of modelling.

allows for new ABC algorithms, as (non-trivial) importance sampling
algorithms are now possible.

allows us to interpret the results of ABC

allows for the possibility of more efficient ABC algorithms
◮ - the 0-1 uniform cut-off is less flexible and forgiving than using

generalised kernels for π(D|X )
◮ - another way to view ABC is as a smoothing of the simulator

likelihood

π(D|θ) =

∫

π(D|X )π(X |θ)dθ

This flattens out the simulator likelihood (cf Wood 2010).



ABC as likelihood thresholding/history-matching
Consider a deterministic SSM, for example an ode, with observation error

xt+1 = f (xt , θ) (3)

yt = xt + et (4)

If we use uniform-ABC with

ρ(y ,X ) =
∑

(yt − xt)
2

(as done for example in Toni et al. 2009 for the deterministic
Lotka-Volterra model) then this is equivalent to assuming a Gaussian
distribution for et , but thresholding the likelihood and only accepting θ if
π(y |x) > h(ǫ).

If the prior for θ is uniform over some interval, then the uniform-ABC
posterior will also be uniform, over the range of values which pass through
the likelihood thresholding.

If we use a GABC algorithm, with π(y |X ) = exp(−ρ(y ,X )/σ2) then we
are assuming et ∼ N(0, σ2) and we get the true posterior under this
assumption (not the thresholded version).



History-matching
The history matching version would go something like

0 Build an emulator of the simulator f (θ)

1 Relate the simulator to the system

y = f (θ) + ǫ

where ǫ is our simulator discrepancy

2 Relate the system to the data (e represents measurement error)

D = y + e

3 Declare θ implausible if

‖ D − Ef (θ) ‖> 3σ

where σ2 is the combined variance implied by the emulator,
discrepancy and measurement error.



History-matching
The history matching version would go something like

0 Build an emulator of the simulator f (θ)

1 Relate the simulator to the system

y = f (θ) + ǫ

where ǫ is our simulator discrepancy

2 Relate the system to the data (e represents measurement error)

D = y + e

3 Declare θ implausible if

‖ D − Ef (θ) ‖> 3σ

where σ2 is the combined variance implied by the emulator,
discrepancy and measurement error.

If θ is not implausible we don’t discard it. The result is a region of space
that we can’t rule out at this stage of the history-match. Usually we’d go
through several stages of history matching,



Relationship between ABC and history-matching

Using uniform priors with a deterministic simulator, and using
uniform-ABC is similar to doing history matching (ignoring the use of
emulators in history-matching and a few other tweeks).

The different waves of history-matching is analogous to choosing a
decreasing tolerance scheme ǫt in sequential-ABC methods.

The result of a history-match may be that there is no not-implausible
region of parameter space (unlike the result of a likelihood-based MCMC
calculation) - note the very different interpretation to ABC.



Relationship between ABC and history-matching

Using uniform priors with a deterministic simulator, and using
uniform-ABC is similar to doing history matching (ignoring the use of
emulators in history-matching and a few other tweeks).

The different waves of history-matching is analogous to choosing a
decreasing tolerance scheme ǫt in sequential-ABC methods.

The result of a history-match may be that there is no not-implausible
region of parameter space (unlike the result of a likelihood-based MCMC
calculation) - note the very different interpretation to ABC.

We might find that after quantifying all the uncertainties, we can’t find
any parameter values that cause the model to fit the data. Similarly with
GABC, we might find that no matter how careful we are in specifing the
errors, we can’t find any region of parameter space that fits.

suggests we’ve made a mistake somewhere in the specification of the
problem.

do we want methods that fit the model regardless of the quality of
the fit, or that find there are no good fits, making us think harder?



Why/when/should we include simulator discrepancy??

The importance of including a discrepancy seems to depend on whether
our simulator is

Statistical

Physical

and also on whether our aim is

explanation

prediction.

and on the importance of the situation.

When should we be happy saying that our simulator is imperfect, but
we’re going to fit it anyway and ignore the problem?



Relationship between ABC and Simon Wood’s approach
One way to view Wood 2010 is as an ABC algorithm, but using µθ and
Σθ as the summary of f (θ), and assuming

π(D|S) = exp(−1/2(D − µθ)
T Σ−1

θ
(D − µθ))

A crude IS-GABC algorithm version of Wood 2010 would be

Pick θ ∼ π(θ)
Simulate s1, . . . , sn ∼ f (θ), calculate µθ and Σθ.
Give θ weight w = φ((D − µ)2/Σ)

Wood 2010 could be seen as a MCMC-GABC algorithm.



Relationship between ABC and Simon Wood’s approach
One way to view Wood 2010 is as an ABC algorithm, but using µθ and
Σθ as the summary of f (θ), and assuming

π(D|S) = exp(−1/2(D − µθ)
T Σ−1

θ
(D − µθ))

A crude IS-GABC algorithm version of Wood 2010 would be

Pick θ ∼ π(θ)
Simulate s1, . . . , sn ∼ f (θ), calculate µθ and Σθ.
Give θ weight w = φ((D − µ)2/Σ)

Wood 2010 could be seen as a MCMC-GABC algorithm.

This can be seen as accounting for the variability of the model run
repeatedly at the same input, and then assuming the distribution is
Gaussian. If so, running diagnostics such as QQ-plots does make sense.
Alternatively, we could see it as a way of smoothing the simulator
likelihood making inference more tractable.
It is also analogous to building an emulator of a deterministic function in
history matching, with the difference that in history matching the
uncertainty represents lack of knowledge of the simulator output.



Noisy-ABC

Fearnhead and Prangle (2012) recently suggested a noisy-ABC algorithm:

Noisy-ABC

Initialise: Let D ′ = D + e where e ∼ K (e) from some kernel K (·).
1 θi ∼ π(θ) and Xi ∼ π(x |θi ).

2 Give (θi , xi ) weight wi = K (Xi − D ′).



Noisy-ABC

Fearnhead and Prangle (2012) recently suggested a noisy-ABC algorithm:

Noisy-ABC

Initialise: Let D ′ = D + e where e ∼ K (e) from some kernel K (·).
1 θi ∼ π(θ) and Xi ∼ π(x |θi ).

2 Give (θi , xi ) weight wi = K (Xi − D ′).

In my notation, this replaces the obsevered data D, with D ′ drawn from
the acceptance kernel - D ′ ∼ π(D ′|D)

If we believe π(D|X ) relates the simulator to reality, then noisy-ABC is
equivalent to adding another dose of measurement/model error to your
data and using that in the inference.

The main argument in favour of noisy-ABC is that it is calibrated, unlike
standard ABC.



Calibration

Calibration is a way of assessing probability statements against some idea
of truth, a base measure P.

Truth is usually taken to be reality

We are well-calibrated if p% of all predictions reported at probability
p are true. Idea goes back at least to Dawid (1984).



Calibration

Calibration is a way of assessing probability statements against some idea
of truth, a base measure P.

Truth is usually taken to be reality

We are well-calibrated if p% of all predictions reported at probability
p are true. Idea goes back at least to Dawid (1984).

Calibration is a difficult idea for Bayesians (subjectivists), even when
P is reality’s measure.

◮ Seidenfeld (1985) wrote

‘Calibration in the long run is otiose, and in the short
run is an inducement to hedging’.

Calibration, when P is reality, is a desirable frequency property to possess,
but Bayesian’s should beware of consciously aiming for it.



Calibration
The definition of calibration used in FP is superficially similar:

PABC is well calibrated if

P(θ ∈ A|Eq(A)) = q

where Eq(A) is the event that the ABC posterior assigns probability
q to event A
i.e., given that A is an event assigned probability q by PABC , then we
are calibrated if A occurs with probability q according to base
measure P.



Calibration
The definition of calibration used in FP is superficially similar:

PABC is well calibrated if

P(θ ∈ A|Eq(A)) = q

where Eq(A) is the event that the ABC posterior assigns probability
q to event A
i.e., given that A is an event assigned probability q by PABC , then we
are calibrated if A occurs with probability q according to base
measure P.

The difference with the standard definition, is the definition of the
base-measure, P. In FP’s definition:

P does not represent reality.
It is defined by the prior, simulator, and summary used.

◮ i.e., this definition of calibration ensures you are calibrated against
your own beliefs.

◮ The prior is calibrated under this definition.

Further, noisy-ABC is calibrated only if we repeated the analysis with
multiple noisy datasets.


