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Calibration
The inverse problem

Most models are forwards models, i.e., specify parameters θ and i.c.s and
the model η() generates output D. Often, we are interested in the
inverse-problem, i.e., observe data, want to estimate parameter values.
Different terminology:

Calibration

Data assimilation

Parameter
estimation

Inverse-problem

Bayesian
inference
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Representation of uncertainty

Probability (Bayesian) can be used to represent uncertainty.

Under minimal rationality assumptions, probability can be shown to
be the only rational way to represent uncertainty.
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Representation of uncertainty

Probability (Bayesian) can be used to represent uncertainty.

Under minimal rationality assumptions, probability can be shown to
be the only rational way to represent uncertainty.

Probability is subjective probability - distributions represent degrees
of belief of individuals. There is no escaping this interpretation in
many applications!

All uncertainty quantities θ can be given distributions π(θ) that
represent our (an experts?) uncertainty about the value - this
doesn’t mean that they are random quantities, just that we don’t
know their value.

◮ Even unknown functions will be described by probability distributions
across a class of unknown functions

Bayesian approach uses the principle of conditionality, and always
(where possible) conditions on our data.
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Basic Bayesian approach to calibration
The basic Bayesian approach is to specify

a prior distribution π(θ) for unknown parameter θ

a likelihood π(D|θ)

We then aim to find the posterior
distribution

π(θ | D) =
π(θ)π(D | θ)

π(D)
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Basic Bayesian approach to calibration
The basic Bayesian approach is to specify

a prior distribution π(θ) for unknown parameter θ
◮ The prior captures our state of knowledge about θ before we see the

data or the simulator output.
◮ In practice, we’re often pragmatic and let π(θ) be a reasonably

uninformative distribution over some range of interest.
a likelihood π(D|θ)

◮ The likelihood is a pdf relating the parameter to the observation.
◮ This is complex - we must relate the parameter to simulator output,

the simulator output to climate, and then climate to the observations.
More on this later.

We then aim to find the posterior
distribution

π(θ | D) =
π(θ)π(D | θ)

π(D)

For all but the simplest problems, this
calculation is hard!
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Calibrated prediction

Reasons why we may want the posterior π(θ|D):

1 Calibrated prediction

2 Calibrated sensitivity/uncertainty analysis

3 Parameter estimation
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Calibrated prediction

Reasons why we may want the posterior π(θ|D):

1 Calibrated prediction

◮ Suppose we wish to predict Df given Dp , taking account of parametric
uncertainty:

π(Df | Dp) =

∫

π(Df | θ)π(θ | Dp)dθ

2 Calibrated sensitivity/uncertainty analysis
◮ Assign uncertainty in our predictions to various uncertainties in the

inputs? If we are given $X to measure/model some aspect of the
climate - what would most decrease our uncertainty?

3 Parameter estimation

The amount of care we take on various aspects of the statistical
modelling will depend on our aim.
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Friedlingstein et al. 2006 - ‘uncalibrated’ GCM carbon cycle predictions

Climate simulators tend to be ‘tuned’ rather than calibrated, due to their complexity.
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Carbon feedbacks

Terrestrial ecosystems currently absorb a considerable fraction of
anthropogenic carbon emissions.

However, the fate of this sink is highly uncertain due to insufficient
knowledge about key feedbacks.

◮ We are uncertain about the sensitivity of soil respiration to increasing
global temperature.

◮ GCM predictions don’t agree on the sign of the net terrestrial carbon
flux.

The figure shows inter-model spread in uncalibrated GCM model
predictions.

How much additional spread is there from parametric uncertainty?
(as opposed to model structural uncertainty?)

Would calibration reduce the range of the ensemble predictions? Or
would it increase our uncertainty?

We can’t answer these questions with full GCMs at present, but we can
begin to investigate with simplified EMIC models.
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UVic Earth System Climate Model
With Nathan Urban, Klaus Keller and group

UVic ESCM is an intermediate complexity model with a general
circulation ocean and dynamic/thermodynamic sea-ice components
coupled to a simple energy/moisture balance atmosphere. It has a
dynamic vegetation and terrestrial carbon cycle model (TRIFFID) as well
as an inorganic carbon cycle.

Inputs: Q10 = soil respiration sensitivity to temperature (carbon
source) and Kc = CO2 fertilization of photosynthesis (carbon sink).

Output: time-series of CO2 values, cumulative carbon flux
measurements, spatial-temporal field of soil carbon measurements.
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UVic Earth System Climate Model
With Nathan Urban, Klaus Keller and group

UVic ESCM is an intermediate complexity model with a general
circulation ocean and dynamic/thermodynamic sea-ice components
coupled to a simple energy/moisture balance atmosphere. It has a
dynamic vegetation and terrestrial carbon cycle model (TRIFFID) as well
as an inorganic carbon cycle.

Inputs: Q10 = soil respiration sensitivity to temperature (carbon
source) and Kc = CO2 fertilization of photosynthesis (carbon sink).

Output: time-series of CO2 values, cumulative carbon flux
measurements, spatial-temporal field of soil carbon measurements.

The observational data are limited, and consist of 60 measurements
Dfield :

40 instrumental CO2 measurements from 1960-1999 (from Keeling’s
Mauna Loa data)

17 ice core CO2 measurements

3 cumulative ocean carbon flux measurements
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Calibration
The aim is to combine the physics coded into UVic with the empirical
observations to learn about the carbon feedbacks.
However, UVic takes approximately two weeks to run for a single input
configuration. Consequently, all inference must be done from a limited
ensemble of model runs.

48 member ensemble, grid design D, output Dsim (48 × n).
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Model runs and data
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Approaches to calibration

There are various approaches used to calibrate models:

Monte Carlo - brute force

Ad hoc manual tuning

Component-wise tuning

Emulation

Only the first and last options can be considered acceptable statistical
calibration schemes, and the first option is ruled out if the simulator has a
long run time.

The focus here is on emulation.

See Wilkinson 2010, or Riccuito et al. 2009 for full details on this
approach

See Guillas et al. 2009 or Sanso et al. 2008 for more (challenging
and impressive) examples of the emulation of climate simulators.
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Code uncertainty
For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.
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Consequently, we will only know the simulator output at a finite number
of points.

We call this code uncertainty.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , η(θi ))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of η(θ).
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Code uncertainty
For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.

Consequently, we will only know the simulator output at a finite number
of points.

We call this code uncertainty.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , η(θi ))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of η(θ).

If θ is multidimensional, then even short run times can rule out brute
force approaches

dim(θ) ∈ R
10 then 1000 simulator runs is only enough for one point

in each corner of the design space.

The design of computational experiments is an active field in statistics.
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Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this meta-model an emulator of our simulator.
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Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this meta-model an emulator of our simulator.

There are many types of emulator.

ideally an emulator should come with an assessment of its accuracy

rather than just predicting η(θ) it should predict π(η(θ)|Dsim) - our
uncertainty about the simulator value given the ensemble Dsim.

Gaussian process emulators are most popular choice for emulator. Built
using

an ensemble of model runs Dsim = {(θi , η(θi ))}i=1,...,N

expert opinion about the simulator output.
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Emulator possibilities

Linear Regression

+ve’s:

v. easy to use and
understand

Neural networks

non-parametric
function fitting

good existing
software

Gaussian processes

non-parametric
function fitting

explicitly
incorporates a
quantification of
uncertainty
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Linear Regression

+ve’s:

v. easy to use and
understand

Neural networks

non-parametric
function fitting

good existing
software

Gaussian processes

non-parametric
function fitting

explicitly
incorporates a
quantification of
uncertainty

-ve’s:

need to specify a
parametric form

error structure is
white and ignores
information

non-probabilistic -
implicit
specification of
error (if at all)

can be difficult to
implement

requires careful
user-specified
inputs to work well
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Meta-modelling
Gaussian Process Emulators

Gaussian processes provide a flexible nonparametric distributions for our
prior beliefs about the functional form of the simulator:

η(·) ∼ GP(m(·), σ2c(·, ·))

where m(·) is the prior mean function, and c(·, ·) is the prior covariance
function (semi-definite).
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Gaussian Process Emulators

Gaussian processes provide a flexible nonparametric distributions for our
prior beliefs about the functional form of the simulator:

η(·) ∼ GP(m(·), σ2c(·, ·))

where m(·) is the prior mean function, and c(·, ·) is the prior covariance
function (semi-definite).

Definition If f (·) ∼ GP(m(·), c(·, ·)) then for any collection of inputs
x1, . . . , xn the vector

(f (x1), . . . , f (xn))
T ∼ MVN(m(x), σ2Σ)

where Σij = c(xi , xj).
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Meta-modelling
Gaussian Process Emulators

Gaussian processes are invariant under Bayesian updating.

If we observe the ensemble of model runs Dsim, then update our prior
belief about η in light of the ensemble of model runs:

η(·)|Dsim ∼ GP(m∗(·), σ2c∗(·, ·))

where m∗ and c∗ are the posterior mean and covariance functions (simple
functions of Dsim, m and c).
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Gaussian Process Illustration
Zero mean
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Gaussian Process Illustration
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Emulator choices

η(x) = h(x)β + u(x)

emulator = mean structure + residual
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Emulator choices

η(x) = h(x)β + u(x)

emulator = mean structure + residual

u(x) can be taken to be a zero-mean Gaussian process

u(·) ∼ GP(0, c(·, ·))

Emulator choices:

mean structure h(x)
◮ 1, x , x2, . . ., Legendre polynomials?

covariance function c(·, ·)
◮ Stationary? Smooth?
◮ Length-scale?
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Multivariate Emulation
Higdon et al. 2008

How can we deal with multivariate ouput?

Build independent or separable multivariate emulators,

Outer product emulators,

Linear model of coregionalization?
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Multivariate Emulation
Higdon et al. 2008

How can we deal with multivariate ouput?

Build independent or separable multivariate emulators,

Outer product emulators,

Linear model of coregionalization?

Instead, if the outputs are highly correlated we can reduce the dimension
of the data by projecting the data onto some lower dimensional manifold
Ypc .
We can use any dimension reduction technique as long as

we can reconstruct to the original output space

we can quantify the reconstruction error.
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We can then emulate the function that maps the input space Θ to the
reduced dimensional output space Ypc , i.e., ηpc(·) : Θ → Ypc

replacements
Θ Y

Ypc

η(·)

PCA
PCA−1ηpc(·)

It doesn’t matter what dimension reduction scheme we use, as long as we
can reconstruct from Ypc and quantify the error in the reconstruction.
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Principal Component Emulation (EOF)
We use principal component analysis to project the data onto a lower
dimensional manifold, as it is the optimal linear projection (in terms of
minimizing reconstruction error).

1 Centre and scale Dsim so that each column has mean 0 and variance
1. Scaling the columns makes specification of prior distributions for
the emulators simpler.

2 Find the singular value decomposition of Dsim.

Dsim = UΓV ∗.

Γ contains the singular values (eigenvalues), and V the principal
components (eigenvectors).

3 Decide on the dimension of the principal subspace, n∗ say, and throw
away all but the n∗ leading principal components. An orthonormal
basis for the principal subspace is given by the first n∗ columns of V ,
denoted V1. Let V2 be the matrix of discarded columns.

4 Project Dsim onto the principal subspace to find Dpc
sim

= DsimV1
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PCA emulation

We then emulate the reduced dimension model

ηpc (·) = (η1
pc (·), . . . , ηn∗

pc (·)).

Each component ηi
pc will be uncorrelated (in the ensemble) but not

necessarily independent. We use independent Gaussian processes for
each component, which seems to be an adequate approximation in
all the examples examined.

The output can be reconstructed from the principal component space
to the original full space, accounting for reconstruction error, by a
simple matrix multiplication and modelling the discarded components
as Gaussian noise with variance equal to the corresponding
eigenvalue:

η(θ) = V1ηpc (θ) + V2diag(Λ)

where Λi ∼ N(0,Γii ) (Γii = i th eigenvalue).
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Comments

This approach (PCA emulation) requires that the outputs are highly
correlated.

We are assuming that the output Dsim is really a linear combination
of a smaller number of variables,

η(θ) = v1η
1
pc(θ) + . . . + vn∗η

n∗

pc (θ)

which may be a reasonable assumption in many situations, eg,
temporal spatial fields.

Although PCA is a linear method, the method can be used on highly
non-linear models as we are still using non-linear Gaussian processes
to map from Θ to Ypc – the linear assumption applied only to the
dimension reduction.

This method accounts for code uncertainty and automatically
accounts for the reconstruction error caused by reducing the
dimension of the data.
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Comments

A concern expressed about PC emulators is that we train the
principal components using the simulator. If we then project the real
observations on to these principal components, we are making the
strong assumption that these PCs are informative about the true
system, which may not be true.

In practice, this problem is avoided in two ways
1 reconstructing to the original space and using lots of diagnostic checks

that the PC emulator works well in the original space
2 checking that the principal components found from the simulator are

physically meaningful.
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PC Plots
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GP Choices
Choice of regressors

We use products of Legendre polynomials on [−1, 1] (Rougier 2007)
- an orthonormal basis. We allow up to quadratic terms

There is debate about how much effort to put into m and c .
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Covariance function
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GP Choices
Choice of regressors

We use products of Legendre polynomials on [−1, 1] (Rougier 2007)
- an orthonormal basis. We allow up to quadratic terms

Covariance function

Matern with ν = 5/2 ⇒ twice differentiable output

c5/2(r) = τ

(

1 +

√
5r

l
+

5r2

3l2

)

exp

(

−
√

5r

l

)

Give τ a Γ(1.5, 6) prior distribution in all the principal component
emulators - benefit of scaling first!

Length scales l

Estimate and fix the length scales using their maximum likelihood
estimates.
τ and l are often not both identifiable. Instead, fix l using Addler’s
theorem by considering the expected number of up-crossings by the
residual.

There is debate about how much effort to put into m and c .
R.D. Wilkinson (University of Nottingham) January 2011 28 / 39



Diagnostics

Diagnostic checks are vital if we are to trust the use of the emulator in
place of the simulator.

For the PC emulator, we ultimately want to predict the spatial field - so
most diagnostic effort should be spent on the reconstructed emulator.

Looking only at the percentage of variance explained by the principal
components can be misleading, even if the emulators are perfect, as we
can find that PCs that have small eigenvalues (so explain a small amount
of variance) can play an important role in prediction.
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Leave-one-out (LOA) plots for PC1
Leave-one-out plots are a type of cross-validation to asses whether the
final emulator is working well both in terms of the mean prediction, and
the uncertainty estimates.

We leave each ensemble member, we leave it out of the training set and
build a new emulator. We then predict the left-out ensemble member
using the emulator
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We would like accurate coverage.
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One-step-ahead (OSA) plots for PC1

One-step-ahead diagnostics are created by first ordering the ensemble
according to one of the input variables, in this case θ1. We then train an
emulator using only the first n − 1 ensemble members, before predicting
the nth ensemble member.

One-step-ahead diagnostics primarily test whether the uncertainty
estimates of the emulator are accurate. Because the size of the ensemble
grows, we can check more easily whether the length-scale and covariance
structure of the emulator are satisfactory.
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Other diagnostic tools

Bastos and O’Hagan 2010 suggested a range of statistical tests to
diagnose problems with GP emulators.

These can be generalised further by the consideration of scoring rules (see
Gneiting and Raftery 2008 for a recent survey). These can be used to test
both the calibration and sharpness of your emulator.

In particular, the continuously-ranked-probability-score (CRPS) looks like
a useful measure of emulator performance.
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Calibration Framework
Kennedy and O’Hagan 2001

We have two sources of information:

Computer model η(t, θ)
◮ with a limited ensemble of model runs Dsim = {η(ti , θi ), i = . . .}.

Field data Dfield: a collection of noisy measurements of reality at a
variety of t values.
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Calibration Framework
Kennedy and O’Hagan 2001

We have two sources of information:

Computer model η(t, θ)
◮ with a limited ensemble of model runs Dsim = {η(ti , θi ), i = . . .}.

Field data Dfield: a collection of noisy measurements of reality at a
variety of t values.

Many assimilation approaches assume that measurements represent the
computer model run at its best input value plus independent random
noise. If the model is wrong, this is assumption is false. At best, we
observe reality plus independent random noise.
Instead, include an additional model error term.

Measurement error ǫ

Model discrepancy δ(t)
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Calibration Framework
Assume that reality ζ(t) is the computer model run at the ‘true’ value of
the parameter θ̂ plus model error:

ζ(t) = η(t, θ̂) + δ(t)
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Calibration Framework
Assume that reality ζ(t) is the computer model run at the ‘true’ value of
the parameter θ̂ plus model error:

ζ(t) = η(t, θ̂) + δ(t)

We observe reality plus noise:

Dfield (t) = ζ(t) + ǫ(t)

so that
Dfield (t) = η(t, θ̂) + δ(t) + ǫ(t).
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Calibration Framework
Assume that reality ζ(t) is the computer model run at the ‘true’ value of
the parameter θ̂ plus model error:

ζ(t) = η(t, θ̂) + δ(t)

We observe reality plus noise:

Dfield (t) = ζ(t) + ǫ(t)

so that
Dfield (t) = η(t, θ̂) + δ(t) + ǫ(t).

We then aim to find π(θ̂|Dsim,Dfield ).
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Model Discrepancy
The calibration framework used is:

Dfield (t) = η(θ, t) + δ(t) + ǫ(t)

The model predicts the underlying trend, but real climate fluctuates
around this. We model

discrepancy as an AR1 process: δ(0) ∼ N(0, σ2
δ ), and

δ(t) = ρδ(t − 1) + N(0, σ2
δ ).

Measurement error as heteroscedastic independent random noise
ǫ(t) ∼ N(0, λ(t)).
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How should we better model this discrepancy?
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MCMC
Metropolis-within-Gibbs Sampler

Prior distributions: ρ ∼ Γ(5, 1), σ2
δ ∼ Γ(4, 0.6), σ2 ∼ Γ(1.5, 6),

θ = (Q10,Kc), Q10 ∼ U[1, 4], Kc ∼ U[0.25, 1.75].
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MCMC
Metropolis-within-Gibbs Sampler

Prior distributions: ρ ∼ Γ(5, 1), σ2
δ ∼ Γ(4, 0.6), σ2 ∼ Γ(1.5, 6),

θ = (Q10,Kc), Q10 ∼ U[1, 4], Kc ∼ U[0.25, 1.75].
We can then use a Metropolis-within-Gibbs sampler to find the posterior
distribution

π(θ, σ2, ρ, σ2
δ |Dfield,Dsim)

using the following steps

π(σ2|θ, ρ, σ2
δ ,Dsim,Dfield) - Gibbs update

π(θ|σ2, ρ, σ2
δ ,Dsim,Dfield) - MH step

π(ρ, σ2
δ |θ, σ2,Dsim,Dfield) - MH step

Reparameterizing in terms of log(ρ) and using a block update for ρ and
σ2

δ helps with the convergence.
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A note on calibrating emulators
When calibrating emulators, we should explicitly use the likelihood
function of the emulator, rather than simulating from it. In other words, if
we have that

D = η(θ) + e

where e ∼ N(0,Σ) then we should use the integrated likelihood (the
convolution of η(θ) and e), namely

D|θ ∼ N(m∗(θ),Σ + σ2c∗(θ, θ))

in any MCMC algorithm. The alternative is for each θ, first simulating a
value η(θ) from the emulator, and then using likelihood

D|η(θ) ∼ N(η(θ),Σ)

Both methods will work, but the former will be more efficient than the
latter. Of course, if the distribution of e is not Gaussian then it unlikely
that you will be able to calculate the convolution and so we will be forced
to draw from the emulator.
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Results

0.5 1.0 1.5

0.80 0.0066

−80 −60 −40 −20 0 20 40

1.
0

2.
0

3.
0

4.
0

0.0095

0.
5

1.
0

1.
5

0.009 0.009

10
00

20
00

30
00

40
00

0.011

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
80

−
40

0
40

1000 1500 2000 2500 3000 3500 4000

Q10

Kc

σ2
sim

β

R.D. Wilkinson (University of Nottingham) January 2011 38 / 39



Conclusions

For highly correlated multivariate output, principal component
emulation can work well and is computationally cheap and easy to
implement.

A large number of output dimensions can be reduced to a smaller
number of principal component scores which can then be emulated,
accounting for any error in the compression.

Given the model, forcing data, constraints and uniform priors, we
cannot precisely constrain the two parameters Kc and Q10 - there is
a ridge of values all of which are well supported by the data.

Acceptable parameter combinations produce similar responses of the
carbon cycle during the years 1800-1999 but produce divergent
future predictions!
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