
GP-ABC: accelerating inference for intractable
stochastic computer models

Richard Wilkinson

School of Mathematical Sciences
University of Nottingham

April 9, 2015

Computer experiments

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality?

how do we estimate tunable parameters?

how do we deal with computational constraints?

Computer experiments

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality?

how do we estimate tunable parameters?

how do we deal with computational constraints?

Calibration

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .

The inverse-problem: observe data D, estimate parameter values θ
which explain the data.

The Bayesian approach
is to find the posterior
distribution

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝
prior× likelihood

Intractability

π(θ|D) =
π(D|θ)π(θ)

π(D)

usual intractability in Bayesian inference is not knowing π(D).

a problem is doubly intractable if π(D|θ) = cθp(D|θ) with cθ
unknown (cf Murray, Ghahramani and MacKay 2006)

a problem is completely intractable if π(D|θ) is unknown and can’t
be evaluated (unknown is subjective). I.e., if the analytic distribution
of the simulator, f (θ), run at θ is unknown.

Completely intractable models are where we need to resort to ABC
methods

Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian
computation) is one of the few approaches we can use to do inference.

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).

Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian
computation) is one of the few approaches we can use to do inference.

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).

Approximate Bayesian computation (ABC)

ABC methods are popular in biological disciplines, particularly genetics.
They are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied

ABC methods can be crude but they have an important role to play.

First ABC paper candidates

Beaumont et al. 2002

Tavaré et al. 1997 or Pritchard et al. 1999

Or Diggle and Gratton 1984 or Rubin 1984

. . .

Approximate Bayesian computation (ABC)

ABC methods are popular in biological disciplines, particularly genetics.
They are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied

ABC methods can be crude but they have an important role to play.

First ABC paper candidates

Beaumont et al. 2002

Tavaré et al. 1997 or Pritchard et al. 1999

Or Diggle and Gratton 1984 or Rubin 1984

. . .

Plan

i. Basics

ii. Efficient sampling algorithms

iii. Links to other approaches

iv. Accelerating ABC using meta-models

Basics

‘Likelihood-Free’ Inference

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).

If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate X ∼ f (θ) from the computer model

Accept θ if D = X , i.e., if computer output equals observation

The acceptance rate is
∫
P(D|θ)π(θ)dθ = P(D).

‘Likelihood-Free’ Inference

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).
If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate X ∼ f (θ) from the computer model

Accept θ if D = X , i.e., if computer output equals observation

The acceptance rate is
∫
P(D|θ)π(θ)dθ = P(D).

Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any θ. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).

Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any θ. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).

ε = 10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
10

0
10

20

theta vs D

theta

D

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●● ●

●●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●
●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●● ●

●

● ●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

− ε

+ ε

D

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Density

theta

D
en

si
ty

ABC
True

θ ∼ U[−10, 10], X ∼ N(2(θ + 2)θ(θ − 2), 0.1 + θ2)

ρ(D,X) = |D − X |, D = 2

ε = 7.5

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●●

●

●

●●

●

●

●
●●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
10

0
10

20

theta vs D

theta

D

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●● ●

●●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●● ●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

− ε

+ ε

D

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Density

theta

D
en

si
ty

ABC
True

ε = 5

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●
● ●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

● ●●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

● ●

●

●

●
●

●

●●
● ●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

−3 −2 −1 0 1 2 3

−
10

0
10

20

theta vs D

theta

D

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●●● ●

●●

●

● ●

●

● ● ●●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●●

●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●● ●

●●

●

●

●

●
●

●
● ●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

● ●
● ●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

− ε

+ ε

D

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Density

theta

D
en

si
ty

ABC
True

ε = 2.5

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

● ●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−3 −2 −1 0 1 2 3

−
10

0
10

20

theta vs D

theta

D

●

●
●

●

●●

●

●

●

●

●
●

●
●●●

●

● ●
●

●

●
●

●
●

●●

●●
●●

●

●
●●

● ●
●

●
●

●
●

●

● ●

●

●

●
●

●

●
●●

●

●

●●

●

●●

●
●

●
●

●

●●

●●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●●
●

●

●

●●
●

● ●
●

●

●
●

●●
●

●●

●●

●
●

●
●

●

●●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●
●

●

●
●

●● ●

●
●

●●

●

●●
●

●

●
●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●●

●
●

●

●
● ●

●

●
●

●

●

− ε

+ ε

D

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Density

theta

D
en

si
ty

ABC
True

ε = 1

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

● ●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−3 −2 −1 0 1 2 3

−
10

0
10

20

theta vs D

theta

D ●●
● ●●●

● ●●
●●●

●● ●

●●

●
●● ●●● ●

●
●

●●

●●

●
●

●●
●
●●

●

●●
●●●

●

●●
●

●●
●

● ●●
●●

● ●
●●●

●
●

●●

●
●

●●●●
●

●
●

●
●

●
●

●
● ●● ●

● ●
● ●●●

●

● ●
● ● ●

●
●●
●●

− ε

+ ε

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Density

theta

D
en

si
ty

ABC
True

Rejection ABC

If the data are too high dimensional we never observe simulations that are
‘close’ to the field data - curse of dimensionality

Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(S(D), S(X)) < ε

If S is sufficient this is equivalent to the previous algorithm.

Simple → Popular with non-statisticians

Rejection ABC

If the data are too high dimensional we never observe simulations that are
‘close’ to the field data - curse of dimensionality

Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(S(D), S(X)) < ε

If S is sufficient this is equivalent to the previous algorithm.

Simple → Popular with non-statisticians

What is ABC doing?

We can think about ABC in two ways:

Algorithmically:

I find a good metric, tolerance and summary etc, to minimise the
approximation error

Probabilistically:

I Given algorithmic choices, what model does ABC correspond to?, and
how should this inform our choices?

What is ABC doing?

We can think about ABC in two ways:

Algorithmically:
I find a good metric, tolerance and summary etc, to minimise the

approximation error

Probabilistically:
I Given algorithmic choices, what model does ABC correspond to?, and

how should this inform our choices?

ABC as a probability model
W. 2008/2013

We wanted to solve the inverse problem

D = f (θ)

but instead ABC solves
D = f (θ) + e.

ABC gives ‘exact’ inference under a different model!

We can show that

Proposition

If ρ(D,X) = |D − X |, then ABC samples from the posterior distribution
of θ given D where we assume D = f (θ) + e and that

e ∼ U[−ε, ε]

ABC as a probability model
W. 2008/2013

We wanted to solve the inverse problem

D = f (θ)

but instead ABC solves
D = f (θ) + e.

ABC gives ‘exact’ inference under a different model!

We can show that

Proposition

If ρ(D,X) = |D − X |, then ABC samples from the posterior distribution
of θ given D where we assume D = f (θ) + e and that

e ∼ U[−ε, ε]

Generalized ABC (GABC)

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ) (ie (θ,X) ∼ g(·))

2 Accept (θ,X) if U ∼ U[0, 1] ≤ πε(D|X)
maxx πε(D|x)

In uniform ABC we take

πε(D|X) =

{
1 if ρ(D,X) ≤ ε
0 otherwise

which recovers the uniform ABC algorithm.

2’ Accept θ ifF ρ(D,X) ≤ ε

We can use πε(D|x) to describe the relationship between the simulator
and reality, e.g., measurement error and simulator discrepancy.

We don’t need to assume uniform error!

Generalized ABC (GABC)

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ) (ie (θ,X) ∼ g(·))

2 Accept (θ,X) if U ∼ U[0, 1] ≤ πε(D|X)
maxx πε(D|x)

In uniform ABC we take

πε(D|X) =

{
1 if ρ(D,X) ≤ ε
0 otherwise

which recovers the uniform ABC algorithm.

2’ Accept θ ifF ρ(D,X) ≤ ε

We can use πε(D|x) to describe the relationship between the simulator
and reality, e.g., measurement error and simulator discrepancy.

We don’t need to assume uniform error!

Key challenges for ABC

Accuracy in ABC is determined by

Tolerance ε - controls the ‘ABC error’

I how do we find efficient algorithms that allow us to use small ε and
hence find good approximations

I constrained by limitations on how much computation we can do - rules
out expensive simulators

I how do we relate simulators to reality

Summary statistic S(D) - controls ‘information loss’

I inference is based on π(θ|S(D)) rather than π(θ|D)
I a combination of expert judgement, and stats/ML tools can be used

to find informative summaries

Key challenges for ABC

Accuracy in ABC is determined by

Tolerance ε - controls the ‘ABC error’
I how do we find efficient algorithms that allow us to use small ε and

hence find good approximations
I constrained by limitations on how much computation we can do - rules

out expensive simulators
I how do we relate simulators to reality

Summary statistic S(D) - controls ‘information loss’

I inference is based on π(θ|S(D)) rather than π(θ|D)
I a combination of expert judgement, and stats/ML tools can be used

to find informative summaries

Key challenges for ABC

Accuracy in ABC is determined by

Tolerance ε - controls the ‘ABC error’
I how do we find efficient algorithms that allow us to use small ε and

hence find good approximations
I constrained by limitations on how much computation we can do - rules

out expensive simulators
I how do we relate simulators to reality

Summary statistic S(D) - controls ‘information loss’

I inference is based on π(θ|S(D)) rather than π(θ|D)
I a combination of expert judgement, and stats/ML tools can be used

to find informative summaries

Key challenges for ABC

Accuracy in ABC is determined by

Tolerance ε - controls the ‘ABC error’
I how do we find efficient algorithms that allow us to use small ε and

hence find good approximations
I constrained by limitations on how much computation we can do - rules

out expensive simulators
I how do we relate simulators to reality

Summary statistic S(D) - controls ‘information loss’
I inference is based on π(θ|S(D)) rather than π(θ|D)
I a combination of expert judgement, and stats/ML tools can be used

to find informative summaries

Efficient Algorithms

References:

Marjoram et al. 2003

Sisson et al. 2007

Beaumont et al. 2008

Toni et al. 2009

Del Moral et al. 2011

Drovandi et al. 2011

ABCifying Monte Carlo methods

Rejection ABC is the basic ABC algorithm

Inefficient as it repeatedly samples from prior

More efficient sampling algorithms allow us to make better use of the
available computational resource: spend more time in regions of
parameter space likely to lead to accepted values.

allows us to use smaller values of ε, and hence finding better
approximations

Most Monte Carlo algorithms now have ABC versions for when we don’t
know the likelihood: IS, MCMC, SMC (×n), EM, EP etc

MCMC-ABC
Marjoram et al. 2003, Sisson and Fan 2011, Lee 2012

We are targeting the joint distribution

πABC (θ, x |D) ∝ πε(D|x)π(x |θ)π(θ)

To explore the (θ, x) space, proposals of the form

Q((θ, x), (θ′, x ′)) = q(θ, θ′)π(x ′|θ′)
seem to be inevitable (see Neal et al. 2014 for an alternative).

The Metropolis-Hastings (MH) acceptance probability is then

r =
πABC (θ′, x ′|D)Q((θ′, x ′), (θ, x))

πABC (θ, x |D)Q((θ, x), (θ′, x ′))

=
πε(D|x ′)π(x ′|θ′)π(θ′)q(θ′, θ)π(x |θ)

πε(D|x)π(x |θ)π(θ)q(θ, θ′)π(x ′|θ′)

=
πε(D|x ′)q(θ′, θ)π(θ′)
πε(D|x)q(θ, θ′)π(θ)

MCMC-ABC
Marjoram et al. 2003, Sisson and Fan 2011, Lee 2012

We are targeting the joint distribution

πABC (θ, x |D) ∝ πε(D|x)π(x |θ)π(θ)

To explore the (θ, x) space, proposals of the form

Q((θ, x), (θ′, x ′)) = q(θ, θ′)π(x ′|θ′)
seem to be inevitable (see Neal et al. 2014 for an alternative).

The Metropolis-Hastings (MH) acceptance probability is then

r =
πABC (θ′, x ′|D)Q((θ′, x ′), (θ, x))

πABC (θ, x |D)Q((θ, x), (θ′, x ′))

=
πε(D|x ′)π(x ′|θ′)π(θ′)q(θ′, θ)π(x |θ)

πε(D|x)π(x |θ)π(θ)q(θ, θ′)π(x ′|θ′)

=
πε(D|x ′)q(θ′, θ)π(θ′)
πε(D|x)q(θ, θ′)π(θ)

MCMC-ABC
Marjoram et al. 2003, Sisson and Fan 2011, Lee 2012

We are targeting the joint distribution

πABC (θ, x |D) ∝ πε(D|x)π(x |θ)π(θ)

To explore the (θ, x) space, proposals of the form

Q((θ, x), (θ′, x ′)) = q(θ, θ′)π(x ′|θ′)
seem to be inevitable (see Neal et al. 2014 for an alternative).

The Metropolis-Hastings (MH) acceptance probability is then

r =
πABC (θ′, x ′|D)Q((θ′, x ′), (θ, x))

πABC (θ, x |D)Q((θ, x), (θ′, x ′))

=
πε(D|x ′)π(x ′|θ′)π(θ′)q(θ′, θ)π(x |θ)

πε(D|x)π(x |θ)π(θ)q(θ, θ′)π(x ′|θ′)

=
πε(D|x ′)q(θ′, θ)π(θ′)
πε(D|x)q(θ, θ′)π(θ)

This gives the following MCMC algorithm

MH-ABC - PMarj(θ0, ·)
1 Propose a move from zt = (θ, x) to (θ′, x ′) using proposal Q above.

2 Accept move with probability

r((θ, x), (θ′, x ′)) = min

(
1,
πε(D|x ′)q(θ′, θ)π(θ′)
πε(D|x)q(θ, θ′)π(θ)

)
,

otherwise set zt+1 = zt .

In practice, this algorithm often gets stuck, as the probability of
generating x ′ near D can be tiny if ε is small.

Lee 2012 introduced several alternative MCMC kernels that are variance
bounding and geometrically ergodic.

This gives the following MCMC algorithm

MH-ABC - PMarj(θ0, ·)
1 Propose a move from zt = (θ, x) to (θ′, x ′) using proposal Q above.

2 Accept move with probability

r((θ, x), (θ′, x ′)) = min

(
1,
πε(D|x ′)q(θ′, θ)π(θ′)
πε(D|x)q(θ, θ′)π(θ)

)
,

otherwise set zt+1 = zt .

In practice, this algorithm often gets stuck, as the probability of
generating x ′ near D can be tiny if ε is small.

Lee 2012 introduced several alternative MCMC kernels that are variance
bounding and geometrically ergodic.

Sequential ABC algorithms
Sisson et al. 2007, Toni et al. 2008, Beaumont et al. 2009, Del Moral et al. 2011,
Drovandi et al. 2011, ...

The most popular efficient ABC algorithms are those based on sequential
methods.

We aim to sample N particles successively from a sequence of distributions

π1(θ), . . . , πT (θ) = target

For ABC we decide upon a sequence of tolerances ε1 > ε2 > . . . > εT and
let πt be the ABC distribution found by the ABC algorithm when we use
tolerance εt .

Specifically, define a sequence of target distributions

πt(θ, x) =
Iρ(D,x)<εtπ(x |θ)π(θ)

Ct
=
γt(θ, x)

Ct

ABC SMC (Toni et al., 2009)

(a) As in ABC rejection, we define a prior
distribution P (✓) and we would like to approxi-
mate a posterior distribution P (✓|D0). In ABC
SMC we do this sequentially by constructing
intermediate distributions, which converge
to the posterior distribution. We define a
tolerance schedule ✏1 > ✏2 > . . . ✏T � 0.

(b) We sample particles from a prior distribu-
tion until N particles have been accepted (have
reached the distance smaller than ✏1). For all
accepted particles we calculate weights (see
[4] for formulas and derivation). We call the
sample of all accepted particles ”Population
1”.

(c) We then sample a particle ✓⇤ from popu-
lation 1 and perturb it to obtain a perturbed
particle ✓⇤⇤ ⇠ K(✓|✓⇤), where K is a per-
turbation kernel (for example a Gaussian
random walk). We then simulate a dataset
D⇤ ⇠ f(D|✓⇤⇤) and accept the particle ✓⇤⇤

if d(D0, D
⇤⇤)  ✏2. We repeat this until we

have accepted N particles in population 2. We
calculate weights for all accepted particles.

(d) We repeat the same procedure for the
following populations, until we have accepted
N particles of the last population T and
calculated their weights. Population T is a
sample of particles that approximates the
posterior distribution.

ABC SMC is computationally much more
e�cient than ABC rejection (see [4] for
comparison).

ABC SMC (Sequential Monte Carlo)

Intermediate DistributionsPrior Posterior

✏1 ✏2 . . . ✏T�1 ✏T

Population 1 Population 2 Population T

Tina Toni, Michael Stumpf ABC dynamical systems 03/07/08 1 / 1

(a)

(b)

(c)

(d)

Figure 2: Schematic representation of ABC
SMC.

3

Picture from Toni and Stumpf 2010 tutorial

At each stage t, we aim to construct a weighted sample of particles that
approximates πt(θ, x).{(

z
(i)
t ,W

(i)
t

)}N

i=1
such that πt(z) ≈

∑
W

(i)
t δ

z
(i)
t

(dz)

where z
(i)
t = (θ

(i)
t , x

(i)
t).

ABC SMC (Toni et al., 2009)

(a) As in ABC rejection, we define a prior
distribution P (✓) and we would like to approxi-
mate a posterior distribution P (✓|D0). In ABC
SMC we do this sequentially by constructing
intermediate distributions, which converge
to the posterior distribution. We define a
tolerance schedule ✏1 > ✏2 > . . . ✏T � 0.

(b) We sample particles from a prior distribu-
tion until N particles have been accepted (have
reached the distance smaller than ✏1). For all
accepted particles we calculate weights (see
[4] for formulas and derivation). We call the
sample of all accepted particles ”Population
1”.

(c) We then sample a particle ✓⇤ from popu-
lation 1 and perturb it to obtain a perturbed
particle ✓⇤⇤ ⇠ K(✓|✓⇤), where K is a per-
turbation kernel (for example a Gaussian
random walk). We then simulate a dataset
D⇤ ⇠ f(D|✓⇤⇤) and accept the particle ✓⇤⇤

if d(D0, D
⇤⇤)  ✏2. We repeat this until we

have accepted N particles in population 2. We
calculate weights for all accepted particles.

(d) We repeat the same procedure for the
following populations, until we have accepted
N particles of the last population T and
calculated their weights. Population T is a
sample of particles that approximates the
posterior distribution.

ABC SMC is computationally much more
e�cient than ABC rejection (see [4] for
comparison).

(a)

(b)

(c)

ABC SMC (Sequential Monte Carlo)

Intermediate DistributionsPrior Posterior

✏1 ✏2 . . . ✏T�1 ✏T
Population 1 Population 2 Population T

Tina Toni, Michael Stumpf ABC dynamical systems 03/07/08 1 / 1

(d)

Figure 2: Schematic representation of ABC
SMC.

3

Picture from Toni and Stumpf 2010 tutorial

Links to other approaches

History-matching
Craig et al. 2001, Vernon et al. 2010

ABC can be seen as a probabilistic version of history matching. History
matching is used in the analysis of computer experiments to rule out
regions of space as implausible.

1 Relate the simulator to the system

ζ = f (θ) + ε

where ε is our simulator discrepancy

2 Relate the system to the data (e represents measurement error)

D = ζ + e

3 Declare θ implausible if, e.g.,

‖ D − Ef (θ) ‖> 3σ

where σ2 is the combined variance implied by the emulator,
discrepancy and measurement error.

History-matching

If θ is not implausible we don’t discard it. The result is a region of space
that we can’t rule out at this stage of the history-match (NROY).

Usual to go through several stages of history matching.

History matching can be seen as a principled version of ABC - lots of
thought goes into the link between simulator and reality.

The result of history-matching may be that there is no
not-implausible region of parameter space

I Go away and think harder - something is misspecified
I This can also happen in rejection ABC.
I In contrast, MCMC will always give an answer, even if the model is

terrible.

The method is non-probabilistic - it just gives a set of not-implausible
parameter values. Probabilistic calibration can be done subsequently.

Other algorithms

The synthetic likelihood approach of Wood 2010 is an ABC
algorithm, but using sample mean µθ and covariance Σθ of the
summary of f (θ) run n times at θ, and assuming

π(D|S) = N (D;µθ,Σθ)

(Generalized Likelihood Uncertainty Estimation) GLUE approach of
Keith Beven in hydrology can also be interpreted as an ABC
algorithm - see Nott and Marshall 2012

Meta-modelling approaches
to ABC

Limitations of Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee is costly and can require more simulation than is possible.

However,

Most methods sample naively - they don’t learn from previous
simulations.

They don’t exploit known properties of the likelihood function, such
as continuity

They sample randomly, rather than using careful design.

We can use methods that don’t suffer in this way, but at the cost of
losing the guarantee of success.

Limitations of Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee is costly and can require more simulation than is possible.

However,

Most methods sample naively - they don’t learn from previous
simulations.

They don’t exploit known properties of the likelihood function, such
as continuity

They sample randomly, rather than using careful design.

We can use methods that don’t suffer in this way, but at the cost of
losing the guarantee of success.

Meta-modelling/emulation in deterministic simulators
Sacks et al. 1989, Kennedy and O’Hagan 2001

Suppose f (θ) is a deterministic computer simulator, such as a climate
model.

If f (θ) is expensive to evaluate, then we can only afford a limited
ensemble of simulator evaluations

D = {θi , f (θi)}ni=1

We are uncertain about f (θ) for θ not in the design - code
uncertainty.

I How should we use information in D to do parameter estimation,
sensitivity analysis, or prediction?

A popular approach is to build an emulator of f (·).

Meta-modelling/emulation in deterministic simulators
Sacks et al. 1989, Kennedy and O’Hagan 2001

Suppose f (θ) is a deterministic computer simulator, such as a climate
model.

If f (θ) is expensive to evaluate, then we can only afford a limited
ensemble of simulator evaluations

D = {θi , f (θi)}ni=1

We are uncertain about f (θ) for θ not in the design - code
uncertainty.

I How should we use information in D to do parameter estimation,
sensitivity analysis, or prediction?

A popular approach is to build an emulator of f (·).

Meta-modelling/emulation in deterministic simulators
Sacks et al. 1989, Kennedy and O’Hagan 2001

Suppose f (θ) is a deterministic computer simulator, such as a climate
model.

If f (θ) is expensive to evaluate, then we can only afford a limited
ensemble of simulator evaluations

D = {θi , f (θi)}ni=1

We are uncertain about f (θ) for θ not in the design - code
uncertainty.

I How should we use information in D to do parameter estimation,
sensitivity analysis, or prediction?

A popular approach is to build an emulator of f (·).

Meta-modelling/emulation for deterministic simulators

An emulator is a cheap statistical surrogate f̃ (θ) which approximates f (θ).

Gaussian processes (GP) are a common choice: f̃ (·) ∼ GP(m(·), c(·, ·))

0 2 4 6 8 10

−
2

0
2

4
6

8
1

0

Prior Beliefs

X

Y

0 2 4 6 8 10

−
2

0
2

4
6

8
1

0

Ensemble of model evaluations

X

Y

0 2 4 6 8 10

−
2

0
2

4
6

8
1

0

Posterior beliefs

X

Y

We can then use f̃ in place of f in any analysis.

GP models include an estimate of their uncertainty

if trained well, we hope the answer from any statistical analysis
incorporates our uncertainty about f (·).

Meta-modelling/emulation for deterministic simulators

An emulator is a cheap statistical surrogate f̃ (θ) which approximates f (θ).

Gaussian processes (GP) are a common choice: f̃ (·) ∼ GP(m(·), c(·, ·))

0 2 4 6 8 10

−
2

0
2

4
6

8
1
0

Prior Beliefs

X

Y

0 2 4 6 8 10

−
2

0
2

4
6

8
1
0

Ensemble of model evaluations

X

Y

0 2 4 6 8 10

−
2

0
2

4
6

8
1
0

Posterior beliefs

X

Y

We can then use f̃ in place of f in any analysis.

GP models include an estimate of their uncertainty

if trained well, we hope the answer from any statistical analysis
incorporates our uncertainty about f (·).

Meta-modelling/emulation for deterministic simulators

An emulator is a cheap statistical surrogate f̃ (θ) which approximates f (θ).

Gaussian processes (GP) are a common choice: f̃ (·) ∼ GP(m(·), c(·, ·))

0 2 4 6 8 10

−
2

0
2

4
6

8
1
0

Prior Beliefs

X

Y

0 2 4 6 8 10

−
2

0
2

4
6

8
1
0

Ensemble of model evaluations

X

Y

0 2 4 6 8 10

−
2

0
2

4
6

8
1
0

Posterior beliefs

X

Y

We can then use f̃ in place of f in any analysis.

GP models include an estimate of their uncertainty

if trained well, we hope the answer from any statistical analysis
incorporates our uncertainty about f (·).

Emulating stochastic models
Cf link to indirect inference (Drovandi, Pettitt, Faddy 2011)

1 Model summaries of the simulator response:
I e.g., model

m(θ) = Ef (θ) ∼ GP(0, c(·, ·)) and v(θ) = Varf (θ) ∼ GP(0, c(·, ·))

and then assume
f (θ) ∼ N(m(θ), v(θ))

Cf. Wood 2010 synthetic likelihood approach.
I Meeds and Welling 2014, Boukouvalis, Cornford, et al. 2009,...

2 Model distribution of simulator output π(f (θ)|θ), e.g., using
Dirichlet process priors (Farah 2011, ...).

Disadvantages:

High dimensional datasets are difficult to model.

They both involve learning global approximations, i.e. the
relationship between D and θ.

Emulating stochastic models
Cf link to indirect inference (Drovandi, Pettitt, Faddy 2011)

1 Model summaries of the simulator response:
I e.g., model

m(θ) = Ef (θ) ∼ GP(0, c(·, ·)) and v(θ) = Varf (θ) ∼ GP(0, c(·, ·))

and then assume
f (θ) ∼ N(m(θ), v(θ))

Cf. Wood 2010 synthetic likelihood approach.
I Meeds and Welling 2014, Boukouvalis, Cornford, et al. 2009,...

2 Model distribution of simulator output π(f (θ)|θ), e.g., using
Dirichlet process priors (Farah 2011, ...).

Disadvantages:

High dimensional datasets are difficult to model.

They both involve learning global approximations, i.e. the
relationship between D and θ.

Emulating stochastic models
Cf link to indirect inference (Drovandi, Pettitt, Faddy 2011)

1 Model summaries of the simulator response:
I e.g., model

m(θ) = Ef (θ) ∼ GP(0, c(·, ·)) and v(θ) = Varf (θ) ∼ GP(0, c(·, ·))

and then assume
f (θ) ∼ N(m(θ), v(θ))

Cf. Wood 2010 synthetic likelihood approach.
I Meeds and Welling 2014, Boukouvalis, Cornford, et al. 2009,...

2 Model distribution of simulator output π(f (θ)|θ), e.g., using
Dirichlet process priors (Farah 2011, ...).

Disadvantages:

High dimensional datasets are difficult to model.

They both involve learning global approximations, i.e. the
relationship between D and θ.

Emulating likelihood
W. 2014, Dahlin and Lindsten 2014

If parameter estimation/model selection is the goal, we only need the
likelihood function

L(θ) = π(D|θ)

which is defined for fixed D.

Instead of modelling the simulator output, we can instead model L(θ)

A local approximation: D remains fixed, and we only need learn L as
a function of θ

1d response surface

But, it can be hard to model.

Likelihood estimation
W. 2013

The GABC framework assumes

π(D|θ) =

∫
π(D|X)π(X |θ)dX

≈ 1

N

∑
π(D|Xi)

where Xi ∼ π(X |θ).

For many problems, we believe the likelihood is continuous and smooth,
so that π(D|θ) is similar to π(D|θ′) when θ − θ′ is small

We can model L(θ) = π(D|θ) and use the model to find the posterior in
place of running the simulator.

Likelihood estimation
W. 2013

The GABC framework assumes

π(D|θ) =

∫
π(D|X)π(X |θ)dX

≈ 1

N

∑
π(D|Xi)

where Xi ∼ π(X |θ).

For many problems, we believe the likelihood is continuous and smooth,
so that π(D|θ) is similar to π(D|θ′) when θ − θ′ is small

We can model L(θ) = π(D|θ) and use the model to find the posterior in
place of running the simulator.

History matching waves
W. 2014

The likelihood is too difficult to model, so we model the log-likelihood
instead.

l(θ) = log L(θ)

However, the log-likelihood for a typical problem ranges across too wide a
range of values.

Consequently, most GP models will struggle to model the log-likelihood
across the parameter space.

Introduce waves of history matching.

In each wave, build a GP model that can rule out regions of space as
implausible.

History matching waves
W. 2014

The likelihood is too difficult to model, so we model the log-likelihood
instead.

l(θ) = log L(θ)

However, the log-likelihood for a typical problem ranges across too wide a
range of values.

Consequently, most GP models will struggle to model the log-likelihood
across the parameter space.

Introduce waves of history matching.

In each wave, build a GP model that can rule out regions of space as
implausible.

History matching waves
W. 2014

The likelihood is too difficult to model, so we model the log-likelihood
instead.

l(θ) = log L(θ)

However, the log-likelihood for a typical problem ranges across too wide a
range of values.

Consequently, most GP models will struggle to model the log-likelihood
across the parameter space.

Introduce waves of history matching.

In each wave, build a GP model that can rule out regions of space as
implausible.

Implausibility

Given a model of the likelihood

l(θ) ∼ N(m(θ), σ2)

we define the plausible/NROY set

Pθ = {θ ∈ Θ : l(θ) ≥ T}

The threshold T can be set in a variety of ways. We use

T = max
θi

l(θi)− 10

for the Ricker model results below,
I a difference of 10 on the log scale between two likelihoods, means that

assigning the θ with the smaller log-likelihood a posterior density of 0
(by saying it is implausible) is a good approximation.

Implausibility

Given a model of the likelihood

l(θ) ∼ N(m(θ), σ2)

we define the plausible/NROY set

Pθ = {θ ∈ Θ : l(θ) ≥ T}

The threshold T can be set in a variety of ways. We use

T = max
θi

l(θi)− 10

for the Ricker model results below,
I a difference of 10 on the log scale between two likelihoods, means that

assigning the θ with the smaller log-likelihood a posterior density of 0
(by saying it is implausible) is a good approximation.

This still wasn’t enough in some problems, so for the first wave we
model log(− log π(D|θ))

For the next wave, we begin by using the Gaussian processes from
the previous waves to decide which parts of the input space are
implausible.

We then extend the design into the not-implaussible range and build
a new Gaussian process

This new GP will lead to a new definition of implausibility

. . .

This is essentially a classification problem. We use a conservative decision
rule, declaring θ implausible if

m(θ) + 3σ < T

Equivalently,
P(l(θ) < T) > 0.997

This still wasn’t enough in some problems, so for the first wave we
model log(− log π(D|θ))

For the next wave, we begin by using the Gaussian processes from
the previous waves to decide which parts of the input space are
implausible.

We then extend the design into the not-implaussible range and build
a new Gaussian process

This new GP will lead to a new definition of implausibility

. . .

This is essentially a classification problem. We use a conservative decision
rule, declaring θ implausible if

m(θ) + 3σ < T

Equivalently,
P(l(θ) < T) > 0.997

Example: Ricker Model

The Ricker model is one of the prototypic ecological models.

used to model the fluctuation of the observed number of animals in
some population over time

It has complex dynamics and likelihood, despite its simple
mathematical form.

Ricker Model

Let Nt denote the number of animals at time t.

Nt+1 = rNte
−Nt+er

where et are independent N(0, σ2e) process noise

Assume we observe counts yt where

yt ∼ Po(φNt)

Used in Wood to demonstrate the synthetic likelihood approach.

Results - Design 1 - 128 pts

Diagnostics for GP 1 - threshold = 5.6

Results - Design 2 - 314 pts - 38% of space implausible

Diagnostics for GP 2 - threshold = -21.8

Design 3 - 149 pts - 62% of space implausible

Diagnostics for GP 3 - threshold = -20.7

Design 4 - 400 pts - 95% of space implausible

Diagnostics for GP 4 - threshold = -16.4

MCMC Results
Comparison with Wood 2010, synthetic likelihood approach

3.0 3.5 4.0 4.5 5.0

0
1

2
3

4
5

6
7

Wood’s MCMC posterior

r

D
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8

0
.0

1
.0

2
.0

3
.0

Green = GP posterior

sig.e

D
e
n
s
it
y

5 10 15 20

0
.0

0
.2

0
.4

Black = Wood’s MCMC

phi

D
e
n
s
it
y

Computational details

The Wood MCMC method used 105 × 500 simulator runs

The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs

I 1/100th of the number used by Wood’s method.

By the final iteration, the Gaussian processes had ruled out over 98% of
the original input space as implausible,

the MCMC sampler did not need to waste time exploring those
regions.

Active learning for history-matching/GP-ABC
Work with James Hensman

Using a space filling design is often not optimal. Instead, we can use
active learning ideas from machine learning/Bayesian
optimisation/probabilistic numerics to sequentially build a design
θ1, θ2, . . .

One option is to minimise the expected entropy of the resulting history
match.....

Any GP emulator allows us to calculate a probabilistic classification

p(θ) = P(θ ∈ Pθ)

The entropy of our belief at θ is

E (θ) = −p log p − (1− p) log(1− p)

We could choose the next design point, θn+1, to minimize E (θ), a
point wise criteria.

This is numerically simple, but the additional design points tend to
accumulate on the edge of the domain Θ.

Active learning for history-matching/GP-ABC
Work with James Hensman

Using a space filling design is often not optimal. Instead, we can use
active learning ideas from machine learning/Bayesian
optimisation/probabilistic numerics to sequentially build a design
θ1, θ2, . . .

One option is to minimise the expected entropy of the resulting history
match.....

Any GP emulator allows us to calculate a probabilistic classification

p(θ) = P(θ ∈ Pθ)

The entropy of our belief at θ is

E (θ) = −p log p − (1− p) log(1− p)

We could choose the next design point, θn+1, to minimize E (θ), a
point wise criteria.

This is numerically simple, but the additional design points tend to
accumulate on the edge of the domain Θ.

Chevalier et al. 2014

Instead, we can find the average entropy

En =

∫
E (θ)dθ

where n denotes it is based on the current design of size n.

Choose the next design point to minimise the expected average
entropy

θn+1 = arg max Jn(θ)

where
Jn(θ) = E(En+1|θn+1 = θ)

EPm: toy climate model
DTcrit conv - critical temperature gradient that triggers convection
GAMMA - emissivity parameter for water vapour
Calibrate to global average surface temperature

30 35 40 45 50
DTcrit_conv

1.0

1.2

1.4

1.6

1.8

2.0

G
AM

M
A

ABC samples

30 35 40 45 50
DTcrit_conv

1.0

1.2

1.4

1.6

1.8

2.0

G
AM

M
A

285.000

287.500

290.000

292.500

295.000

297.500

MLH Emulator n=10

30 35 40 45 50
DTcrit_conv

1.0

1.2

1.4

1.6

1.8

2.0

G
AM

M
A

285.000

287.500

290.000

292.500

295.000
297.500

MLH Emulator n=30

30 35 40 45 50

1.0

1.2

1.4

1.6

1.8

2.0

2
8
5
.0

0
0

2
8
7
.5

0
0

2
9
0
.0

0
0 2

9
2
.5

0
0

2
9
5
.0

0
0

2
9
7
.5

0
0

Bayesian optimization, 10 design points

30 35 40 45 50

1.0

1.2

1.4

1.6

1.8

2.0

2
8
5
.0

0
0

2
8
7
.5

0
0

2
9
0
.0

0
0 2
9
2
.5

0
0

295.000
2
9
7
.5

0
0

Bayesian optimization, 20 design points

Solving the optimisation problem

Finding θ which minimises Jn(θ) = E(En+1|θn+1 = θ) is expensive.

We can use Bayesian optimization to find the optima:

1 Evaluate Jn(θ) at a small number of locations

2 Build a GP model of Jn(·)
3 Choose the next θ at which to evaluate Jn so as to minimise the EI

criterion

4 Return to step 2.

History match
Can we learn the following plausible set?

A sample from a GP on R2.
Find x s.t. −2 < f (x) < 0

Iterations 10 and 15
Left=p(θ), middle= E(θ), right = J̃(θ)

Iterations 15
Left=p(θ), middle= E(θ), right = J̃(θ)

Iterations 20 and 24

Video

http://youtu.be/FF3KhKh6NHg

Questions, challenges, difficulties

The use of waves is unsatisfactory. Would prefer a global
approximation, perhaps using logistic regression:

nacc ∼ Bin(Ntrial , p(θ)) logit p(·) ∼ GP(m(·), c(·, ·))

Currently, each wave considered in turn. Classification errors in
earlier waves can never be corrected. Is it possible to use a design
criterion that operates across waves?

Classification rule

θ implausible if l(θ) < T

is entirely heuristic, but theory should be possible....

Efficient calculation of the posterior given the final emulator:
HMC-NUTS, . . .

How do we marginalise across GP hyper-parameters?
...

Conclusions

ABC allows inference in models for which it would otherwise be
impossible.

not a silver bullet - if likelihood methods possible, use them instead.

Algorithms and post-hoc regression can greatly improve computational
efficiency, but computation is still usually the limiting factor.

Challenge is to develop more efficient methods to allow inference in
more expensive models.

Thank you for listening!

r.d.wilkinson@nottingham.ac.uk
www.maths.nottingham.ac.uk/personal/pmzrdw/

Conclusions

ABC allows inference in models for which it would otherwise be
impossible.

not a silver bullet - if likelihood methods possible, use them instead.

Algorithms and post-hoc regression can greatly improve computational
efficiency, but computation is still usually the limiting factor.

Challenge is to develop more efficient methods to allow inference in
more expensive models.

Thank you for listening!

r.d.wilkinson@nottingham.ac.uk
www.maths.nottingham.ac.uk/personal/pmzrdw/

Conclusions

ABC allows inference in models for which it would otherwise be
impossible.

not a silver bullet - if likelihood methods possible, use them instead.

Algorithms and post-hoc regression can greatly improve computational
efficiency, but computation is still usually the limiting factor.

Challenge is to develop more efficient methods to allow inference in
more expensive models.

Thank you for listening!

r.d.wilkinson@nottingham.ac.uk
www.maths.nottingham.ac.uk/personal/pmzrdw/

References

Wilkinson, SAGMB 2013.

Wilkinson, JMLR, 2013

Holden, Edwards, Hensman, Wilkinson, Handbook of ABC, 2015.

Wood, Nature, 2010

Meeds and Welling, arXiv, 2013.

Chevalier, et al. Technometrics, 2013.

Dahlin, Lindsten, arXiv, 2014.

Chevalier, Picheny, Ginsbourger, Comp. Stat. and Data Anal., 2014

Ioannakis, et al. , PLOS Comp. Bio. 2015

