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Talk Plan

@ Recap
@ Why optimisation fails
@ Why vanilla MCMC fails and how to spot it

@ Parallel tempering
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Recap

Parametric function

P =f(V)

(or a > 1d equivalent)
Data

D ={V;, P},

Prior region:
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How do we find values of 6 that lead to good matches between model
predictions fy(V') and observations, P?



Estimating ¢

One option is to maximise some objective function, e.g.,

where C(fp) is any additional criteria on f, e.g., fugacity constraints.
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Opimization is hard!

Consider the function

P = f(V) T 0> N 6
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Can we use a numerical optimiser to find good values of 6§ = (61, . ..

Experiment:
@ Pick a ‘true’ value of 6 and generate some P, V data.
@ Pick 1000 random start points 6; € ©
@ Run an optimiser starting at each 6;
o

How often does the optimiser find the ‘true’ value?



Optimization is hard!
Standard optimisation fails badly and UQ fails as a result:
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Optimization is hard!
Standard optimisation fails badly and UQ fails as a result:
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@ The optimiser reported it
had converged in every
case.

e the classical /frequentist
approach to statistics is
thus almost impossible




Why does this fail?

Likelihood surface assuming known x0

alpha
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value assumed or required



Bayesian approach

Instead of optimizing, we seek to find the Bayesian posterior distribution

7(0D) x () (D]0)

Advantages:
@ Meaningful uncertainty quantification
o Powerful algorithms exist for finding the posterior

@ More realistic philosophical interpretation, e.g., no single 'correct’
value assumed or required

Disadvantages
@ Inference algorithms are complex

@ Additional modelling decisions needed
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We've seen already how we can use Markov chain Monte Carlo (MCMC)
algorithms to find the posterior distribution 7(6|D)

Simulate a Markov chain, 601,605,603, ... such that the stationary
distribution is 7(0|D)

o If currently at #,,, propose a move to '
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@ Accept move with probability
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MCMC

We've seen already how we can use Markov chain Monte Carlo (MCMC)
algorithms to find the posterior distribution 7(6|D)

Simulate a Markov chain, 601,605,603, ... such that the stationary
distribution is 7(0|D)

o If currently at #,,, propose a move to '
0 ~ q(em 0/)
@ Accept move with probability

m(0'[D)q(6", 0n)
7(0n|D)q(6n, ")

r =

and set 6,1 =6

Otherwise set 0,11 = 6,

The art is in choosing a good ¢



No free lunch: poor g — poor results
Trace plots can be used to diagnose problems with mixing and

convergence
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Why is this hard?

Likelihood surface assuming known x0

alpha




Simple 1d demo
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Simple 1d demo
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Why is this hard?
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Parallel tempering

power = 1 power = 4

@ Heating the
likelihood makes it
flatter and easier to
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Parallel tempering

power = 1 power = 4
@ Heating the : 5
likelihood makes it X g
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‘hotter’

temperatures
Idea:

@ run multiple MCMC chains - some hot and some cold
@ propose switches between the chains (maintaining detailed balance)



Parallel tempering
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Parallel tempering - untuned

Unheated chain
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A longer
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Parallel tempering

Trace plots Density plots
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https://www.youtube.com/watch?v=J6FrNf5__G0

Boutique proposals, q

The key determinant of whether an MCMC sampler works well or not is
the choice of proposal g.
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The key determinant of whether an MCMC sampler works well or not is
the choice of proposal g.

In the GUI we have a carefully tuned proposal that combines multiple
different moves.

@ With probability p; we update a single parameter using a Gaussian
random walk proposal

e With probability p» we update a block of two parameters using a
Gaussian random walk

@ With probability ps we update all 7 parameters

@ With probability ps we propose a swap between parameter values in
chains of different temperatures.



Boutique proposals, q
The key determinant of whether an MCMC sampler works well or not is
the choice of proposal g.

In the GUI we have a carefully tuned proposal that combines multiple
different moves.

@ With probability p; we update a single parameter using a Gaussian
random walk proposal

e With probability p» we update a block of two parameters using a
Gaussian random walk

@ With probability ps we update all 7 parameters
@ With probability ps we propose a swap between parameter values in
chains of different temperatures.
There are multiple numbers to tune in these proposals:
@ The number of different chains and the temperature of each one
@ The probabilities of each type of update
@ The variance for each type of move, at each temperature



CCS - parallel tempering




Any questions?



