Nottingham Equation of State Toolkit: Statistical challenges and solutions

Richard Graham, Joanne Dunster, Martin Nelson, Simon Preston, Richard Wilkinson

> School of Mathematical Sciences University of Nottingham

Nottingham - May 2014

Talk Plan

- Recap
- Why optimisation fails
- Why vanilla MCMC fails and how to spot it
- Parallel tempering

Recap

Parametric function

$$P = f_{\theta}(V)$$

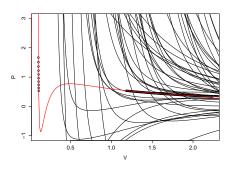
(or a > 1d equivalent)

Data

$$\mathcal{D} = \{V_i, P_i\}_{i=1}^N$$

Prior region:

$$\theta \in \Theta$$



Recap

Parametric function

$$P = f_{\theta}(V)$$

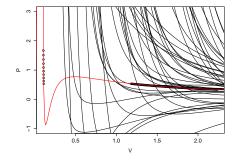
(or a > 1d equivalent)

Data

$$\mathcal{D} = \{V_i, P_i\}_{i=1}^N$$

Prior region:

$$\theta \in \Theta$$



How do we find values of θ that lead to good matches between model predictions $f_{\theta}(V)$ and observations, P?

Estimating θ

One option is to maximise some objective function, e.g.,

$$S(\theta) = \sum_{i=1}^{N} (P_i - f_{\theta}(V_i))^2 + C(f_{\theta})$$
$$\hat{\theta} = \arg\min_{\theta} S(\theta)$$

where $C(f_{\theta})$ is any additional criteria on f, e.g., fugacity constraints.

Opimization is hard!

Consider the function

$$P = f_{\theta}(V) = \frac{T}{V + \theta_1} + \frac{\theta_2}{V^2 + \theta_3} + \frac{\theta_4}{V^3 + \theta_5} + \frac{\theta_6}{(V - \theta_7)^6}$$

Can we use a numerical optimiser to find good values of $\theta = (\theta_1, \dots, \theta_7)$?

Opimization is hard!

Consider the function

$$P = f_{\theta}(V) = \frac{T}{V + \theta_1} + \frac{\theta_2}{V^2 + \theta_3} + \frac{\theta_4}{V^3 + \theta_5} + \frac{\theta_6}{(V - \theta_7)^6}$$

Can we use a numerical optimiser to find good values of $\theta = (\theta_1, \dots, \theta_7)$?

Experiment:

- Pick a 'true' value of θ and generate some P, V data.
- Pick 1000 random start points $\theta_i \in \Theta$
- Run an optimiser starting at each θ_i
- How often does the optimiser find the 'true' value?

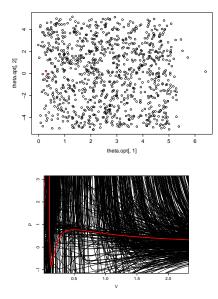
Optimization is hard!

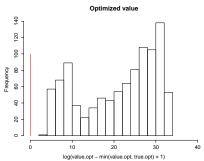
Standard optimisation fails badly and UQ fails as a result:



Optimization is hard!

Standard optimisation fails badly and UQ fails as a result:

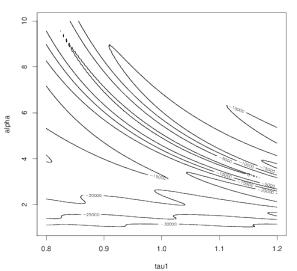




- The optimiser reported it had converged in every case.
- the classical/frequentist approach to statistics is thus almost impossible

Why does this fail?

Likelihood surface assuming known x0



Bayesian approach

Instead of optimizing, we seek to find the Bayesian posterior distribution

$$\pi(\theta|\mathcal{D}) \propto \pi(\theta)\pi(\mathcal{D}|\theta)$$

Bayesian approach

Instead of optimizing, we seek to find the Bayesian posterior distribution

$$\pi(\theta|\mathcal{D}) \propto \pi(\theta)\pi(\mathcal{D}|\theta)$$

Advantages:

- Meaningful uncertainty quantification
- Powerful algorithms exist for finding the posterior
- More realistic philosophical interpretation, e.g., no single 'correct' value assumed or required

Bayesian approach

Instead of optimizing, we seek to find the Bayesian posterior distribution

$$\pi(\theta|\mathcal{D}) \propto \pi(\theta)\pi(\mathcal{D}|\theta)$$

Advantages:

- Meaningful uncertainty quantification
- Powerful algorithms exist for finding the posterior
- More realistic philosophical interpretation, e.g., no single 'correct' value assumed or required

Disadvantages

- Inference algorithms are complex
- Additional modelling decisions needed

MCMC

We've seen already how we can use Markov chain Monte Carlo (MCMC) algorithms to find the posterior distribution $\pi(\theta|\mathcal{D})$

MCMC

We've seen already how we can use Markov chain Monte Carlo (MCMC) algorithms to find the posterior distribution $\pi(\theta|\mathcal{D})$

Simulate a Markov chain, $\theta_1, \theta_2, \theta_3, \ldots$ such that the stationary distribution is $\pi(\theta|\mathcal{D})$

• If currently at θ_n , propose a move to θ'

$$\theta' \sim q(\theta_n, \theta')$$

Accept move with probability

$$r = \frac{\pi(\theta'|\mathcal{D})q(\theta',\theta_n)}{\pi(\theta_n|\mathcal{D})q(\theta_n,\theta')}$$

and set $\theta_{n+1} = \theta'$

Otherwise set $\theta_{n+1} = \theta_n$

MCMC

We've seen already how we can use Markov chain Monte Carlo (MCMC) algorithms to find the posterior distribution $\pi(\theta|\mathcal{D})$

Simulate a Markov chain, $\theta_1, \theta_2, \theta_3, \ldots$ such that the stationary distribution is $\pi(\theta|\mathcal{D})$

• If currently at θ_n , propose a move to θ'

$$\theta' \sim q(\theta_n, \theta')$$

Accept move with probability

$$r = \frac{\pi(\theta'|\mathcal{D})q(\theta',\theta_n)}{\pi(\theta_n|\mathcal{D})q(\theta_n,\theta')}$$

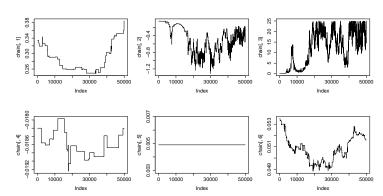
and set $\theta_{n+1} = \theta'$

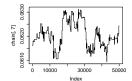
Otherwise set $\theta_{n+1} = \theta_n$

The art is in choosing a good q

No free lunch: poor $q \rightarrow$ poor results

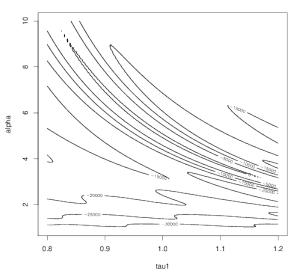
Trace plots can be used to diagnose problems with mixing and convergence



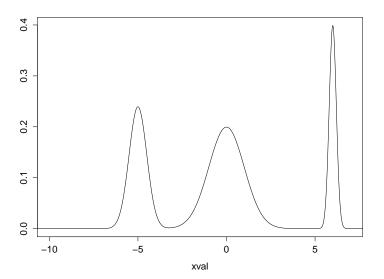


Why is this hard?

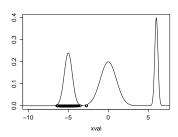
Likelihood surface assuming known x0

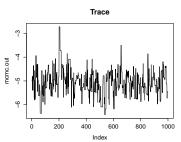


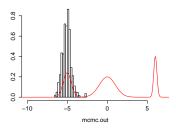
Simple 1d demo



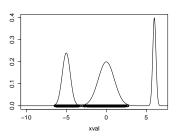
Simple 1d demo

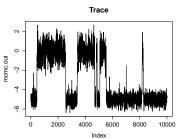


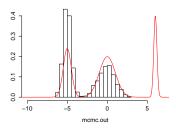




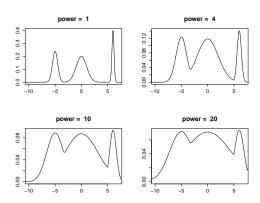
Why is this hard?



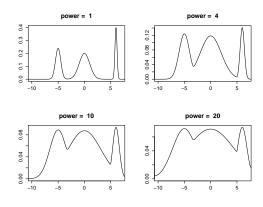




- Heating the likelihood makes it flatter and easier to explore
- Exploring $\pi(\mathcal{D}|\theta)^{\frac{1}{p}}$ with MCMC is easy if p is large. p=1 corresponds to the desired posterior
- Larger powers p are thought of as 'hotter' temperatures

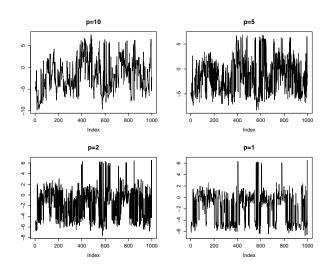


- Heating the likelihood makes it flatter and easier to explore
- Exploring $\pi(\mathcal{D}|\theta)^{\frac{1}{p}}$ with MCMC is easy if p is large. p=1 corresponds to the desired posterior
- Larger powers p are thought of as 'hotter' temperatures

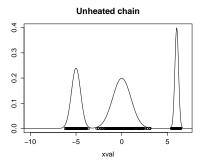


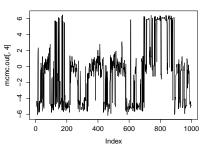
Idea:

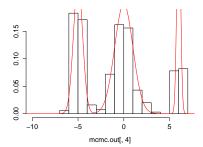
- run multiple MCMC chains some hot and some cold
- propose switches between the chains (maintaining detailed balance)



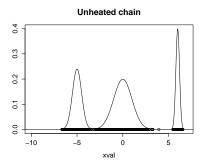
Parallel tempering - untuned

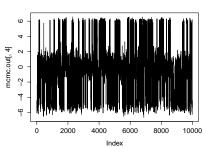


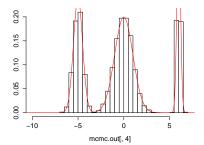


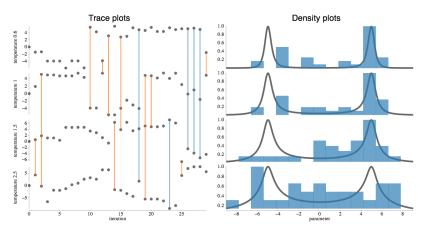


A longer run









https://www.youtube.com/watch?v=J6FrNf5__G0

Boutique proposals, q

The key determinant of whether an MCMC sampler works well or not is the choice of proposal q.

Boutique proposals, q

The key determinant of whether an MCMC sampler works well or not is the choice of proposal q.

In the GUI we have a carefully tuned proposal that combines multiple different moves.

- With probability p_1 we update a single parameter using a Gaussian random walk proposal
- With probability p_2 we update a block of two parameters using a Gaussian random walk
- With probability p_3 we update all 7 parameters
- With probability p_4 we propose a swap between parameter values in chains of different temperatures.

Boutique proposals, q

The key determinant of whether an MCMC sampler works well or not is the choice of proposal q.

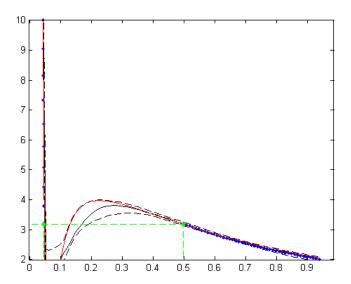
In the GUI we have a carefully tuned proposal that combines multiple different moves.

- ullet With probability p_1 we update a single parameter using a Gaussian random walk proposal
- With probability p_2 we update a block of two parameters using a Gaussian random walk
- With probability p_3 we update all 7 parameters
- With probability p_4 we propose a swap between parameter values in chains of different temperatures.

There are multiple numbers to tune in these proposals:

- The number of different chains and the temperature of each one
- The probabilities of each type of update
- The variance for each type of move, at each temperature

CCS - parallel tempering



Any questions?