Calibrating the UVic climate model using global carbon cycle observations

Richard Wilkinson and Nathan Urban (Princeton)

r.d.wilkinson@nottingham.ac.uk School of Mathematical Sciences University of Nottingham

Open University January 2011

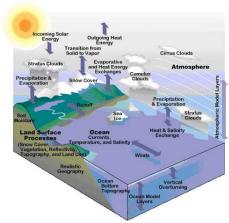
Calibration

The inverse problem

Most models are forwards models, i.e., specify parameters θ and i.c.s and the model $\eta()$ generates output \mathcal{D} . Often, we are interested in the inverse-problem, i.e., observe data, want to estimate parameter values.

Different terminology:

- Calibration
- Data assimilation
- Parameter estimation
- Inverse-problem
- Bayesian inference



Probability (Bayesian) can be used to represent uncertainty.

• Under minimal rationality assumptions, probability can be shown to be the only rational way to represent uncertainty.

Probability (Bayesian) can be used to represent uncertainty.

- Under minimal rationality assumptions, probability can be shown to be the only rational way to represent uncertainty.
- Probability is subjective probability distributions represent degrees of belief of individuals. There is no escaping this interpretation in many applications!

Probability (Bayesian) can be used to represent uncertainty.

- Under minimal rationality assumptions, probability can be shown to be the only rational way to represent uncertainty.
- Probability is subjective probability distributions represent degrees of belief of individuals. There is no escaping this interpretation in many applications!
- All uncertainty quantities θ can be given distributions $\pi(\theta)$ that represent our (an experts?) uncertainty about the value this doesn't mean that they are random quantities, just that we don't know their value.
 - Even unknown functions will be described by probability distributions across a class of unknown functions

Probability (Bayesian) can be used to represent uncertainty.

- Under minimal rationality assumptions, probability can be shown to be the only rational way to represent uncertainty.
- Probability is subjective probability distributions represent degrees of belief of individuals. There is no escaping this interpretation in many applications!
- All uncertainty quantities θ can be given distributions $\pi(\theta)$ that represent our (an experts?) uncertainty about the value this doesn't mean that they are random quantities, just that we don't know their value.
 - Even unknown functions will be described by probability distributions across a class of unknown functions
- Bayesian approach uses the principle of conditionality, and always (where possible) conditions on our data.

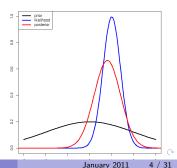
The basic Bayesian approach is to specify

• a prior distribution $\pi(\theta)$ for unknown parameter θ

• a likelihood $\pi(\mathcal{D}|\theta)$

We then aim to find the posterior distribution

$$\pi(\theta \mid \mathcal{D}) = \frac{\pi(\theta)\pi(\mathcal{D} \mid \theta)}{\pi(\mathcal{D})}$$

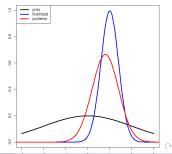


The basic Bayesian approach is to specify

- ullet a prior distribution $\pi(heta)$ for unknown parameter heta
 - ▶ The prior captures our state of knowledge about θ before we see the data or the simulator output.
 - In practice, we're often pragmatic and let $\pi(\theta)$ be a reasonably uninformative distribution over some range of interest.
- ullet a likelihood $\pi(\mathcal{D}|\theta)$

We then aim to find the posterior distribution

$$\pi(\theta \mid \mathcal{D}) = \frac{\pi(\theta)\pi(\mathcal{D} \mid \theta)}{\pi(\mathcal{D})}$$



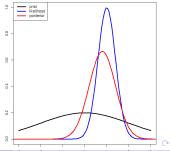
The basic Bayesian approach is to specify

- ullet a prior distribution $\pi(heta)$ for unknown parameter heta
 - ▶ The prior captures our state of knowledge about θ before we see the data or the simulator output.
 - In practice, we're often pragmatic and let $\pi(\theta)$ be a reasonably uninformative distribution over some range of interest.
- a likelihood $\pi(\mathcal{D}|\theta)$
 - ▶ The likelihood is a pdf relating the parameter to the observation.
 - This is complex we must relate the parameter to simulator output, the simulator output to climate, and then climate to the observations.

 More on this later.

We then aim to find the posterior distribution

$$\pi(\theta \mid \mathcal{D}) = \frac{\pi(\theta)\pi(\mathcal{D} \mid \theta)}{\pi(\mathcal{D})}$$



The basic Bayesian approach is to specify

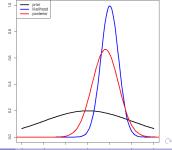
- ullet a prior distribution $\pi(heta)$ for unknown parameter heta
 - ▶ The prior captures our state of knowledge about θ before we see the data or the simulator output.
 - In practice, we're often pragmatic and let $\pi(\theta)$ be a reasonably uninformative distribution over some range of interest.
- a likelihood $\pi(\mathcal{D}|\theta)$
 - ▶ The likelihood is a pdf relating the parameter to the observation.
 - This is complex we must relate the parameter to simulator output, the simulator output to climate, and then climate to the observations.

 More on this later.

We then aim to find the posterior distribution

$$\pi(\theta \mid \mathcal{D}) = \frac{\pi(\theta)\pi(\mathcal{D} \mid \theta)}{\pi(\mathcal{D})}$$

For all but the simplest problems, this calculation is hard!



Reasons why we may want the posterior $\pi(\theta|\mathcal{D})$:

Calibrated prediction

Calibrated sensitivity/uncertainty analysis

Parameter estimation

Reasons why we may want the posterior $\pi(\theta|\mathcal{D})$:

- Calibrated prediction
 - ▶ Suppose we wish to predict \mathcal{D}_f given \mathcal{D}_p , taking account of parametric uncertainty:

$$\pi(\mathcal{D}_f \mid \mathcal{D}_p) = \int \pi(\mathcal{D}_f \mid \theta) \pi(\theta \mid \mathcal{D}_p) \mathrm{d}\theta$$

Calibrated sensitivity/uncertainty analysis

Parameter estimation

Reasons why we may want the posterior $\pi(\theta|\mathcal{D})$:

- Calibrated prediction
 - ▶ Suppose we wish to predict \mathcal{D}_f given \mathcal{D}_p , taking account of parametric uncertainty:

$$\pi(\mathcal{D}_f \mid \mathcal{D}_p) = \int \pi(\mathcal{D}_f \mid \theta) \pi(\theta \mid \mathcal{D}_p) \mathrm{d}\theta$$

- Calibrated sensitivity/uncertainty analysis
 - ► Assign uncertainty in our predictions to various uncertainties in the inputs? If we are given \$X to measure/model some aspect of the climate what would most decrease our uncertainty?
- Parameter estimation

Reasons why we may want the posterior $\pi(\theta|\mathcal{D})$:

- Calibrated prediction
 - ▶ Suppose we wish to predict \mathcal{D}_f given \mathcal{D}_p , taking account of parametric uncertainty:

$$\pi(\mathcal{D}_f \mid \mathcal{D}_p) = \int \pi(\mathcal{D}_f \mid \theta) \pi(\theta \mid \mathcal{D}_p) \mathrm{d}\theta$$

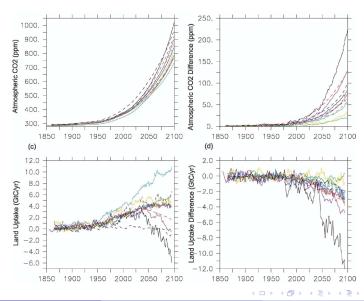
- Calibrated sensitivity/uncertainty analysis
 - ► Assign uncertainty in our predictions to various uncertainties in the inputs? If we are given \$X to measure/model some aspect of the climate what would most decrease our uncertainty?
- Parameter estimation

The amount of care we take on various aspects of the statistical modelling will depend on our aim.

(4日) (部) (注) (注) (注) り(0)

Friedlingstein et al. 2006 - 'uncalibrated' GCM carbon cycle predictions

Climate simulators tend to be 'tuned' rather than calibrated, due to their complexity.



Carbon feedbacks

- Terrestrial ecosystems currently absorb a considerable fraction of anthropogenic carbon emissions.
- However, the fate of this sink is highly uncertain due to insufficient knowledge about key feedbacks.
 - We are uncertain about the sensitivity of soil respiration to increasing global temperature.
 - GCM predictions don't agree on the sign of the net terrestrial carbon flux.

The figure shows inter-model spread in uncalibrated GCM model predictions.

- How much additional spread is there from parametric uncertainty?
 (as opposed to model structural uncertainty?)
- Would calibration reduce the range of the ensemble predictions? Or would it increase our uncertainty?

We can't answer these questions with full GCMs at present, but we can begin to investigate with simplified EMIC models.

UVic Earth System Climate Model

With Nathan Urban, Klaus Keller and group

UVic ESCM is an intermediate complexity model with a general circulation ocean and dynamic/thermodynamic sea-ice components coupled to a simple energy/moisture balance atmosphere. It has a dynamic vegetation and terrestrial carbon cycle model (TRIFFID) as well as an inorganic carbon cycle.

- Inputs: $Q_{10} = \text{soil}$ respiration sensitivity to temperature (carbon source) and $K_c = CO_2$ fertilization of photosynthesis (carbon sink).
- Output: time-series of CO₂ values, cumulative carbon flux measurements, spatial-temporal field of soil carbon measurements.

UVic Earth System Climate Model

With Nathan Urban, Klaus Keller and group

UVic ESCM is an intermediate complexity model with a general circulation ocean and dynamic/thermodynamic sea-ice components coupled to a simple energy/moisture balance atmosphere. It has a dynamic vegetation and terrestrial carbon cycle model (TRIFFID) as well as an inorganic carbon cycle.

- Inputs: $Q_{10} = \text{soil}$ respiration sensitivity to temperature (carbon source) and $K_c = CO_2$ fertilization of photosynthesis (carbon sink).
- Output: time-series of CO₂ values, cumulative carbon flux measurements, spatial-temporal field of soil carbon measurements.

The observational data are limited, and consist of 60 measurements $\mathcal{D}_{\textit{field}}$:

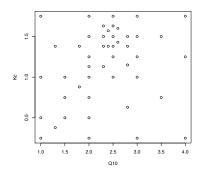
- ullet 40 instrumental ${\rm CO_2}$ measurements from 1960-1999 (from Keeling's Mauna Loa data)
- 17 ice core CO₂ measurements
- 3 cumulative ocean carbon flux measurements

Calibration

The aim is to combine the physics coded into UVic with the empirical observations to learn about the carbon feedbacks.

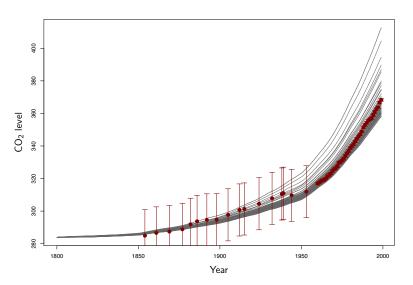
However, UVic takes approximately two weeks to run for a single input configuration. Consequently, all inference must be done from a limited ensemble of model runs.

• 48 member ensemble, grid design D, output \mathcal{D}_{sim} (48 \times n).



- this is overkill for this model - benefit of sequential designs

Model runs and data



Approaches to calibration

There are various approaches used to calibrate models:

- Monte Carlo brute force
- Ad hoc manual tuning
- Component-wise tuning
- Emulation

Only the first and last options can be considered acceptable statistical calibration schemes, and the first option is ruled out if the simulator has a long run time.

The focus here is on emulation.

- See Wilkinson 2010, or Riccuito et al. 2009 for full details on this approach
- See Guillas et al. 2009 or Sanso et al. 2008 for more (challenging and impressive) examples of the emulation of climate simulators.

Code uncertainty

For complex simulators, run times might be long, ruling out brute-force approaches such as Monte Carlo methods.

Code uncertainty

For complex simulators, run times might be long, ruling out brute-force approaches such as Monte Carlo methods.

Consequently, we will only know the simulator output at a finite number of points.

- We call this code uncertainty.
- All inference must be done using a finite ensemble of model runs

$$\mathcal{D}_{sim} = \{(\theta_i, \eta(\theta_i))\}_{i=1,\dots,N}$$

• If θ is not in the ensemble, then we are uncertainty about the value of $\eta(\theta)$.

Code uncertainty

For complex simulators, run times might be long, ruling out brute-force approaches such as Monte Carlo methods.

Consequently, we will only know the simulator output at a finite number of points.

- We call this code uncertainty.
- All inference must be done using a finite ensemble of model runs

$$\mathcal{D}_{sim} = \{(\theta_i, \eta(\theta_i))\}_{i=1,\dots,N}$$

• If θ is not in the ensemble, then we are uncertainty about the value of $\eta(\theta)$.

If θ is multidimensional, then even short run times can rule out brute force approaches

• $\dim(\theta) \in \mathbb{R}^{10}$ then 1000 simulator runs is only enough for one point in each corner of the design space.

The design of computational experiments is an active field in statistics.

Idea: If the simulator is expensive, build a cheap model of it and use this in any analysis.

'a model of the model'

We call this meta-model an emulator of our simulator.

Idea: If the simulator is expensive, build a cheap model of it and use this in any analysis.

'a model of the model'

We call this meta-model an emulator of our simulator.

There are many types of emulator.

- ideally an emulator should come with an assessment of its accuracy
- rather than just predicting $\eta(\theta)$ it should predict $\pi(\eta(\theta)|\mathcal{D}_{sim})$ our uncertainty about the simulator value given the ensemble \mathcal{D}_{sim} .

Gaussian process emulators are most popular choice for emulator. Built using

- an ensemble of model runs $\mathcal{D}_{sim} = \{(\theta_i, \eta(\theta_i))\}_{i=1,...,N}$
- expert opinion about the simulator output.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● ◆○○○

Emulator possibilities

Linear Regression

+ve's:

 v. easy to use and understand

Neural networks

- non-parametric function fitting
- good existing software

Gaussian processes

- non-parametric function fitting
- explicitly incorporates a quantification of uncertainty

Emulator possibilities

Linear Regression

+ve's:

 v. easy to use and understand

-ve's:

- need to specify a parametric form
- error structure is white and ignores information

Neural networks

- non-parametric function fitting
- good existing software

 non-probabilistic implicit
 specification of error (if at all)

Gaussian processes

- non-parametric function fitting
- explicitly incorporates a quantification of uncertainty
- can be difficult to implement
- requires careful user-specified inputs to work well

Gaussian Process Emulators

Gaussian processes provide a flexible nonparametric distributions for our prior beliefs about the functional form of the simulator:

$$\eta(\cdot) \sim GP(m(\cdot), \sigma^2 c(\cdot, \cdot))$$

where $m(\cdot)$ is the prior mean function, and $c(\cdot, \cdot)$ is the prior covariance function (semi-definite).

Gaussian Process Emulators

Gaussian processes provide a flexible nonparametric distributions for our prior beliefs about the functional form of the simulator:

$$\eta(\cdot) \sim GP(m(\cdot), \sigma^2 c(\cdot, \cdot))$$

where $m(\cdot)$ is the prior mean function, and $c(\cdot, \cdot)$ is the prior covariance function (semi-definite).

Definition If $f(\cdot) \sim GP(m(\cdot), c(\cdot, \cdot))$ then for any collection of inputs x_1, \ldots, x_n the vector

$$(f(x_1),\ldots,f(x_n))^T \sim MVN(m(\mathbf{x}),\sigma^2\mathbf{\Sigma})$$

where $\Sigma_{ij} = c(x_i, x_j)$.

Gaussian Process Emulators

Gaussian processes are invariant under Bayesian updating.

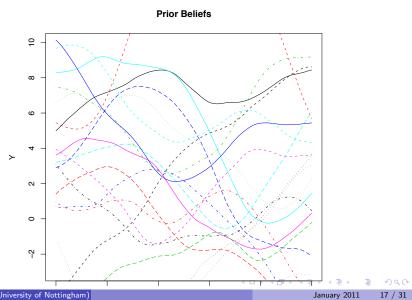
If we observe the ensemble of model runs \mathcal{D}_{sim} , then update our prior belief about η in light of the ensemble of model runs:

$$\eta(\cdot)|\mathcal{D}_{sim} \sim \mathit{GP}(m^*(\cdot), \sigma^2 c^*(\cdot, \cdot))$$

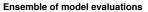
where m^* and c^* are the posterior mean and covariance functions (simple functions of $\mathcal{D}_{\mathrm{sim}}$, m and c).

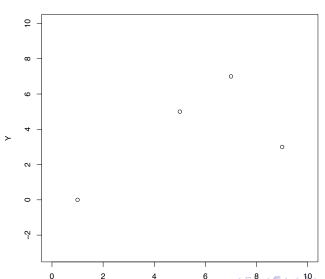
Gaussian Process Illustration

Zero mean



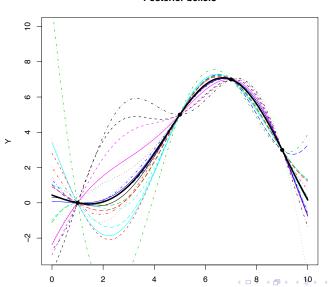
Gaussian Process Illustration





Gaussian Process Illustration

Posterior beliefs



Emulator choices

$$\eta(x) = h(x)\beta + u(x)$$
emulator = mean structure + residual

Emulator choices

$$\eta(x) = h(x)\beta + u(x)$$

emulator = mean structure + residual

u(x) can be taken to be a zero-mean Gaussian process

$$u(\cdot) \sim GP(0, c(\cdot, \cdot))$$

Emulator choices

$$\eta(x) = h(x)\beta + u(x)$$
emulator = mean structure + residual

u(x) can be taken to be a zero-mean Gaussian process

$$u(\cdot) \sim GP(0, c(\cdot, \cdot))$$

Emulator choices:

- mean structure h(x)
 - ▶ $1, x, x^2, ...$, Legendre polynomials?

Emulator choices

$$\eta(x) = h(x)\beta + u(x)$$
emulator = mean structure + residual

u(x) can be taken to be a zero-mean Gaussian process

$$u(\cdot) \sim GP(0, c(\cdot, \cdot))$$

Emulator choices:

- mean structure h(x)
 - ▶ $1, x, x^2, ...$, Legendre polynomials?
- covariance function $c(\cdot, \cdot)$
 - Stationary? Smooth?
 - ► Length-scale?

Multivariate Emulation

Higdon et al. 2008

How can we deal with multivariate ouput?

- Build independent or separable multivariate emulators,
- Outer product emulators,
- Linear model of coregionalization?

Multivariate Emulation

Higdon et al. 2008

How can we deal with multivariate ouput?

- Build independent or separable multivariate emulators,
- Outer product emulators,
- Linear model of coregionalization?

Instead, if the outputs are highly correlated we can reduce the dimension of the data by projecting the data onto some lower dimensional manifold \mathcal{Y}^{pc} .

Multivariate Emulation

Higdon et al. 2008

How can we deal with multivariate ouput?

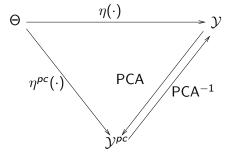
- Build independent or separable multivariate emulators,
- Outer product emulators,
- Linear model of coregionalization?

Instead, if the outputs are highly correlated we can reduce the dimension of the data by projecting the data onto some lower dimensional manifold \mathcal{Y}^{pc} .

We can use any dimension reduction technique as long as

- we can reconstruct to the original output space
- we can quantify the reconstruction error.

We can then emulate the function that maps the input space Θ to the reduced dimensional output space \mathcal{Y}^{pc} , i.e., $\eta_{pc}(\cdot):\Theta\to\mathcal{Y}^{pc}$



It doesn't matter what dimension reduction scheme we use, as long as we can reconstruct from \mathcal{Y}^{pc} and quantify the error in the reconstruction.

Comments

- This approach (PCA emulation) requires that the outputs are highly correlated.
- We are assuming that the output \mathcal{D}_{sim} is really a linear combination of a smaller number of variables,

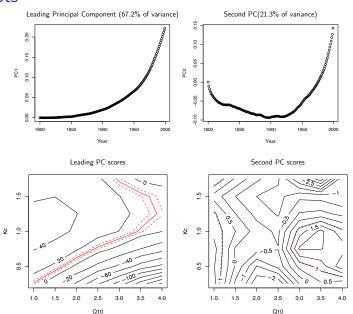
$$\eta(heta) = \mathbf{v}_1 \eta_{
ho c}^1(heta) + \ldots + \mathbf{v}_{
ho^*} \eta_{
ho c}^{
ho^*}(heta)$$

which may be a reasonable assumption in many situations, eg, temporal spatial fields.

- Although PCA is a linear method, the method can be used on highly non-linear models as we are still using non-linear Gaussian processes to map from Θ to \mathcal{Y}^{pc} the linear assumption applied only to the dimension reduction.
- This method accounts for code uncertainty and automatically accounts for the reconstruction error caused by reducing the dimension of the data.

(ロ) 4団 > 4豆 > 4豆 > 豆 り(C)

PC Plots



Diagnostics

Diagnostic checks are vital if we are to trust the use of the emulator in place of the simulator.

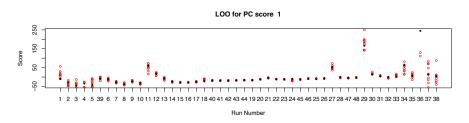
For the PC emulator, we ultimately want to predict the spatial field - so most diagnostic effort should be spent on the reconstructed emulator.

Looking only at the percentage of variance explained by the principal components can be misleading, even if the emulators are perfect, as we can find that PCs that have small eigenvalues (so explain a small amount of variance) can play an important role in prediction.

Leave-one-out (LOA) plots for PC1

Leave-one-out plots are a type of cross-validation to asses whether the final emulator is working well both in terms of the mean prediction, and the uncertainty estimates.

We leave each ensemble member, we leave it out of the training set and build a new emulator. We then predict the left-out ensemble member using the emulator

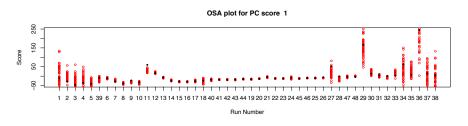


We would like accurate coverage.

One-step-ahead (OSA) plots for PC1

One-step-ahead diagnostics are created by first ordering the ensemble according to one of the input variables, in this case θ_1 . We then train an emulator using only the first n-1 ensemble members, before predicting the nth ensemble member.

One-step-ahead diagnostics primarily test whether the uncertainty estimates of the emulator are accurate. Because the size of the ensemble grows, we can check more easily whether the length-scale and covariance structure of the emulator are satisfactory.



Calibration Framework

Assume that reality $\zeta(t)$ is the computer model run at the 'true' value of the parameter $\hat{\theta}$ plus model error:

$$\zeta(t) = \eta(t, \hat{\theta}) + \delta(t)$$

Calibration Framework

Assume that reality $\zeta(t)$ is the computer model run at the 'true' value of the parameter $\hat{\theta}$ plus model error:

$$\zeta(t) = \eta(t, \hat{\theta}) + \delta(t)$$

We observe reality plus noise:

$$\mathcal{D}_{field}(t) = \zeta(t) + \epsilon(t)$$

so that

$$\mathcal{D}_{\textit{field}}(t) = \eta(t, \hat{ heta}) + \delta(t) + \epsilon(t).$$

Calibration Framework

Assume that reality $\zeta(t)$ is the computer model run at the 'true' value of the parameter $\hat{\theta}$ plus model error:

$$\zeta(t) = \eta(t, \hat{\theta}) + \delta(t)$$

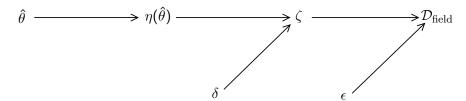
We observe reality plus noise:

$$\mathcal{D}_{field}(t) = \zeta(t) + \epsilon(t)$$

so that

$$\mathcal{D}_{\textit{field}}(t) = \eta(t,\hat{ heta}) + \delta(t) + \epsilon(t).$$

We then aim to find $\pi(\hat{\theta}|\mathcal{D}_{sim}, \mathcal{D}_{field})$.



◆ロ → ◆個 → ◆ 意 → ◆ 意 → りへで

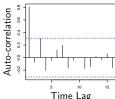
Model Discrepancy

The calibration framework used is:

$$\mathcal{D}_{\textit{field}}(t) = \eta(\theta, t) + \delta(t) + \epsilon(t)$$

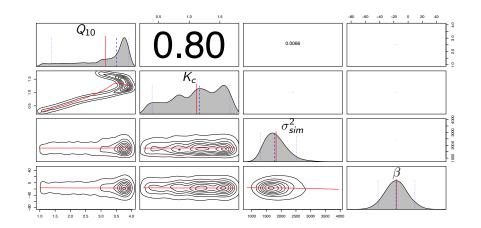
The model predicts the underlying trend, but real climate fluctuates around this. We model

- discrepancy as an AR1 process: $\delta(0) \sim N(0, \sigma_{\delta}^2)$, and $\delta(t) = \rho \delta(t-1) + N(0, \sigma_{\delta}^2)$.
- Measurement error as heteroscedastic independent random noise $\epsilon(t) \sim N(0, \lambda(t))$.



Once we have specified all these choices, we can then find the posterior using an MCMC scheme.

Results



Conclusions

- For highly correlated multivariate output, principal component emulation can work well and is computationally cheap and easy to implement.
- A large number of output dimensions can be reduced to a smaller number of principal component scores which can then be emulated, accounting for any error in the compression.
- Given the model, forcing data, constraints and uniform priors, we cannot precisely constrain the two parameters K_c and Q_{10} there is a ridge of values all of which are well supported by the data.
- Acceptable parameter combinations produce similar responses of the carbon cycle during the years 1800-1999 but produce divergent future predictions!