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Computer experiments
Baker 1977 (Science):

‘Computerese is the new lingua franca of science’

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality? (model error)

how do we estimate tunable parameters?

how do we deal with computational constraints?

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors? (UQ)

There is an inherent a lack of quantitative information about the
uncertainty surrounding a simulation - unlike in physical experiments.



Calibration
Focus on simulator calibration:

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .
We are interested in the inverse-problem, i.e., observe data D, want
to estimate parameter values θ which explain the data.

For Bayesians, this is a
question of finding the
posterior distribution

π(θ|D)
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Genetic estimates of the primate divergence time are approximately
80-100 mya:

A direct reading of the fossil record suggests a primate divergence
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The date has consequences for human-chimp divergence, primate and
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Reconciling molecular and fossil records?
Molecules vs morphology

Genetic estimates of the primate divergence time are approximately
80-100 mya:

◮ Uses dna from extant primates, along with the concept of a molecular
clock, to estimate the time needed for the genetic diversification.

◮ Calibrating the molecular clock relies on other fossil evidence to date
other nodes in the mammalian tree.

◮ Dates the time of geographic separation
A direct reading of the fossil record suggests a primate divergence
time of 60-65 mya:

◮ The fossil record, especially for primates, is poor.
◮ Fossil evidence can only provide a lower bound on the age.
◮ Dates the appearance of morphological differences.
◮ Prevailing view: the first appearance of a species in the fossil record is

”... accepted as more nearly objective and basic than opinions as to
the time when the group really originated”, Simpson, 1965.

◮ Oldest primate fossil is 55 million years old.

The date has consequences for human-chimp divergence, primate and
dinosaur coexistence etc.



Why is this difficult?



Data

Epoch k Time at base Primate fossil Anthropoid fossil
of Interval k counts (Dk) counts (Sk)

Extant 0 0 376 281
Late-Pleistocene 1 0.15 22 22
Middle-Pleistocene 2 0.9 28 28
Early-Pleistocene 3 1.8 30 30
Late-Pliocene 4 3.6 43 40
Early-Pliocene 5 5.3 12 11
Late-Miocene 6 11.2 38 34
Middle-Miocene 7 16.4 46 43
Early-Miocene 8 23.8 34 28
Late-Oligocene 9 28.5 3 2
Early-Oligocene 10 33.7 22 6
Late-Eocene 11 37.0 30 2
Middle-Eocene 12 49.0 119 0
Early-Eocene 13 54.8 65
Pre-Eocene 14 0

The oldest primate fossil is 54.8 million years old.



Forwards modelling approach
Assume the primates diverged 54.8 + τ million years ago.
Build a forwards model of evolution
Simulate fossil finds
Use ABC to estimate posterior of τ
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Details and results in Wilkinson et al. 2011, Sys. Bio.
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Statistical inference

Three parts of inference:

1 Modelling
◮ Simulator - generative model
◮ Statistical model - priors on unknown parameters, observation error on

the data, simulator error (or a perfect model hypothesis)

2 Inferential framework - Bayesian:

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝ prior × likelihood

Note: the posterior depends on all of the modelling choices

3 Statistical computation - remains hard even with increased
computational resource

The existence of model error can make the specification of both the prior
and likelihood challenging.

- parameter names may mislead



Calibration framework

π(D|θ) is not just the simulator likelihood function.

Common way of thinking:

Relate the best-simulator run (X = f (θ̂)) to reality ζ

Relate reality ζ to the observations D.

θ̂ f (θ̂) ζ D

simulator error measurement error

See, for example, Kennedy and O’Hagan (2001, Ser. B) or Goldstein and
Rougier (2009, JSPI).



Calibration framework
Mathematically, we can write the likelihood as

π(D|θ) =

∫

π(D|x)π(x |θ)dx

where

π(D|x) is a pdf relating the simulator output to reality - call it the
acceptance kernel.
π(x |θ) is the likelihood function of the simulator (ie not relating to
reality)

The posterior is

π(θ|D) =
1

Z

∫

π(D|x)π(x |θ)dx. π(θ)

where Z =
∫∫

π(D|x)π(x |θ)dxπ(θ)dθ



Calibration framework
Mathematically, we can write the likelihood as

π(D|θ) =

∫

π(D|x)π(x |θ)dx

where

π(D|x) is a pdf relating the simulator output to reality - call it the
acceptance kernel.
π(x |θ) is the likelihood function of the simulator (ie not relating to
reality)

The posterior is

π(θ|D) =
1

Z

∫

π(D|x)π(x |θ)dx. π(θ)

where Z =
∫∫

π(D|x)π(x |θ)dxπ(θ)dθ

To simplify matters, we can work in joint (θ, x) space

π(θ, x |D) =
π(D|x)π(x |θ)π(θ)

Z

NB: we can allow π(D|X ) to depend on (part of) θ.
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How do we relate the simulator to reality?

1 Measurement error - D = ζ + e - let π(D|X ) = π(D − X ) be the
distribution of measurement error e (with no model error ζ = X ).



Acceptance Kernel - π(D|x)
How do we relate the simulator to reality?

1 Measurement error - D = ζ + e - let π(D|X ) = π(D − X ) be the
distribution of measurement error e (with no model error ζ = X ).

The number of extant primates is uncertain:

Martin (1993) listed 235 primate species

Groves (2005) listed 376 primate species

Wikipedia yesterday listed 424 species (inc. the GoldenPalace.com
monkey)

On top of this, there is uncertainty regarding

whether a bone fragment represents a new species, e.g., homo
floresiensis (the hobbit man), or a microcephalic human

whether two bone fragments represent the same species

which epoch the species should be assigned to.

....

Our model only includes sampling variation.



Acceptance Kernel - π(D|x)

How do we relate the simulator to reality?

2 Model error - ζ = f (θ) + ǫ - let π(D|X ) = π(D − X ) be the
distribution of the model error ǫ (with no measurement error D = ζ).



Acceptance Kernel - π(D|x)

How do we relate the simulator to reality?

2 Model error - ζ = f (θ) + ǫ - let π(D|X ) = π(D − X ) be the
distribution of the model error ǫ (with no measurement error D = ζ).

Our model of evolution inevitably involves numerous subjective
assumptions. Some of these we judge to be less important.

Binary trees

Splitting rather than budding

Memoryless age distribution

Other assumptions are potentially more problematic: we didn’t include

Paleocene-Eocene Thermal Maximum

Warming in the mid-miocene

Small mass-extinction events in the Cenozoic (we did include K-T
crash)



Acceptance Kernel - π(D|x)
Usually we have model and measurement error, so π(D|x) is a
convolution of the two distributions (simple if both distributions are
Gaussian, otherwise add another auxilliary variable).

How do we relate the simulator to reality?

3 Sampling of a hidden space - often the data D are simple noisy
observations of some latent feature (call it X ), which itself is generated
by a stochastic process. By removing the stochastic sampling from the
simulator we can let π(D|x) do the sampling for us
(Rao-Blackwellisation).
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Acceptance Kernel - π(D|x)
Usually we have model and measurement error, so π(D|x) is a
convolution of the two distributions (simple if both distributions are
Gaussian, otherwise add another auxilliary variable).

How do we relate the simulator to reality?

3 Sampling of a hidden space - often the data D are simple noisy
observations of some latent feature (call it X ), which itself is generated
by a stochastic process. By removing the stochastic sampling from the
simulator we can let π(D|x) do the sampling for us
(Rao-Blackwellisation).

For the primate example,

speciation is modelled by a complex branching process – intractable
likelihood

fossil discovery by a simple statistical model (binomial, Poisson etc)
– tractable likelihood

So we can let X be the branching process, D the sampled processs, and
let π(D|X ) be the fossil discovery model.



Approximate Bayesian Computation (ABC)

Approximate Bayesian computation (ABC) algorithms are a collection of
Monte Carlo algorithms used for calibrating simulators

they do not require explicit knowledge of the likelihood function
π(x |θ)

instead, inference is done using simulation from the model
(consequently they are sometimes called ‘likelihood-free’).

ABC methods have become popular in the biological sciences.

Although their current statistical incarnation originates from a 1999 paper
(Pritchard et al. ), or 1997, or ... etc, heuristic versions of the algorithm
exist in most modelling communities.



Uniform Approximate Bayesian Computation Algorithms

Uniform ABC

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ δ

For reasons that will become clear later, call this Uniform ABC.



Uniform Approximate Bayesian Computation Algorithms

Uniform ABC

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ δ

For reasons that will become clear later, call this Uniform ABC.

As δ → ∞, we get observations from the prior, π(θ).

If δ = 0, we generate observations from π(θ | D, PMH) (where PMH
= perfect model hypothesis - no model or measurement error unless
it is simulated).

δ reflects the tension between computability and accuracy.
The distribution obtained from ABC is usually denoted

π(θ|ρ(D,X ) ≤ δ)

The hope is that π(θ|ρ(D,X ) ≤ δ) ≈ π(θ|D, PMH) for δ small.



How does ABC relate to calibration?
Wilkinson 2008 and forthcoming

Consider how this relates to the calibration framework outlined earlier:

πABC (θ, x) := π(θ, x |D) =
π(D|x)π(x |θ)π(θ)

Z

Lets sample from this using the rejection algorithm with instrumental
distribution

g(θ, x) = π(x |θ)π(θ)

Note: supp(πABC ) ⊆ supp(g) and that there exists a constant

M = maxx π(D|X )
Z

such that

πABC (θ, x) ≤ Mg(θ, x) ∀ (θ, x)



Generalized ABC (GABC)
The rejection algorithm then becomes

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ) (ie (θ,X ) ∼ g(·))
2 Accept (θ,X ) if

U ∼ U[0, 1] ≤ πABC (θ, x)

Mg(θ, x)
=

π(D|X )

maxx π(D|x)



Generalized ABC (GABC)
The rejection algorithm then becomes

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ) (ie (θ,X ) ∼ g(·))
2 Accept (θ,X ) if

U ∼ U[0, 1] ≤ πABC (θ, x)

Mg(θ, x)
=

π(D|X )

maxx π(D|x)

In uniform ABC we take

π(D|X ) =

{

1 if ρ(D,X ) ≤ δ

0 otherwise

this reduces the algorithm to

2’ Accept θ ifF ρ(D,X ) ≤ δ

ie, we recover the uniform ABC algorithm.



Uniform ABC algorithm

This allows us to interpret uniform ABC. Suppose X ,D ∈ R

Proposition

Accepted θ from the uniform ABC algorithm (with ρ(D,X ) = |D − X |)
are samples from the posterior distribution of θ given D where we assume
D = f (θ) + ǫ and that

ǫ ∼ U[−δ, δ]

In general, uniform ABC assumes that

D|x ∼ U{d : ρ(d , x) ≤ δ}

We can think of this as assuming a uniform error term when we relate the
simulator to the observations.



Uniform ABC algorithm

This allows us to interpret uniform ABC. Suppose X ,D ∈ R

Proposition

Accepted θ from the uniform ABC algorithm (with ρ(D,X ) = |D − X |)
are samples from the posterior distribution of θ given D where we assume
D = f (θ) + ǫ and that

ǫ ∼ U[−δ, δ]

In general, uniform ABC assumes that

D|x ∼ U{d : ρ(d , x) ≤ δ}

We can think of this as assuming a uniform error term when we relate the
simulator to the observations.

ABC gives ‘exact’ inference under a different model!



Advantages of GABC

GABC

allows us to make the inference we want to make
◮ - makes explicit the assumptions about the relationship between

simulator and observations.

allows for the possibility of more efficient ABC algorithms
◮ - the 0-1 uniform cut-off is less flexible and forgiving than using

generalised kernels for π(D|X )

allows for new ABC algorithms, as (non-trivial) importance sampling
algorithms are now possible.

allows us to interpret the results of ABC



Importance sampling GABC
In uniform ABC, importance sampling simply reduces to the rejection
algorithm with a fixed budget for the number of simulator runs.

But for GABC it opens new algorithms:

GABC - Importance sampling

1 θi ∼ π(θ) and Xi ∼ π(x |θi ).

2 Give (θi , xi ) weight wi = π(D|xi ).



Importance sampling GABC
In uniform ABC, importance sampling simply reduces to the rejection
algorithm with a fixed budget for the number of simulator runs.

But for GABC it opens new algorithms:

GABC - Importance sampling

1 θi ∼ π(θ) and Xi ∼ π(x |θi ).

2 Give (θi , xi ) weight wi = π(D|xi ).

Which is more efficient - IS-GABC or Rej-GABC?

Proposition 2

IS-GABC has a larger effective sample size than Rej-GABC, or equivalently

VarRej(w) ≥ VarIS(w)

which is a Rao-Blackwell type result.
This allows us to see Beaumont et al. 2002 as using weighted averages
with a partial rejection control to estimate posterior integrals (different
rationale)



Rejection Control (RC)
A difficulty with IS algorithms is that they can require the storage of a
large number of particles with small weights.

A solution is to thin particles with small weights using rejection control:

Rejection Control in IS-GABC

1 θi ∼ π(θ) and Xi ∼ π(X |θi )

2 Accept (θi ,Xi ) with probability

r(Xi ) = min

(

1,
π(D|Xi)

C

)

for any threshold constant C ≥ 0.

3 Give accepted particles weights

wi = max(π(D|Xi),C )

IS is more efficient than RC, unless we have memory constraints (relative
to processor time). Note that for uniform-ABC, RC is pointless.



Sequential GABC algorithms
The three early sequential ABC algorithms proposed (Sisson et al. (2007),
Beaumont et al. (2009), Toni et al. (2008)) can all be seen to be a
special case of the sequential GABC algorithm, with different
implementation choices.

Specify a sequence of target distributions

πn(θ, x) =
πn(D|x)π(x |θ)π(θ)

Cn

=
γn(θ, x)

Cn

where πn(D|x) has decreasing variance (corresponding to decreasing
tolerance δ in uniform SMC-ABC).



Sequential GABC algorithms
The three early sequential ABC algorithms proposed (Sisson et al. (2007),
Beaumont et al. (2009), Toni et al. (2008)) can all be seen to be a
special case of the sequential GABC algorithm, with different
implementation choices.

Specify a sequence of target distributions

πn(θ, x) =
πn(D|x)π(x |θ)π(θ)

Cn

=
γn(θ, x)

Cn

where πn(D|x) has decreasing variance (corresponding to decreasing
tolerance δ in uniform SMC-ABC).

At each stage n, we aim to construct a weighted sample of particles that
approximates πn(θ, x).

{(

z
(i)
n ,W

(i)
n

)}N

i=1
such that πn(z) ≈

∑

W
(i)
n δ

z
(i)
n

(dz)

where z
(i)
n = (θ

(i)
n , x

(i)
n ).



Sequential Monte Carlo (SMC)
If at stage n we use proposal distribution ηn(z) for the particles, then we
create the weighted sample as follows:

Generic Sequential Monte Carlo (with PRC) - stage n

(i) For i = 1, . . . ,N

(a) Sample: Z ∗ ∼ ηn(z)
(b) Weight: correct between ηn and πn

w∗(Z ∗) =
γn(Z

∗)

ηn(Z ∗)

(c) PRC: Accept z∗ with probability min(1, w∗

cn
). If accepted set z

(i)
n = z∗∗

and set w
(i)
n = max(w∗, cn). Otherwise return to (a).

(ii) Normalize to find weights {W (i)
n }.

(iii) If effective sample size (ESS) is less than some threshold T,

resample the particles and set W
(i)
n = 1/N. Set n = n + 1.

Q: How do we build a sequence of proposals ηn?



Del Moral et al. SMC algorithm

We can build the proposal distribution ηn(z), from the particles available
at time n − 1.

One way to do this is to propose new particles by passing the old particles
through a Markov kernel Kn(z , z ′).

For i = 1, . . . ,N

z
(i)
n ∼ Kn(z

(i)
n−1, ·)

This makes ηn(z) =
∫

ηn−1(z
′)Kn(z

′, z)dz
′ – which is unknown in general.

Del Moral et al. showed how to avoid this problem by introducing a
sequence of backward kernels, Ln−1.



GABC versions of SMC

We need to choose

Sequence of targets πn

Forward perturbation kernels Kn

Backward kernels Ln

Thresholds ci .

Del Moral et al. showed that the optimum choice for the backward
kernels is

Lopt
k−1(zk , zk−1) =

ηk−1(zk−1)Kk(zk−1, zk)

ηk(zk)

This isn’t available, but the choice should be made to approximate Lopt .



Uniform SMC-ABC
By making particular choices for these quantities we can recover all
previously published sequential ABC samplers. For example,

let πn be the uniform ABC target using δn,

πn(D|X ) =

{

1 if ρ(D,X ) ≤ δn

0 otherwise

let Kn(z , z ′) = Kn(θ, θ′)π(x ′|θ)
let c1 = 1 and cn = 0 for n ≥ 2
let

Ln−1(zn, zn−1) =
πn−1(zn−1)Kn(zn−1, zn)

πn−1Kn(zn)

and approximate πn−1Kn(z) =
∫

πn−1(z
′)Kn(z

′, z)dz
′ by

πn−1Kn(z) ≈
∑

j

W
(j)
n−1Kn(z

(j)
n−1, z)

then the algorithm reduces to Beaumont et al. We recover the Sisson
errata algorithm if we add in a further (unnecessary) resampling step.
Toni et al. is recovered by including a compulsory resampling step.



SMC-GABC
The use of generalised acceptance kernels (rather than uniform) opens up
several new possibilies. The direct generalised analogue of previous
uniform SMC algorithms is

SMC-GABC

(i) For i = 1, . . . ,N

(a) Sample θ∗ from {θ(i)
n−1} according to weights W

(i)
n−1.

(b) Perturb:

θ∗∗ ∼ Kn(θ
∗, ·)

x∗∗ ∼ π(x |θ∗∗)

w∗ =
πn(D|x∗∗)π(θ∗∗)

∑

j W
(j)
n−1Kn(θ

(j)
n−1, θ

∗∗)
(1)

(c) PRC: Accept (θ∗∗, x∗∗) with probability min(1, w∗

cn
). If accepted set

z
(i)
n = (θ∗∗, x∗∗) and set w

(i)
n = max(w∗, cn). Otherwise return to (a).

(ii) Normalise the weights to get W
(i)
n .



SMC-GABC

Note that unlike in uniform ABC, using partial rejection control isn’t
necessary (the number of particles in uniform ABC would decrease in each
step). Without PRC we would need to resample manually as before,
according to some criteria (ESS< T say).

Note also that we could modify this algorithm to keep sampling until the
effective sample size of the new population is at least as large as some
threshold value, N say.



Other sequential GABC algorithms

This is only one particular form of sequential GABC algorithm which
arises as a consequence of using

Ln−1(zn, zn−1) =
πn−1(zn−1)Kn(zn−1, zn)

πn−1Kn(zn)

If we use a πn invariant Metropolis-Hastings kernel Kn and let

Ln−1(zn, zn−1) =
πn(zn−1)Kn(zn−1, zn)

πn(zn)

then we get a new algorithm - a GABC Resample-Move (?) algorithm.



Approximate Resample-Move (with PRC)

RM-GABC

(i) While ESS < N

(a) Sample z∗ = (θ∗, X ∗) from {z(i)
n−1} according to weights W

(i)
n−1.

(b) Weight:

w∗ = w̃n(X
∗) =

πn(D|X ∗)

πn−1(D|X ∗)

(c) PRC: With probability min(1, w∗

cn
), sample

z(i)
n ∼ Kn(z

∗, ·)

where Kn is an MH kernel with invariant distribution πn. Set i = i + 1.
Otherwise, return to (i)(a).

(ii) Normalise the weights to get W
(i)
n . Set n = n + 1

Note that because the incremental weights are independent of zn we are
able to swap the perturbation and PRC steps.



Approximate RM

This algorithm is only likely to work well when πn ≈ πn−1

For ABC type algorithms we can make sure this is the case by reducing
the variance of πn(D|X ) slowly.

Notice that because the algorithm weights the particles with the new
weight before deciding what to propogate forwards, we can potentially
save on the number of simulator evaluations that are required.

Another advantage is that the weight is of a much simpler form, whereas
previously we had an O(N2) operation at every iteration

w∗ =
πn(D|x∗∗)π(θ∗∗)

∑

j W
(j)
n−1Kn(θ

(j)
n−1, θ

∗∗)

(this is unlikely to be a concern unless the simulator is very quick).

A potential disadvantage is that the RM algorithm is more prone to
degeneracy than the other SMC algorithms.



A quick note on summaries
ABC algorithms often include the use of summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(S(D),S(X )) < δ

Considerable research effort has focused on automated methods to choose
good summaries (sufficiency is not typically achievable) - great if X is
some fairly homogenous field of output which we expect the model to
reproduce well. Less useful if X is a large collection of different quantities.

Instead ask, what aspects of the data do we expect our model to be able
to reproduce? And with what degree of accuracy? S(D) may be highly
informative about θ, but if the model was not built to reproduce S(D)
then why should we calibrate to it?

e.g. using phase sensitive summaries in dynamical models causes problems



Noisy-ABC

Fearnhead and Prangle (2012) recently suggested a noisy-ABC algorithm:

Noisy-ABC

Initialise: Let D ′ = D + e where e ∼ K (e) from some kernel K (·).
1 θi ∼ π(θ) and Xi ∼ π(x |θi ).

2 Give (θi , xi ) weight wi = K (Xi − D ′).

In my notation, this replaces the obsevered data D, with D ′ drawn from
the acceptance kernel - D ′ ∼ π(D ′|D)

If we believe π(D|X ) relates the simulator to reality, then noisy-ABC is
equivalent to adding another dose of measurement/model error to your
data and using that in the inference.

The main argument in favour of noisy-ABC is that it is calibrated, unlike
standard ABC.



Calibration

Calibration is a way of assessing probability statements against some idea
of truth, a base measure P.

Truth is usually taken to be reality

We are well-calibrated if p% of all predictions reported at probability
p are true. Idea goes back at least to Dawid (1984).
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Calibration is a way of assessing probability statements against some idea
of truth, a base measure P.

Truth is usually taken to be reality

We are well-calibrated if p% of all predictions reported at probability
p are true. Idea goes back at least to Dawid (1984).

Calibration is a difficult idea for Bayesians (subjectivists), even when
P is reality’s measure.

◮ Seidenfeld (1985) wrote

‘Calibration in the long run is otiose, and in the short
run is an inducement to hedging’.

Calibration, when P is reality, is a desirable frequency property to possess,
but Bayesian’s should beware of consciously aiming for it.



Calibration
The definition of calibration used in FP is superficially similar:

PABC is well calibrated if

P(θ ∈ A|Eq(A)) = q

where Eq(A) is the event that the ABC posterior assigns probability
q to event A
i.e., given that A is an event assigned probability q by PABC , then we
are calibrated if A occurs with probability q according to base
measure P.



Calibration
The definition of calibration used in FP is superficially similar:

PABC is well calibrated if

P(θ ∈ A|Eq(A)) = q

where Eq(A) is the event that the ABC posterior assigns probability
q to event A
i.e., given that A is an event assigned probability q by PABC , then we
are calibrated if A occurs with probability q according to base
measure P.

The difference with the standard definition, is the definition of the
base-measure, P. In FP’s definition:

P does not represent reality.
It is defined by the prior, simulator, and summary used.

◮ i.e., this definition of calibration ensures you are calibrated against
your own beliefs.

◮ The prior is calibrated under this definition.

Further, noisy-ABC is calibrated only if we repeated the analysis with
multiple noisy datasets.



Conclusions
Approximate Bayesian Computation gives exact inference for the wrong
model.

To move beyond inference conditioned on a perfect model
hypothesis, we should account for model error.
ABC algorithms can be considered as adding additional variability on
to the model outputs.
We can generalise ABC algorithms to move beyond the use of
uniform error structures and use the added variation to include
information about the error on the data and in the model.
Relating simulators to reality is hard, even with expert knowledge.
However, most modellers have beliefs about where their simulator is
accurate, and where it is not.
If done wisely, ABC can be viewed not as an approximate form of
Bayesian inference, but instead as coming closer to the inference we
want to do.



Conclusions
Approximate Bayesian Computation gives exact inference for the wrong
model.

To move beyond inference conditioned on a perfect model
hypothesis, we should account for model error.
ABC algorithms can be considered as adding additional variability on
to the model outputs.
We can generalise ABC algorithms to move beyond the use of
uniform error structures and use the added variation to include
information about the error on the data and in the model.
Relating simulators to reality is hard, even with expert knowledge.
However, most modellers have beliefs about where their simulator is
accurate, and where it is not.
If done wisely, ABC can be viewed not as an approximate form of
Bayesian inference, but instead as coming closer to the inference we
want to do.

Thank you for listening!



MCMC-GABC

We can also write down a Metropolis-Hastings kernel for exploring
parameter space, generalising the uniform MCMC-ABC algorithm of
Marjoram et al. (2003)

To explore the (θ, x) space, proposals of the form

Q((θ, x), (θ′, x ′)) = q(θ, θ′)π(x ′|θ′)

seem to be inevitable (q arbitrary).

See Wilkinson 2008 (and forthcoming) for details.



Del Moral et al. SMC algorithm - step n

(i) Propagate: Extend the particle paths using Markov kernel Kn.

For i = 1, . . . ,N, Z
(i)
n ∼ Kn(z

(i)
n−1, ·)

(ii) Weight: Correct between ηn(z0:n) and π̃n(z0:n). For i = 1, . . . ,N

wn(z
(i)
0:n) =

γ̃n(z
(i)
0:n)

ηn(z
(i)
0:n)

(2)

= Wn−1(z
(i)
0:n−1)w̃n(z

(i)
n−1, z

(i)
n ) (3)

where

w̃n(z
(i)
n−1, z

(i)
n ) =

γn(z
(i)
n )Ln−1(z

(i)
n , z

(i)
n−1)

γn−1(z
(i)
n−1)Kn(z

(i)
n−1, z

(i)
n )

(4)

is the incremental weight.

(iii) Normalise the weights to obtain {W (i)
n }.

(iv) Resample if ESS< T and set W
(i)
n = 1/N for all i . Set n = n + 1.



SMC with partial rejection control (PRC)

We can add in the rejection control idea of Liu

Del Moral SMC algorithm with Partial Rejection Control - step n

(i) For i = 1, . . . ,N

(a) Sample z∗ from {z(i)
n−1} according to weights W

(i)
n−1.

(b) Perturb:
z∗∗ ∼ Kn(z

∗, ·)

(c) Weight

w∗ =
γn(z

(i)
n )Ln−1(z

(i)
n , z

(i)
n−1)

γn−1(z
(i)
n−1)Kn(z

(i)
n−1, z

(i)
n )

(d) PRC: Accept z∗ with probability min(1, w∗

cn
). If accepted set z

(i)
n = z∗∗

and set w
(i)
n = max(w∗, cn). Otherwise return to (a).

(ii) Normalise the weights to get W
(i)
n .
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Reconciling molecular and fossil records?
Molecules vs morphology

Genetic estimates of the primate divergence time are approximately
80-100 mya:

◮ Uses dna from extant primates, along with the concept of a molecular
clock, to estimate the time needed for the genetic diversification.

◮ Calibrating the molecular clock relies on other fossil evidence to date
other nodes in the mammalian tree.

◮ Dates the time of geographic separation
A direct reading of the fossil record suggests a primate divergence
time of 60-65 mya:

◮ The fossil record, especially for primates, is poor.
◮ Fossil evidence can only provide a lower bound on the age.
◮ Dates the appearance of morphological differences.
◮ Prevailing view: the first appearance of a species in the fossil record is

”... accepted as more nearly objective and basic than opinions as to
the time when the group really originated”, Simpson, 1965.

◮ Oldest primate fossil is 55 million years old.

The date has consequences for human-chimp divergence, primate and
dinosaur coexistence etc.



Why is this difficult?
Non-repeatable event



Data
Robert Martin (Chicago) and Christophe Soligo (UCL)

Epoch k Time at base Primate fossil Anthropoid fossil
of Interval k counts (Dk) counts (Sk)

Extant 0 0 376 281
Late-Pleistocene 1 0.15 22 22
Middle-Pleistocene 2 0.9 28 28
Early-Pleistocene 3 1.8 30 30
Late-Pliocene 4 3.6 43 40
Early-Pliocene 5 5.3 12 11
Late-Miocene 6 11.2 38 34
Middle-Miocene 7 16.4 46 43
Early-Miocene 8 23.8 34 28
Late-Oligocene 9 28.5 3 2
Early-Oligocene 10 33.7 22 6
Late-Eocene 11 37.0 30 2
Middle-Eocene 12 49.0 119 0
Early-Eocene 13 54.8 65
Pre-Eocene 14 0

The oldest primate fossil is 54.8 million years old.

The oldest anthropoid fossil is 37 million years old.



Speciation

0T1T2T3T4T5T τ

An inhomogeneous binary Markov branching process used to model
evolution:

Assume each species lives for a random period of time
σ ∼ Exponential(λ)

Specify the offspring distribution; if a species dies at time t replace it
by Lt new species where P(Lt = 0) = p0(t), P(Lt = 2) = p2(t).



Offspring distribution
If a species dies at time t replace it by Lt new species where
P(Lt = 0) = p0(t), P(Lt = 2) = p2(t).

Determine the offspring probabilities by fixing the expected
population growth E(Z (t)) = f (t;λ) and using the fact that

E(Z (t) = n|Z (0) = 2) = 2 exp

(

λ

∫ t

0
(m(u) − 1)du

)

where m(u) = ELu.

For example, assume logistic
growth and set

EZ (t) =
2

γ + (1 − γ) exp(−ρt)

Treat γ and ρ as unknown
parameters and infer them in
the subsequent analysis. 0 10 20 30 40 50 60
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Fossil Find Model

Recall that time is split into geologic epochs. We have two different
models for the number of fossils found in each epoch {Di}, given an
evolutionary tree T .



Fossil Find Model

Recall that time is split into geologic epochs. We have two different
models for the number of fossils found in each epoch {Di}, given an
evolutionary tree T .

Binomial Model: each species that is extant for any time in epoch i
has a probability αi of being preserved as a fossil. So that

P(Di |T ) = Bin(Ni , αi )

where Ni = no. species alive during epoch i



Specify the divergence time

Assume

the primates diverged 54.8 + τ million years ago.
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Prior Distributions

We give all parameters prior distributions:

Temporal gaps between the oldest fossil and the root of the primate
and anthropoid trees τ ∼ U[0, 100] and τ∗ ∼ U[0, 100].

Expected life duration of each species 1/λ ∼ U[2, 3]

Growth parameters γ ∼ [0.005, 0.015] and ρ ∼ U[0, 0.5].

Sampling fractions αi ∼ U[0, 1] (or sampling rates βi ∼ Γ(a, b)).

The aim is to find the posterior distribution of the parameters given the
data D, namely P(θ|D) ∝ P(D|θ)π(θ).



Prior Distributions

We give all parameters prior distributions:

Temporal gaps between the oldest fossil and the root of the primate
and anthropoid trees τ ∼ U[0, 100] and τ∗ ∼ U[0, 100].

Expected life duration of each species 1/λ ∼ U[2, 3]

Growth parameters γ ∼ [0.005, 0.015] and ρ ∼ U[0, 0.5].

Sampling fractions αi ∼ U[0, 1] (or sampling rates βi ∼ Γ(a, b)).

The aim is to find the posterior distribution of the parameters given the
data D, namely P(θ|D) ∝ P(D|θ)π(θ).

The likelihood function P(D|θ) is intractable.

⇓

MCMC, IS, etc, not possible!
So we use ABC instead.



Choice of metric

We started by using

ρ(D,X ) =

14
∑

i=0

(Di − Xi)
2

This is equivalent to assuming uniform error on a ball of radius
√

δ
about D.

It also assumes that errors on each Di are dependent in some
non-trivial manner.

The error on each Di is assumed to have the same variance.



Choice of metric

We could move to assuming independent errors by accepting only if

(Di − Xi)
2 ≤ δi for all i

which is equivalent to using the acceptance probability

∏

I(Di−Xi )2≤δi

which we can interpret to be that the error on Di is uniformly distributed
on [

√
δi ,

√
δi ], independently of other errors.

In general, when using summaries S1,S2, . . ., it has been suggested that
we should choose summaries to be a priori independent to increase speed
of computation. This will only help if our metric/acceptance kernel
assumes independent errors on each Si .
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The number of extant primates is uncertain:

Martin (1993) listed 235 primate species
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Uncertainty in the data

The number of extant primates is uncertain:

Martin (1993) listed 235 primate species

Groves (2005) listed 376 primate species

Wikipedia yesterday listed 424 species including
◮ the GoldenPalace.com monkey
◮ the Avahi cleesei lemur.

On top of this, there is uncertainty regarding

whether a bone fragment represents a new species, e.g., homo
floresiensis (the hobbit man), or a microcephalic human

whether two bone fragments represent the same species

which epoch the species should be assigned to.

....

None of these potential sources of errors are accounted for in the model -
we only model sampling variation.



Uncertainty in the model
Modelling inevitably involves numerous subjective assumptions. Some of
these we judge to be less important.

Binary trees

Splitting rather than budding

Memoryless age distribution

Other assumptions are potentially more influential, particularly where
features have been ignored.

Early Eocene warming (the Paleocene-Eocene Thermal Maximum)

Warming in the mid-miocene

Small mass-extinction events in the Cenozoic

We assumed logistic growth for the expected diversity, ignoring smaller
fluctuations (we did include the K-T crash).



Uncertainty in the model
Modelling inevitably involves numerous subjective assumptions. Some of
these we judge to be less important.

Binary trees

Splitting rather than budding

Memoryless age distribution

Other assumptions are potentially more influential, particularly where
features have been ignored.

Early Eocene warming (the Paleocene-Eocene Thermal Maximum)

Warming in the mid-miocene

Small mass-extinction events in the Cenozoic

We assumed logistic growth for the expected diversity, ignoring smaller
fluctuations (we did include the K-T crash).
How can we use this information?

Given that we must add additional uncertainty when using ABC, add
it on the parts of the data we are most uncertain about.



Choice of metric
We know that the data from some epochs is more reliable:

Presumably classification and dating errors are more likely in well
sampled epochs - any fossil that is possibly a Cretaceous primate is
likely to be well studied, so perhaps we are more confident that
D14 = 0 than that D7 = 46.
Similarly, large Di presumably have a larger error than small values of
Di .

Similarly, we know the computer model prediction is more unreliable in
some epochs.

We ignored warm periods in the Eocene and Miocene. During these
times primates are believed to have moved away from the tropics,
perhaps allowing for more speciation (due to additional space and
resources).
The majority of primate fossils come from the UK, US, France and
China, despite our belief that primates originated in the Africa and
the observation that nearly all extant species live in tropical or
subtropical regions.



An improved metric

In theory, we can account for some of these issues by using the
generalised ABC algorithm, using an acceptance probability of the form

πǫ(X |D) =

14
∏

i=0

πi (Xi |Di )

where πi (Xi |Di ) depends on our belief about measurement and model
error on Di . We might judge that the variance of the measurement error
is a function of Di/D+ (e.g. interval 14 - the Cretaceous - is likely to
have smaller classification error).

Similarly, the model ignores several known features in the Cenozoic, such
as warming events. Consequently, we could reduce the importance of the
prediction for intervals 11-13 (the Eocene) by allowing a larger error
variance during these intervals (we could also allow biases).



An improved metric
In practice, it is a difficult elicitation exercise to specify the errors, and to
convolve all the different sources of error.

It is also a difficult computational challenge. Two ideas that might help:

We can use the fact that we know the distribution of Di given Ni ,
the number of simulated species, to help break down the problem
(removing the sampling process from the simulation). For example,
using the acceptance probability

P(accept) ∝ π(Xi |Di ) =

{

1 if Di = Xi

0 otherwise

is equivalent to using

P(accept) ∝
(

Ni

Di

)

αDi

i (1 − αi)
Ni−Di

and we can use Ni = Di/αi to find a normalising constant.

πǫ(X |D) =
∏14

i=0 πi(Xi |Di ) provides a sequential structure to the
problem that might allow particle methods to be used.



Conclusions
Approximate Bayesian Computation gives exact inference for the wrong
model.

To move beyond inference conditioned on a perfect model
hypothesis, we should account for model error.
ABC algorithms can be considered as adding additional variability on
to the model outputs.
We can generalise ABC algorithms to move beyond the use of
uniform error structures and use the added variation to include
information about the error on the data and in the model.
Relating simulators to reality is hard, even with expert knowledge.
However, most modellers have beliefs about where their simulator is
accurate, and where it is not.
If done wisely, ABC can be viewed not as an approximate form of
Bayesian inference, but instead as coming closer to the inference we
want to do.
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To move beyond inference conditioned on a perfect model
hypothesis, we should account for model error.
ABC algorithms can be considered as adding additional variability on
to the model outputs.
We can generalise ABC algorithms to move beyond the use of
uniform error structures and use the added variation to include
information about the error on the data and in the model.
Relating simulators to reality is hard, even with expert knowledge.
However, most modellers have beliefs about where their simulator is
accurate, and where it is not.
If done wisely, ABC can be viewed not as an approximate form of
Bayesian inference, but instead as coming closer to the inference we
want to do.

Thank you for listening!


