
Probabilistic ABC: accelerating ABC using Gaussian
processes

Richard Wilkinson

School of Mathematical Sciences
University of Nottingham

r.d.wilkinson@nottingham.ac.uk

Robotics Research Group, University of Oxford
August 2013



The need for simulation based methods

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’



The need for simulation based methods

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?



The need for simulation based methods

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality? (model error)

how do we estimate tunable parameters? (calibration)

how do we deal with computational constraints? (stat. comp.)

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors? (UQ)

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.



Calibration
Focus on simulator calibration:

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .
We are interested in the inverse-problem, i.e., observe data D, want
to estimate parameter values θ that explain this data.

For Bayesians, this is a
question of finding the
posterior distribution

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝

prior × likelihood

The likelihood isn’t just
the simulator pdf



Basic idea and notation

Suppose we want to find posterior distribution

π(θ|D) =
L(θ)π(θ)

π(D)

where L(θ) = π(D|θ) is the likelihood function.

Suppose L(θ) is unknown, but we have estimates of its value at a
small number of locations C = {θi , L̂(θi )}

N
i=1

Build a Gaussian process model of L(θ) using C.

Find the posterior π(θ|D, C)



Intractable likelihoods
A Bayesian inference problem is intractable if the likelihood function

L(θ) = π(D|θ)

is unknown (even up to a normalising constant), I.e., if the distribution of
the simulator, f (θ), run at θ is unknown.

- this is worse than the usual normalising constant intractability, or the
double intractability of Murray and Ghahramani.



Intractable likelihoods
A Bayesian inference problem is intractable if the likelihood function

L(θ) = π(D|θ)

is unknown (even up to a normalising constant), I.e., if the distribution of
the simulator, f (θ), run at θ is unknown.

- this is worse than the usual normalising constant intractability, or the
double intractability of Murray and Ghahramani.
Example:

The density of the
cumulative process of a
branching process is
unknown in general.

t

B

A

T_k T_5 T_4 T_3 T_2 T_1

Time



Approximate Bayesian
Computation (ABC)



Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).

ABC methods have become popular in the biological sciences and versions
of the algorithm exist in most modelling communities.



Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).

ABC methods have become popular in the biological sciences and versions
of the algorithm exist in most modelling communities.

ABC methods can be crude but they have an important role to play.



Likelihood-Free Inference

Rejection Algorithm

Draw θ from prior π(·)

Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).



Likelihood-Free Inference

Rejection Algorithm

Draw θ from prior π(·)

Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).
If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)

Simulate X ∼ f (θ) from the computer model

Accept θ if D = X , i.e., if computer output equals observation

The acceptance rate is P(D): the number of runs to get n observations is
negative binomial, with mean n

P(D) : ⇒ Bayes Factors!



Uniform ABC algorithms

Uniform ABC

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ǫ

For reasons that will become clear later, call this Uniform ABC.



Uniform ABC algorithms

Uniform ABC

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ǫ

For reasons that will become clear later, call this Uniform ABC.

As ǫ → ∞, we get observations from the prior, π(θ).

If ǫ = 0, we generate observations from π(θ | D)

ǫ reflects the tension between computability and accuracy.

The hope is that πABC (θ) ≈ π(θ|D,PSH) for ǫ small, where
PSH=‘perfect simulator hypothesis’



Uniform ABC algorithms

Uniform ABC

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ǫ

For reasons that will become clear later, call this Uniform ABC.

As ǫ → ∞, we get observations from the prior, π(θ).

If ǫ = 0, we generate observations from π(θ | D)

ǫ reflects the tension between computability and accuracy.

The hope is that πABC (θ) ≈ π(θ|D,PSH) for ǫ small, where
PSH=‘perfect simulator hypothesis’
There are uniform ABC-MCMC, ABC-SMC, ABC-EM, ABC-EP,
ABC-MLE algorithms, etc.



ABC choices

Most of the early ABC developments have been in an algorithmic
tradition.

1 Find a good metric, ρ - e.g., L2 norm

2 Find a good ǫ - e.g., best 1% of simulations?

3 Find a good summary S(D)

The choices made are usually not motivated by modelling considerations.

Poor choices for any of these aspects can have unintended consequences.



Calibration framework

There is a probabilistic interpretation of ABC.

Consider the Bayesian calibration framework from the computer
experiment literature:

Relate the best-simulator run (X = f (θ̂)) to reality ζ

Relate reality ζ to the observations D.

θ̂ f (θ̂) ζ D

simulator error measurement error

See, for example, Kennedy and O’Hagan (2001) or Goldstein and Rougier
(2009).



Calibration framework

Mathematically, we can write the likelihood as

L(θ) = π(D|θ) =

∫

π(D|x)π(x |θ)dx

where

π(D|x) is a pdf relating the simulator output to reality - call it the
acceptance kernel.

π(x |θ) is the likelihood function of the simulator (ie not relating to
reality)

The posterior is

π(θ|D) =
1

Z

∫

π(D|x)π(x |θ)dx. π(θ)

where Z =
∫∫

π(D|x)π(x |θ)dxπ(θ)dθ



How does ABC relate to calibration?
Wilkinson 2008/2013

To simplify matters, we can work in joint (θ, x) space

π(θ, x |D) =
π(D|x)π(x |θ)π(θ)

Z

Sample from this using the rejection algorithm with instrumental
distribution

g(θ, x) = π(x |θ)π(θ)



Generalized ABC (GABC)
Wilkinson 2008, Fearnhead and Prangle 2012

The rejection algorithm then becomes

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ) (ie (θ,X ) ∼ g(·))

2 Accept (θ,X ) if

U ∼ U[0, 1] ≤
πABC (θ, x)

Mg(θ, x)
=

π(D|X )

maxx π(D|x)



Generalized ABC (GABC)
Wilkinson 2008, Fearnhead and Prangle 2012

The rejection algorithm then becomes

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ) (ie (θ,X ) ∼ g(·))

2 Accept (θ,X ) if

U ∼ U[0, 1] ≤
πABC (θ, x)

Mg(θ, x)
=

π(D|X )

maxx π(D|x)

In uniform ABC we take

π(D|X ) =

{

1 if ρ(D,X ) ≤ ǫ

0 otherwise

this reduces the algorithm to

2’ Accept θ ifF ρ(D,X ) ≤ ǫ

ie, we recover the uniform ABC algorithm.



Uniform ABC algorithm

This allows us to interpret uniform ABC. Suppose X ,D ∈ R

Proposition

Accepted θ from the uniform ABC algorithm (with ρ(D,X ) = |D − X |)
are samples from the posterior distribution of θ given D where we assume
D = f (θ) + e and that

e ∼ U[−ǫ, ǫ]

In general, uniform ABC assumes that

D|x ∼ U{d : ρ(d , x) ≤ ǫ}

We can think of this as assuming a uniform error term when we relate the
simulator to the observations.



Uniform ABC algorithm

This allows us to interpret uniform ABC. Suppose X ,D ∈ R

Proposition

Accepted θ from the uniform ABC algorithm (with ρ(D,X ) = |D − X |)
are samples from the posterior distribution of θ given D where we assume
D = f (θ) + e and that

e ∼ U[−ǫ, ǫ]

In general, uniform ABC assumes that

D|x ∼ U{d : ρ(d , x) ≤ ǫ}

We can think of this as assuming a uniform error term when we relate the
simulator to the observations.

ABC gives ‘exact’ inference under a different model!



Wood (2010)
Key idea: introduce a synthetic Gaussian likelihood function for the
simulator, and then use MCMC to find the posterior.

Wood 2010

Suppose our MCMC chain is currently at θi .

Propose a move to θ′ from some kernel

Run the simulator n times at θ′, giving realisations X1, . . . ,Xn

Summarize these to get summaries S1, . . . ,Sn.

Assume S ∼ N(µθ′ ,Σθ′), and estimate µθ′ and Σθ′ .

Assign θ′ likelihood φ(sobs ;µθ′ ,Σθ′) and accept or reject θ′ according
the MH acceptance ratio.



Wood (2010)
Key idea: introduce a synthetic Gaussian likelihood function for the
simulator, and then use MCMC to find the posterior.

Wood 2010

Suppose our MCMC chain is currently at θi .

Propose a move to θ′ from some kernel

Run the simulator n times at θ′, giving realisations X1, . . . ,Xn

Summarize these to get summaries S1, . . . ,Sn.

Assume S ∼ N(µθ′ ,Σθ′), and estimate µθ′ and Σθ′ .

Assign θ′ likelihood φ(sobs ;µθ′ ,Σθ′) and accept or reject θ′ according
the MH acceptance ratio.

This is a GABC algorithm, using µθ and Σθ as the summary of f (θ), and
assuming

π(D|S) = exp(−
1

2
(D − µθ)

TΣ−1
θ (D − µθ))

It can be seen as accounting for the variability of the model run repeatedly
at the same input, and then assuming the distribution is Gaussian.



Problems with Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee comes at a cost.

Most methods sample naively - they don’t learn from previous
simulations.

They don’t exploit known properties of the likelihood function, such
as continuity

They sample randomly, rather than using space filling designs.

This naivety can make a full analysis infeasible without access to a large
amount of computational resource.



Problems with Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee comes at a cost.

Most methods sample naively - they don’t learn from previous
simulations.

They don’t exploit known properties of the likelihood function, such
as continuity

They sample randomly, rather than using space filling designs.

This naivety can make a full analysis infeasible without access to a large
amount of computational resource.

If we are prepared to lose the guarantee of eventual success, we can
exploit the continuity of the likelihood function to learn about its shape,
and to dramatically improve the efficiency of our computations.



Likelihood estimation

The GABC framework assumes

π(D|θ) =

∫

π(D|X )π(X |θ)dX

≈
1

N

∑

π(D|Xi)

where Xi ∼ π(X |θ). Or in Wood (2010),

π(D|θ) = φ(D;µθ,Σθ)



Likelihood estimation

The GABC framework assumes

π(D|θ) =

∫

π(D|X )π(X |θ)dX

≈
1

N

∑

π(D|Xi)

where Xi ∼ π(X |θ). Or in Wood (2010),

π(D|θ) = φ(D;µθ,Σθ)

For many problems, we believe the likelihood is continuous and smooth,
so that π(D|θ) is similar to π(D|θ′) when θ − θ′ is small

We can model L(θ) = π(D|θ) and use the model to find the posterior in
place of running the simulator.



Example: Ricker Model

The Ricker model is one of the prototypic ecological models.

used to model the fluctuation of the observed number of animals in
some population over time

It has complex dynamics and likelihood, despite its simple
mathematical form.

Ricker Model

Let Nt denote the number of animals at time t.

Nt+1 = rNte
−Nt+er

where et are independent N(0, σ2
e ) process noise

Assume we observe counts yt where

yt ∼ Po(φNt)

Used in Wood to demonstrate the synthetic likelihood approach.



Gaussian Process Illustration

0 2 4 6 8 10

−
2

0
2

4
6

8
10

Ensemble of model evaluations

X

Y



Gaussian Process Illustration

0 2 4 6 8 10

−
2

0
2

4
6

8
10

Posterior beliefs

X

Y



GP emulator choices
Let L(θ) = π(D|θ). We model a transformation of the likelihood

G (θ) = Φ−1(L(θ))

typically Φ−1(L) = log(L) or log(− log(L)).



GP emulator choices
Let L(θ) = π(D|θ). We model a transformation of the likelihood

G (θ) = Φ−1(L(θ))

typically Φ−1(L) = log(L) or log(− log(L)).

Use a Gaussian process (GP) prior

G (·) ∼ GP(m(·), k(·, ·))

with m(θ) = h(θ)Tβ.

G (θ) = h(θ)β + u(θ)

emulator = mean structure + residual



GP emulator choices
Let L(θ) = π(D|θ). We model a transformation of the likelihood

G (θ) = Φ−1(L(θ))

typically Φ−1(L) = log(L) or log(− log(L)).

Use a Gaussian process (GP) prior

G (·) ∼ GP(m(·), k(·, ·))

with m(θ) = h(θ)Tβ.

G (θ) = h(θ)β + u(θ)

emulator = mean structure + residual

We let the mean function h(θ) include up to quadratic polynomial

terms, as typically we know

log(L(θ)) → −∞ as θ → ±∞



GP emulator choices II
Typically, use a squared-exponential covariance function

k(θ, θ′) = σ2 exp
(

−(θ − θ′)Σ−1(θ − θ′)
)

where Σ is a matrix of length-scales (typically Σ = diag(λ)).



GP emulator choices II
Typically, use a squared-exponential covariance function

k(θ, θ′) = σ2 exp
(

−(θ − θ′)Σ−1(θ − θ′)
)

where Σ is a matrix of length-scales (typically Σ = diag(λ)).

Assume we have observations of the likelihood: Let Θ = {θi}
n
i=1 be a

design on the parameter space, and let G = (G1, . . . ,Gn)
T be the

corresponding estimated log-likelihood values. Then our training set is

C = {Θ,G}

Assume observations Gi ∼ Φ−1(L(θi )) + N(0, τ), i.e., unbiased estimates
with Gaussian error.



GP emulator choices II
Typically, use a squared-exponential covariance function

k(θ, θ′) = σ2 exp
(

−(θ − θ′)Σ−1(θ − θ′)
)

where Σ is a matrix of length-scales (typically Σ = diag(λ)).

Assume we have observations of the likelihood: Let Θ = {θi}
n
i=1 be a

design on the parameter space, and let G = (G1, . . . ,Gn)
T be the

corresponding estimated log-likelihood values. Then our training set is

C = {Θ,G}

Assume observations Gi ∼ Φ−1(L(θi )) + N(0, τ), i.e., unbiased estimates
with Gaussian error.

Then
G ∼ N(m(θ),Ky )

where
{Ky}i ,j = k(θi , θj) + τδi=j

i.e., include a nugget term to represent the uncertainty in the
observations.



GP updates

Given training set C, the GP posterior is

G (·)|C,Ψ, β ∼ GP(m∗(·), k∗(·, ·))

and if we give β a flat improper prior π(β) ∝ 1, we can integrate out the
dependence on β to find

G (·)|C,Ψ ∼ GP(m∗∗(·), k∗∗(·, ·))

where Ψ = {Σ, σ2} are GP hyper parameters.



GP updates

Given training set C, the GP posterior is

G (·)|C,Ψ, β ∼ GP(m∗(·), k∗(·, ·))

and if we give β a flat improper prior π(β) ∝ 1, we can integrate out the
dependence on β to find

G (·)|C,Ψ ∼ GP(m∗∗(·), k∗∗(·, ·))

where Ψ = {Σ, σ2} are GP hyper parameters.

There are no conjugate priors available for Σ or σ2.



Design 1 - 128 pts
We use a Sobol sequence on the prior input space to find a design
{θi}

d
i=1. We estimate the likelihood at each point in the design, and aim

to fit a GP model to estimate the likelihood at θ values not in the design.



History matching waves

The likelihood is too difficult to model, so we model the log-likelihood
instead.

G (θ) = log L(θ), L̂(θi ) =
1

N

∑

π(D|Xi), Xi ∼ π(X |θi)



History matching waves

The likelihood is too difficult to model, so we model the log-likelihood
instead.

G (θ) = log L(θ), L̂(θi ) =
1

N

∑

π(D|Xi), Xi ∼ π(X |θi)

However, the log-likelihood for a typical problem ranges across too wide a
range of values, e.g., -10 near the mode, but essentially −∞ at the
extremes of the prior range.
Consequently, any Gaussian process model will struggle to model the
log-likelihood across the entire input range.



History matching waves

The likelihood is too difficult to model, so we model the log-likelihood
instead.

G (θ) = log L(θ), L̂(θi ) =
1

N

∑

π(D|Xi), Xi ∼ π(X |θi)

However, the log-likelihood for a typical problem ranges across too wide a
range of values, e.g., -10 near the mode, but essentially −∞ at the
extremes of the prior range.
Consequently, any Gaussian process model will struggle to model the
log-likelihood across the entire input range.

To fix this we introduce the idea of waves, similar to those used in
Michael Goldstein’s approach to history-matching.

In each wave, we build a GP model that can rule out large swathes of
space as implausible.



Implausibility

We decide that θ is implausible if

m(θ) + 3σ < max
θi

log L(θi )− T

where m(θ) is the Gaussian process estimate of log π(D|θ), and σ is the
variance of the GP estimate.



Implausibility

We decide that θ is implausible if

m(θ) + 3σ < max
θi

log L(θi )− T

where m(θ) is the Gaussian process estimate of log π(D|θ), and σ is the
variance of the GP estimate.

We subtract a threshold value T = 10 for the Ricker model: a
difference of 10 on the log scale between two likelihoods, means that
assigning the θ with the smaller log-likelihood a posterior density of 0
(by saying it is implausible) is a good approximation.



Difficulties

This still wasn’t enough in some problems, so for the first wave we
model log(− log L(θ))

For the next wave, we begin by using the Gaussian processes from
the previous waves to decide which parts of the input space are
implausible.

We then extend the design into the not-implaussible range and build
a new Gaussian process

This new GP will lead to a new definition of implausibility

. . .



Results - Design 1 - 128 pts



Diagnostics for GP 1 - threshold = 5.6



Results - Design 2 - 314 pts - 38% of space implausible



Diagnostics for GP 2 - threshold = -21.8



Design 3 - 149 pts - 62% of space implausible



Diagnostics for GP 3 - threshold = -20.7



Design 4 - 400 pts - 95% of space implausible



Diagnostics for GP 4 - threshold = -16.4



Finding the posterior
For a given G (θ), the corresponding posterior is

PG (θ) =
Φ(G (θ))π(θ)

ZG

where ZG =

∫

Φ(G (θ))π(θ)dθ

There are options about what constitutes an answer:



Finding the posterior
For a given G (θ), the corresponding posterior is

PG (θ) =
Φ(G (θ))π(θ)

ZG

where ZG =

∫

Φ(G (θ))π(θ)dθ

There are options about what constitutes an answer:
The uncertainty distribution of PG (·) induced by the uncertainty in
G - π(PG (·)|C)

◮ For a function h(θ), find the mean and variance of the posterior
expectation of h(θ)

EG

(
∫

h(θ)PG (θ)dθ | C

)

and VarG

(
∫

h(θ)PG (θ)dθ | C

)



Finding the posterior
For a given G (θ), the corresponding posterior is

PG (θ) =
Φ(G (θ))π(θ)

ZG

where ZG =

∫

Φ(G (θ))π(θ)dθ

There are options about what constitutes an answer:
The uncertainty distribution of PG (·) induced by the uncertainty in
G - π(PG (·)|C)

◮ For a function h(θ), find the mean and variance of the posterior
expectation of h(θ)

EG

(
∫

h(θ)PG (θ)dθ | C

)

and VarG

(
∫

h(θ)PG (θ)dθ | C

)

Marginal distribution of the posterior:

P(θ) = π(θ|D, C) =

∫

π(θ|D,G )π(G |C)dG

=

∫

Φ(G (θ))π(θ)

ZG

· π(G |S)dG



Finding the posterior
Second option π(θ|D, C), seems easier to find and more useful. However,
the dependence of the normalising constant ZG , on G , makes the
inference hard.



Finding the posterior
Second option π(θ|D, C), seems easier to find and more useful. However,
the dependence of the normalising constant ZG , on G , makes the
inference hard.
An auxiliary variable approach can be used:

Build a MCMC sampler on

p(θ,G (θ)|D, C) =
Φ(G (θ))π(G (θ)|C, θ)π(θ)

π(D|C)

The θ-marginal distribution is p(θ|D, C)

Using MCMC proposal θ′ ∼ q(θ, ·), G ′(θ′) ∼ π(G ′(θ′)|C, θ′) gives
MH acceptance probability

min

(

1,
Φ(G ′(θ′))π(θ′)q(θ′, θ)

Φ(G (θ))π(θ)q(θ, θ′)

)

which is what we may naively have used - propose θ, simulate likelihood
value, used standard MCMC.
Note: by building the chain on the extended parameter space (θ,G (θ))
we avoid having to calculate the normalising constant.



Dealing with GP hyper parameters, Ψ

For Ψ = (Σ, σ2), we can

Estimate and fix Ψ using its MLE (ignoring uncertainty)

Estimate Ψ and use a Laplace approximation to account for the
uncertainty

Include Ψ in a MCMC scheme and infer its value with the other
parameters.



Dealing with GP hyper parameters, Ψ

For Ψ = (Σ, σ2), we can

Estimate and fix Ψ using its MLE (ignoring uncertainty)

Estimate Ψ and use a Laplace approximation to account for the
uncertainty

Include Ψ in a MCMC scheme and infer its value with the other
parameters.

We estimate and fix nugget variance τ from the experimental set up:
L̂ = 1

n

∑

π(D|Xi )

Variance of L̂(θi ) easy to calculate, but var(Ĝ (θi)) is not. We use
bootstrapped replicates of the log-likelihood to estimate τ (we could
estimate it as part of the GP fitting, but typically this is poorly
behaved).



MCMC Results

3.0 3.5 4.0 4.5 5.0

0
1

2
3

4
5

6
7

Wood’s MCMC posterior

r

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

3.
0

Green = GP posterior

sig.e

D
en

si
ty

5 10 15 20

0.
0

0.
2

0.
4

Black = Wood’s MCMC

phi

D
en

si
ty



Computational details

The Wood MCMC method used 105 × 500 simulator runs

The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs

◮ 1/100th of the number used by Wood’s method.

By the final iteration, the Gaussian processes had ruled out over 98% of
the original input space as implausible,

the MCMC sampler did not need to waste time exploring those
regions.



Computational details

The Wood MCMC method used 105 × 500 simulator runs

The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs

◮ 1/100th of the number used by Wood’s method.

By the final iteration, the Gaussian processes had ruled out over 98% of
the original input space as implausible,

the MCMC sampler did not need to waste time exploring those
regions.

Unfortunately though, GPs are computationally expensive to train.

The CPU time taken to run both methods was approximately the same!

For more complex models, there will hopefully be time advantages.



Conclusions

Monte Carlo methods are naive
◮ they don’t learn
◮ they don’t exploit continuity or design considerations

This makes them powerful, as they will always give the correct
answer in time.

However, computational resource is usually limited.

If we believe the likelihood is a continuous function of the
parameters, and we’re prepared to sacrifice asymptotic perfection in
the hope of achieving a good approximation in reasonable time, then
we can use Gaussian processes to accelerate the inference process.
Lots still to do

◮ justification of threshold values
◮ model selection
◮ improve MCMC efficiency.
◮ . . .



Conclusions

Monte Carlo methods are naive
◮ they don’t learn
◮ they don’t exploit continuity or design considerations

This makes them powerful, as they will always give the correct
answer in time.

However, computational resource is usually limited.

If we believe the likelihood is a continuous function of the
parameters, and we’re prepared to sacrifice asymptotic perfection in
the hope of achieving a good approximation in reasonable time, then
we can use Gaussian processes to accelerate the inference process.
Lots still to do

◮ justification of threshold values
◮ model selection
◮ improve MCMC efficiency.
◮ . . .

Thank you for listening!


