
Emulating computer simulators with high dimensional
input and output

David Crevillen Andrew Cliffe Marco Iglesias
Henry Power2 Richard Wilkinson

School of Mathematical Sciences

2Faculty of Engineering
University of Nottingham

PANACEA Trondheim 2014

Introduction

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field) y

f (K)y
Outputs:

Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),
...

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0
10

20
30

40
50

0

10

20

30

40

50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

↓ f (K)

True truncated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01
True truncated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Surface Flux= 6.43, . . .

Uncertainty quantification (UQ) for CCS
The simulator maps from permeability field K to outputs such as the
surface flux S. Let f (K) denote this mapping

f : K → S

For most problems the permeability K is unknown.

If we assume a distribution for K ∼ π(K), we can quantify our
uncertainty about S = f (K).

e.g., by finding the cumulative distribution function (CDF) of S:

F (s) = P(f (K) ≤ s)

We use a log-Gaussian process model for K

logK (·) ∼ GP(m(·), c(·, ·))

where K (x) is the permeability at location x , and m(·) and c(·, ·) are the
mean and covariance function of the GP (c is an exponential covariance
function in the examples here).

Uncertainty quantification (UQ) for CCS
The simulator maps from permeability field K to outputs such as the
surface flux S. Let f (K) denote this mapping

f : K → S

For most problems the permeability K is unknown.

If we assume a distribution for K ∼ π(K), we can quantify our
uncertainty about S = f (K).

e.g., by finding the cumulative distribution function (CDF) of S:

F (s) = P(f (K) ≤ s)

We use a log-Gaussian process model for K

logK (·) ∼ GP(m(·), c(·, ·))

where K (x) is the permeability at location x , and m(·) and c(·, ·) are the
mean and covariance function of the GP (c is an exponential covariance
function in the examples here).

Uncertainty quantification (UQ) for CCS
The simulator maps from permeability field K to outputs such as the
surface flux S. Let f (K) denote this mapping

f : K → S

For most problems the permeability K is unknown.

If we assume a distribution for K ∼ π(K), we can quantify our
uncertainty about S = f (K).

e.g., by finding the cumulative distribution function (CDF) of S:

F (s) = P(f (K) ≤ s)

We use a log-Gaussian process model for K

logK (·) ∼ GP(m(·), c(·, ·))

where K (x) is the permeability at location x , and m(·) and c(·, ·) are the
mean and covariance function of the GP (c is an exponential covariance
function in the examples here).

UQ for complex computer models
Gold standard approach: Monte Carlo simulation

Draw K1, . . . ,KN ∼ π(K), and
evaluate the simulator at each
giving fluxes
s1 = f (K1), . . . , sN = f (KN)

Estimate the empirical CDF

F̂ (s) =
1

N

N∑
i=1

Isi≤s

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

ECDF obtained with 57 simulator runs

Note that N = 103 is not large if we want quantiles in the tail of the
distribution

What can we do if f is expensive to evaluate?

UQ for complex computer models
Gold standard approach: Monte Carlo simulation

Draw K1, . . . ,KN ∼ π(K), and
evaluate the simulator at each
giving fluxes
s1 = f (K1), . . . , sN = f (KN)

Estimate the empirical CDF

F̂ (s) =
1

N

N∑
i=1

Isi≤s

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

ECDF obtained with 57 simulator runs

Note that N = 103 is not large if we want quantiles in the tail of the
distribution

What can we do if f is expensive to evaluate?

UQ for complex computer models
Gold standard approach: Monte Carlo simulation

Draw K1, . . . ,KN ∼ π(K), and
evaluate the simulator at each
giving fluxes
s1 = f (K1), . . . , sN = f (KN)

Estimate the empirical CDF

F̂ (s) =
1

N

N∑
i=1

Isi≤s

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

ECDF obtained with 57 simulator runs

Note that N = 103 is not large if we want quantiles in the tail of the
distribution

What can we do if f is expensive to evaluate?

Gaussian Process emulation
Consider a 1d problem y = f (x) and suppose we can only afford to
evaluate the simulator a small number of times

D = {xi , yi = f (xi)}

We must make any inference about the simulator using D only.

Build a meta-model/surrogate/emulator/reduced-order model for f .

Try to find η(x) such that

η(x) ≈ f (x) ∀ x ∈ I ⊂ R

We can use Gaussian processes (GP) to model f (·).

η(·) ∼ GP(m(·), c(·, ·))

We update our beliefs about η in light of the data D,

η(·)|D ∼ GP(m∗(·), c∗(·, ·))

Note that η(x) is a random value.

Gaussian Process emulation
Consider a 1d problem y = f (x) and suppose we can only afford to
evaluate the simulator a small number of times

D = {xi , yi = f (xi)}

We must make any inference about the simulator using D only.

Build a meta-model/surrogate/emulator/reduced-order model for f .

Try to find η(x) such that

η(x) ≈ f (x) ∀ x ∈ I ⊂ R

We can use Gaussian processes (GP) to model f (·).

η(·) ∼ GP(m(·), c(·, ·))

We update our beliefs about η in light of the data D,

η(·)|D ∼ GP(m∗(·), c∗(·, ·))

Note that η(x) is a random value.

Gaussian Process emulation
Consider a 1d problem y = f (x) and suppose we can only afford to
evaluate the simulator a small number of times

D = {xi , yi = f (xi)}

We must make any inference about the simulator using D only.

Build a meta-model/surrogate/emulator/reduced-order model for f .

Try to find η(x) such that

η(x) ≈ f (x) ∀ x ∈ I ⊂ R

We can use Gaussian processes (GP) to model f (·).

η(·) ∼ GP(m(·), c(·, ·))

We update our beliefs about η in light of the data D,

η(·)|D ∼ GP(m∗(·), c∗(·, ·))

Note that η(x) is a random value.

Gaussian Process prior for unknown functions
Prior belief about f

GPs can be understood as prior distributions over functions. Their
properties, such as the smoothness and differentiability are controlled by
the choice of mean and covariance functions, and the hyper-parameters.

Gaussian Process prior for unknown functions
y = f (x) = 1 + x + x sin(4x) - 10 data points

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

Once we observe the data D = {(xi , yi)}, we can update our prior belief
about the unknown function f (x)

Gaussian Process emulation - posterior beliefs about f (·)
y = 1 + x + x sin(4x) - 10 data points

−4 −3 −2 −1 0 1 2 3 4
−6

−4

−2

0

2

4

6

8

10
True function (black), GP mean and sd (red), samples (green)

Perverse example: we can spot errors using cross-validation → More data
required.

Gaussian Process emulation
y = 1 + x + x sin(4x) - 15 data points

−4 −3 −2 −1 0 1 2 3 4
−6

−4

−2

0

2

4

6

8

10
True function (black), GP mean and sd (red), samples (green)

The covariance function is key. There are a small number of common
choices, e.g., squared exponential (RBF/Gaussian), Matern, neural-net

Gaussian Process emulation
y = 1 + x + x sin(4x) - 20 data points

−4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

True function (black), GP mean and sd (red), samples (green)

We can add, multiply and transform any covariance function to obtain a
new valid covariance function.

Emulating simulators with high dimensional input

For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,

e.g. if we use a 100× 100 grid in the solver, K contains 104 entries

Impossible to directly model f : R10,000 → R

Instead, we can use the Karhunen-Loève (KL) expansion of K to reduce
the dimension:

K = exp(Z) where Z ∼ GP(m,C)

Z can be represented as

Z (·) =
∞∑
i=1

λiξiφi (·)

where λi and φi are the eigenvalues and eigenfunctions of the
covariance function of Z and ξi ∼ N(0, 1).

Emulating simulators with high dimensional input

For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,

e.g. if we use a 100× 100 grid in the solver, K contains 104 entries

Impossible to directly model f : R10,000 → R
Instead, we can use the Karhunen-Loève (KL) expansion of K to reduce
the dimension:

K = exp(Z) where Z ∼ GP(m,C)

Z can be represented as

Z (·) =
∞∑
i=1

λiξiφi (·)

where λi and φi are the eigenvalues and eigenfunctions of the
covariance function of Z and ξi ∼ N(0, 1).

Emulating simulators with high dimensional input
By truncating

K (x) ≈ exp

(
n∑

i=1

λiξiφi (x)

)
we reduce the modelling problem to one of modelling

f : Rn → R

This involves some loss of information
I Add a nugget term to the GP to represent the missing information

Build a GP emulator from x = (ξ1, . . . , ξn)> to the surface flux (SF)

We need a training set (xi ,SFi)
N
i=1 of simulator runs to build the

emulator

The design (choice of x locations) is key. Generally space-filling
designs are recommended.

I We use a Sobol sequence to find a space-filling design of N points on
[0, 1]n

I Spread the points by pushing them through the inverse CDF of a
N(0, 1) distribution to get a design on Rn that can be used for N(0, 1)
inputs.

Emulating simulators with high dimensional input
By truncating

K (x) ≈ exp

(
n∑

i=1

λiξiφi (x)

)
we reduce the modelling problem to one of modelling

f : Rn → R

This involves some loss of information
I Add a nugget term to the GP to represent the missing information

Build a GP emulator from x = (ξ1, . . . , ξn)> to the surface flux (SF)

We need a training set (xi ,SFi)
N
i=1 of simulator runs to build the

emulator

The design (choice of x locations) is key. Generally space-filling
designs are recommended.

I We use a Sobol sequence to find a space-filling design of N points on
[0, 1]n

I Spread the points by pushing them through the inverse CDF of a
N(0, 1) distribution to get a design on Rn that can be used for N(0, 1)
inputs.

Emulating simulators with high dimensional input
By truncating

K (x) ≈ exp

(
n∑

i=1

λiξiφi (x)

)
we reduce the modelling problem to one of modelling

f : Rn → R

This involves some loss of information
I Add a nugget term to the GP to represent the missing information

Build a GP emulator from x = (ξ1, . . . , ξn)> to the surface flux (SF)

We need a training set (xi ,SFi)
N
i=1 of simulator runs to build the

emulator
The design (choice of x locations) is key. Generally space-filling
designs are recommended.

I We use a Sobol sequence to find a space-filling design of N points on
[0, 1]n

I Spread the points by pushing them through the inverse CDF of a
N(0, 1) distribution to get a design on Rn that can be used for N(0, 1)
inputs.

Predictive performance vs n = no. of KL components

We can assess the accuracy of the
emulator by examining the prediction
error on a held-out test set. Plotting
predicted vs true value indicates the
accuracy the GP emulator.

We can also choose the number of KL components to retain using
numerical scores

Predictive performance vs n = no. of KL components

We can assess the accuracy of the
emulator by examining the prediction
error on a held-out test set. Plotting
predicted vs true value indicates the
accuracy the GP emulator.

We can also choose the number of KL components to retain using
numerical scores

Emulating from fields to fields
W. 2011, Holden, Edwards, Garthwaite and W. in prep.

Now consider emulating the stream
function and concentration fields
(100× 100 matrices).

We can use a similar trick, and use
the singular value decomposition to
reduce the dimension.

True streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

Let y1, . . . , yN ∈ Rd be the N fields obtained and let Y be the d ×N
matrix with column i being yi .

Let Ỹ be the row centred version of Y ,

Form the SVD of Ỹ : Ỹ = LDRT

We can form a reduced rank approximation to Ỹ by ignoring all but
the first k eigenvectors:

L∗ = (l1, . . . , lk), R∗ = (r1, . . . , rk)

so that
Ỹ ≈ L∗D∗R

T
∗

If RT
∗ = (t1, . . . , tN), where each ti is a vector of length k , then

L∗D∗t1 ≈ y1

e.g., the centred concentration field for the 1st simulation.

To build an emulator from x to y, we can build an emulator from x to the
rows of R∗ = columns of RT

∗ .

To do this, we can build k separate emulators from x to each element in
the vector t.

Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0
Emulated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

True concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Emulated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0
Emulated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

True concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Emulated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01
Emulated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

True concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Emulated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Finding CDFs
η(x) is a random function approximating the simulator f (x). Hence, any
summary will be a random variable.

In particular, the CDF Fη(s) = PX (η(X) ≤ s) is a random variable.

We can use Monte Carlo to evaluate the distribution of Fη(s): for
j = 1, . . . ,M:

Draw ηj(·) ∼ GP(m∗(·), c∗(·, ·))
Evaluate

F̂j(s) =
1

m

m∑
i=1

Iηj (xi)≤s

≈ P(ηj(X) ≤ s)

where xi are i.i.d. samples of X .

This gives a Monte Carlo sample of distribution functions

F̂1(·), . . . , F̂M(·)
From these, we can estimate the median CDF and any confidence
intervals we require.

Finding CDFs
η(x) is a random function approximating the simulator f (x). Hence, any
summary will be a random variable.

In particular, the CDF Fη(s) = PX (η(X) ≤ s) is a random variable.

We can use Monte Carlo to evaluate the distribution of Fη(s): for
j = 1, . . . ,M:

Draw ηj(·) ∼ GP(m∗(·), c∗(·, ·))
Evaluate

F̂j(s) =
1

m

m∑
i=1

Iηj (xi)≤s

≈ P(ηj(X) ≤ s)

where xi are i.i.d. samples of X .

This gives a Monte Carlo sample of distribution functions

F̂1(·), . . . , F̂M(·)
From these, we can estimate the median CDF and any confidence
intervals we require.

Finding CDFs
η(x) is a random function approximating the simulator f (x). Hence, any
summary will be a random variable.

In particular, the CDF Fη(s) = PX (η(X) ≤ s) is a random variable.

We can use Monte Carlo to evaluate the distribution of Fη(s): for
j = 1, . . . ,M:

Draw ηj(·) ∼ GP(m∗(·), c∗(·, ·))
Evaluate

F̂j(s) =
1

m

m∑
i=1

Iηj (xi)≤s

≈ P(ηj(X) ≤ s)

where xi are i.i.d. samples of X .

This gives a Monte Carlo sample of distribution functions

F̂1(·), . . . , F̂M(·)
From these, we can estimate the median CDF and any confidence
intervals we require.

1d example, 20 data points

−6 −4 −2 0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

True CDF(black), GP mean (red), GP quantiles (green, dotted=mean, solid = mean, dashed=95%), GP CDFs (magenta)

Truth
Emulator mean
Emulator uncertainty

We can give the median (mean estimate is skewed in the tails because
0 ≤ F ≤ 1), and a 95% confidence interval for the unknown CDF.

CCS simulator results - 20 simulator training runs

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

ECDF obtained with 20 simulator runs

Blue line = CDF obtained using 20 training samples
dotted line = 95% confidence interval

CCS simulator results - 20 simulator training runs

Blue line = CDF from using 103 Monte Carlo samples from the simulator
Red line = CDF obtained using emulator (trained with 20 simulator runs,
rational quadratic covariance function)

Limitations & future work
This describes an approach for doing uncertainty quantification on the
simulator output rather than the physical system.

Bifurcations cause non-continuous behaviour in the simulator response.

If this happens, the simulator can’t easily be modelled.

No easy way to assess if this has happened in any given simulation.

Future work:

Uncertainty on the emulator prediction

Uncertainty in the hyper-parameters

Multi-level Monte Carlo

Two-stage emulation

Polynomial Chaos.

Thank you for listening!

Limitations & future work
This describes an approach for doing uncertainty quantification on the
simulator output rather than the physical system.

Bifurcations cause non-continuous behaviour in the simulator response.

If this happens, the simulator can’t easily be modelled.

No easy way to assess if this has happened in any given simulation.

Future work:

Uncertainty on the emulator prediction

Uncertainty in the hyper-parameters

Multi-level Monte Carlo

Two-stage emulation

Polynomial Chaos.

Thank you for listening!

Limitations & future work
This describes an approach for doing uncertainty quantification on the
simulator output rather than the physical system.

Bifurcations cause non-continuous behaviour in the simulator response.

If this happens, the simulator can’t easily be modelled.

No easy way to assess if this has happened in any given simulation.

Future work:

Uncertainty on the emulator prediction

Uncertainty in the hyper-parameters

Multi-level Monte Carlo

Two-stage emulation

Polynomial Chaos.

Thank you for listening!

Limitations & future work
This describes an approach for doing uncertainty quantification on the
simulator output rather than the physical system.

Bifurcations cause non-continuous behaviour in the simulator response.

If this happens, the simulator can’t easily be modelled.

No easy way to assess if this has happened in any given simulation.

Future work:

Uncertainty on the emulator prediction

Uncertainty in the hyper-parameters

Multi-level Monte Carlo

Two-stage emulation

Polynomial Chaos.

Thank you for listening!

