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Introduction

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field) y

f (K )y
Outputs:

Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),
...
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Surface Flux= 6.43, . . .



Uncertainty quantification (UQ) for CCS
The simulator maps from permeability field K to outputs such as the
surface flux S. Let f (K ) denote this mapping

f : K → S

For most problems the permeability K is unknown.

If we assume a distribution for K ∼ π(K ), we can quantify our
uncertainty about S = f (K ).

e.g., by finding the cumulative distribution function (CDF) of S:

F (s) = P(f (K ) ≤ s)

We use a log-Gaussian process model for K

logK (·) ∼ GP(m(·), c(·, ·))

where K (x) is the permeability at location x , and m(·) and c(·, ·) are the
mean and covariance function of the GP (c is an exponential covariance
function in the examples here).
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UQ for complex computer models
Gold standard approach: Monte Carlo simulation

Draw K1, . . . ,KN ∼ π(K ), and
evaluate the simulator at each
giving fluxes
s1 = f (K1), . . . , sN = f (KN)

Estimate the empirical CDF

F̂ (s) =
1

N

N∑
i=1

Isi≤s
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ECDF obtained with 57 simulator runs

Note that N = 103 is not large if we want quantiles in the tail of the
distribution

What can we do if f is expensive to evaluate?



UQ for complex computer models
Gold standard approach: Monte Carlo simulation

Draw K1, . . . ,KN ∼ π(K ), and
evaluate the simulator at each
giving fluxes
s1 = f (K1), . . . , sN = f (KN)

Estimate the empirical CDF

F̂ (s) =
1

N

N∑
i=1

Isi≤s

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

ECDF obtained with 57 simulator runs

Note that N = 103 is not large if we want quantiles in the tail of the
distribution

What can we do if f is expensive to evaluate?



UQ for complex computer models
Gold standard approach: Monte Carlo simulation

Draw K1, . . . ,KN ∼ π(K ), and
evaluate the simulator at each
giving fluxes
s1 = f (K1), . . . , sN = f (KN)

Estimate the empirical CDF

F̂ (s) =
1

N

N∑
i=1

Isi≤s

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

ECDF obtained with 57 simulator runs

Note that N = 103 is not large if we want quantiles in the tail of the
distribution

What can we do if f is expensive to evaluate?



Gaussian Process emulation
Consider a 1d problem y = f (x) and suppose we can only afford to
evaluate the simulator a small number of times

D = {xi , yi = f (xi )}

We must make any inference about the simulator using D only.

Build a meta-model/surrogate/emulator/reduced-order model for f .

Try to find η(x) such that

η(x) ≈ f (x) ∀ x ∈ I ⊂ R

We can use Gaussian processes (GP) to model f (·).

η(·) ∼ GP(m(·), c(·, ·))

We update our beliefs about η in light of the data D,

η(·)|D ∼ GP(m∗(·), c∗(·, ·))

Note that η(x) is a random value.
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Gaussian Process prior for unknown functions
Prior belief about f

GPs can be understood as prior distributions over functions. Their
properties, such as the smoothness and differentiability are controlled by
the choice of mean and covariance functions, and the hyper-parameters.



Gaussian Process prior for unknown functions
y = f (x) = 1 + x + x sin(4x) - 10 data points
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Once we observe the data D = {(xi , yi )}, we can update our prior belief
about the unknown function f (x)



Gaussian Process emulation - posterior beliefs about f (·)
y = 1 + x + x sin(4x) - 10 data points
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Perverse example: we can spot errors using cross-validation → More data
required.



Gaussian Process emulation
y = 1 + x + x sin(4x) - 15 data points
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The covariance function is key. There are a small number of common
choices, e.g., squared exponential (RBF/Gaussian), Matern, neural-net



Gaussian Process emulation
y = 1 + x + x sin(4x) - 20 data points
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We can add, multiply and transform any covariance function to obtain a
new valid covariance function.



Emulating simulators with high dimensional input

For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,

e.g. if we use a 100× 100 grid in the solver, K contains 104 entries

Impossible to directly model f : R10,000 → R

Instead, we can use the Karhunen-Loève (KL) expansion of K to reduce
the dimension:

K = exp(Z ) where Z ∼ GP(m,C )

Z can be represented as

Z (·) =
∞∑
i=1

λiξiφi (·)

where λi and φi are the eigenvalues and eigenfunctions of the
covariance function of Z and ξi ∼ N(0, 1).
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Emulating simulators with high dimensional input
By truncating

K (x) ≈ exp

(
n∑

i=1

λiξiφi (x)

)
we reduce the modelling problem to one of modelling

f : Rn → R

This involves some loss of information
I Add a nugget term to the GP to represent the missing information

Build a GP emulator from x = (ξ1, . . . , ξn)> to the surface flux (SF)

We need a training set (xi ,SFi )
N
i=1 of simulator runs to build the

emulator

The design (choice of x locations) is key. Generally space-filling
designs are recommended.

I We use a Sobol sequence to find a space-filling design of N points on
[0, 1]n

I Spread the points by pushing them through the inverse CDF of a
N(0, 1) distribution to get a design on Rn that can be used for N(0, 1)
inputs.
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Predictive performance vs n = no. of KL components

We can assess the accuracy of the
emulator by examining the prediction
error on a held-out test set. Plotting
predicted vs true value indicates the
accuracy the GP emulator.

We can also choose the number of KL components to retain using
numerical scores
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Emulating from fields to fields
W. 2011, Holden, Edwards, Garthwaite and W. in prep.

Now consider emulating the stream
function and concentration fields
(100× 100 matrices).

We can use a similar trick, and use
the singular value decomposition to
reduce the dimension.

True streamfield
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Let y1, . . . , yN ∈ Rd be the N fields obtained and let Y be the d ×N
matrix with column i being yi .

Let Ỹ be the row centred version of Y ,

Form the SVD of Ỹ : Ỹ = LDRT



We can form a reduced rank approximation to Ỹ by ignoring all but
the first k eigenvectors:

L∗ = (l1, . . . , lk), R∗ = (r1, . . . , rk)

so that
Ỹ ≈ L∗D∗R

T
∗

If RT
∗ = (t1, . . . , tN), where each ti is a vector of length k , then

L∗D∗t1 ≈ y1

e.g., the centred concentration field for the 1st simulation.

To build an emulator from x to y, we can build an emulator from x to the
rows of R∗ = columns of RT

∗ .

To do this, we can build k separate emulators from x to each element in
the vector t.



Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield
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Finding CDFs
η(x) is a random function approximating the simulator f (x). Hence, any
summary will be a random variable.

In particular, the CDF Fη(s) = PX (η(X ) ≤ s) is a random variable.

We can use Monte Carlo to evaluate the distribution of Fη(s): for
j = 1, . . . ,M:

Draw ηj(·) ∼ GP(m∗(·), c∗(·, ·))
Evaluate

F̂j(s) =
1

m

m∑
i=1

Iηj (xi )≤s

≈ P(ηj(X ) ≤ s)

where xi are i.i.d. samples of X .

This gives a Monte Carlo sample of distribution functions

F̂1(·), . . . , F̂M(·)
From these, we can estimate the median CDF and any confidence
intervals we require.
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1d example, 20 data points
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We can give the median (mean estimate is skewed in the tails because
0 ≤ F ≤ 1), and a 95% confidence interval for the unknown CDF.



CCS simulator results - 20 simulator training runs
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Blue line = CDF obtained using 20 training samples
dotted line = 95% confidence interval



CCS simulator results - 20 simulator training runs

Blue line = CDF from using 103 Monte Carlo samples from the simulator
Red line = CDF obtained using emulator (trained with 20 simulator runs,
rational quadratic covariance function)



Limitations & future work
This describes an approach for doing uncertainty quantification on the
simulator output rather than the physical system.

Bifurcations cause non-continuous behaviour in the simulator response.

If this happens, the simulator can’t easily be modelled.

No easy way to assess if this has happened in any given simulation.

Future work:

Uncertainty on the emulator prediction

Uncertainty in the hyper-parameters

Multi-level Monte Carlo

Two-stage emulation

Polynomial Chaos.

Thank you for listening!
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