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Outline
Most simple models of the [...] glacial cycles have at least

four degrees of freedom [parameters], and some have as many
as twelve. Unsurprisingly [...this is] insufficient to distinguish
between the skill of the various models (Roe and Allen 1999)

Our focus is on statistical computation:

Can we combine a ‘simulator’, proxy model, and data in a Bayesian
analysis?

I Cf. Johannes Werner, Jonty Rougier, Andrew Parnell’s talks/posters

What can we learn?

Does it matter if we cut feedbacks between climate and age, fitting
each component independently?

What can happen if we ignore dating uncertainties?

Essentially a demonstration of recent Monte Carlo methodology (SMC2,
PMCMC), and GPU computation.

Many aspects of the modelling could be improved, and be incorporated
within this framework.
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Glacial-Interglacial cycle

Eccentricity: orbital departure from a
circle, controls duration of the seasons

Obliquity: axial tilt, controls amplitude
of seasonal cycle

Precession: variation in Earth’s axis of
rotation, affects difference between
seasons



Which is the better model?
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Models

Use conceptual models based on a few hypothesised relationships that
capture some aspect of the climate system, driven by some aspect of the
solar forcing

dXt

dt
= g(Xt , θ) + F (t, γ)

where γ = (γP , γC , γE ) controls the combination of precession, obliquity
and eccentricity.
Xt ∈ Rp denotes the state of the climate at time t.

Embed these simulators within a state space model relating climate to
observations

dXt = g(Xt , θ)dt + F (t, γ)dt + ΣdW

Yt = d + sX1,t + εt

The models have 10–15 parameters that need to be estimated
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The statistical quantities we would like to calculate are

Climate reconstruction (filtering)

π(x1:T |y1:T , θ,M)

where x1:T = (x1, . . . , xT )

Model calibration (marginal parameter posterior)

π(θ|y1:T ,M)

Model selection (model evidence/Bayes factors)

π(y1:T |M)

These are progressively more difficult to calculate. Moreover,

π(Xt+1|Xt , θ,M)

is unknown ruling out many Monte Carlo approaches.
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Bayes factors

Consider comparing two models, M1 and M2. Bayes factors (BF) are the
Bayesian approach to model selection.

The log Bayes factor is the difference between the log-likelihoods for two
models

log(BF ) = log π(y1:T | M1)− log π(y1:T | M2)

posterior odds = prior odds × Bayes factor

log(BF ) range P(M1|D) Interpretation

> 5 0.99 - 1 V. strong evidence in favour of model M1

3 to 5 0.95 - 0.99 Strong evidence in favour of model M1

-3 to 3 0.05 - 0.95 Grey zone
-3 to -5 0.01 - 0.05 Strong evidence in favour of M2

< −5 0 - 0.01 V. strong evidence in favour of model M2



Results: synthetic data
We generate simulated data from SM91, using both the astronomically
forced and unforced version of the model.

800 data points over the last 800kyr

Realistic measurement and discrepancy variances used

Can we infer the parameter values used? And the model used?

Model Dataset
SM91-unforced SM91-forced

SM91 Forced

−2.9

0
Unforced

0

−52.4
T06 Forced

−21.8

−24.7
Unforced

−18.3

−61.4
PP12 Forced

−49.6

−52.5

Strongest evidence for the true model found each time

For the data generated from the forced model, the forced version of
the wrong model is preferred.
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Results: synthetic data
True param = vertical line, solid line = posterior, dashed = prior
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Results: synthetic data

γ = (γP , γE , γC ) controls the relative contribution of the three
components of the orbital variations in the forcing.
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Results: synthetic data - climate reconstruction
Dots = truth, black line = estimate, grey = 95% CI
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Results: ODP677
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We use the ODP677 stack (a composite record from multiple cores),
which has been dated by two authors:

Lisiecki and Raymo (2005) used orbital tuning

Huybers 2007 used a depth-derived age model (no orbital tuning)

Do we get the same results using the two dating estimates?



Results: ODP677

Model Dataset
H07(unforced) LR04(forced)

SM91 Forced −8.4

−14.3

Unforced −3.9

−37.0

T06 Forced −6.2

−10.6

Unforced 0

−29.4

PP12 Forced −13.9

0

Using Huybers’ non-orbitally tuned data, we find evidence in favour of the
unforced T06 model.

Using Lisiecki’s orbitally tuned data, we find strong evidence for forced
models (PP12)

The dating method applied changes the answer
Orbitally tuned data leads us to strongly prefer the orbitally tuned version of
each model (and vice versa)

The age model used to date the stack (often taken as a given) has a strong
effect on model selection conclusions
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Computational details
Sequential Monte Carlo (SMC) methods are the natural approach for
finding the filtering distributions π(x1:T |y1:T , θ)

Represent all distributions by
collection of weighted particles
{x (i),w (i)}, e.g.,

p(x) ≈
∑

w
(i)
0 δx(i)(x)

Sequentially build up
approximation to π(x1:t |y1:t , θ)
one step at a time.

From Pierre Del Moral’s
webpage



Parameter estimation
SMC provides an unbiased estimate of the marginal likelihood

π(y1:T |θ) = π(y1|θ)
T∏
t=2

π(yt |y1:t−1, θ)

when we substitute the estimate

π̃(yt |y1:t−1, θ) =
1

M

∑
wn
t

for π(yt |y1:t−1, θ).
We can then use these estimates in a pseudo marginal scheme such as
PMCMC (Andrieu et al. 2010) to estimate

π(θ, x1:T |y1:T )

and
π(θ|y1:T )



SMC2

We’ve found that SMC2 (Chopin et al. 2011) works well for our problem

Basic idea:

Introduce M parameter particles θ1, . . . , θM

For t = 1, . . . ,T

I For each θi run a particle filter targeting π(X1:t |y1:t , θi )
I Recalculate all the importance weights and resample if necessary

Note that to avoid particle degeneracy, it is still usually necessary to run a
PMCMC sampler targeting π(θ,X1:t |y1:t) at each resampling step.
We also use Brownian bridge proposals to guide the particles and reduce
degeneracy.

This takes 3-4 days on a standard server, or 4-6 hours on a GPU (2500
processors), and took several months to code.

We used about 108 simulator runs!



SMC2

We’ve found that SMC2 (Chopin et al. 2011) works well for our problem

Basic idea:

Introduce M parameter particles θ1, . . . , θM

For t = 1, . . . ,T

I For each θi run a particle filter targeting π(X1:t |y1:t , θi )
I Recalculate all the importance weights and resample if necessary

Note that to avoid particle degeneracy, it is still usually necessary to run a
PMCMC sampler targeting π(θ,X1:t |y1:t) at each resampling step.
We also use Brownian bridge proposals to guide the particles and reduce
degeneracy.

This takes 3-4 days on a standard server, or 4-6 hours on a GPU (2500
processors), and took several months to code.

We used about 108 simulator runs!



Age model

Can we also quantify chronological uncertainty?

Target
π(θ,T1:N ,X1:N |y1:N)

where T1:N are the times of the observation Y1:N , which were previously
taken as given.

Inferring 2400 state values, 800 ages, 15 parameters

Propose a simple age model for sediment accumulation:

dH = −µsdT + σdW

Where H is the depth in the core relating to time T
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Simulation study results - age vs depth (trend removed)
Dots = truth, black line = estimate, grey = 95% CI
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Simulation study results - climate reconstruction
Dots = truth, black line = estimate, grey = 95% CI
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Results for ODP846 - age vs depth (trend removed)
Black = posterior mean, grey = 95%CI, red = H07, blue = LR04

30 25 20 15 10 5 0

−
50

−
40

−
30

−
20

−
10

0
10

20

Depth (m)

T
im

e 
(d

rif
t r

em
ov

ed
, k

yr
)

It would be difficult to reproduce the method in LR04. We get a similar
answer, using a single core, with complex joint uncertainty estimates.



Conclusions

The data do contain enough information to discriminate between
models and fit parameters

Monte Carlo methodology and computer power are now sufficiently
advanced that we can tackle the joint reconstruction, age model, and
model selection problems for simple models

I Proxy combination
I but it remains computationally expensive (∼ 1 week to compute per

model here)

Independently calculating age estimates and fitting climate models
may be a bad idea (particularly if we ignore uncertainties)

Still to do/issues:

. . .
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Bayes factors

Advantages:

Can provide evidence for and against a model

Penalises for complexity (Occam’s razor).

Asymptotic consistency

Disadvantages

Hard to calculate

Sensitive to choice of prior

Integrated likelihood may not be desirable treatment
I predictive evaluation via scoring rules? (not p-values)


