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Outline

Most simple models of the [...] glacial cycles have at least
four degrees of freedom [parameters], and some have as many
as twelve. Unsurprisingly [...this is] insufficient to distinguish
between the skill of the various models (Roe and Allen 1999)

Our focus is on statistical computation:

Can we combine a ‘simulator’, proxy model, and data in a Bayesian
analysis?

I Data assimilation followed by parameter estimation and model
selection

What can we learn?

Can we cut feedbacks between climate and age, fitting each
component independently?

Can we ignore dating uncertainties?

Can we substitute the Kalman filter for the particle filter?
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Glacial-Interglacial cycle

Cycle characterised by saw-toothed behaviour: slow accumulation and
rapid terminations.
Approx 100 kyr period between cycles, but previously a 40 kyr period was
observed.



Milankovitch theory

Eccentricity: orbital departure from a circle, controls duration of the seasons
Obliquity: axial tilt, controls amplitude of seasonal cycle
Precession: variation in Earth’s axis of rotation, affects difference between
seasons

Insolation at 65◦ north: combination of these three terms, considered important.



100kyr problem

Spectral analysis suggest the climate response has a period of ≈ 100kyr,
but the orbital forcing at this period is small.

Eccentricity has 95 and 125kyr periods, but accounts for only 2% of the
variation compared to the shifts caused by obliquity (41kyr period) and
precession (21kyr period).

Explanatory hypotheses

Earth’s climate may have a natural frequency of 100kyr caused by
natural feedback processes

100kyr eccentricity cycle acts as a ”pacemaker” to the system,
amplifying the effect of precession and obliquity at key moments,
triggering a termination.

21kyr precession cycles are solely responsible, with ice building up
over several precession cycles, only melting after four or five such
cycles.
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Which is the better model?
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Models

Use conceptual models based on a few hypothesised relationships that
capture some aspect of the climate system, driven by some aspect of the
solar forcing

dXt

dt
= g(Xt , θ) + F (t, γ)

where γ = (γP , γC , γE ) controls the combination of precession, obliquity
and eccentricity.
Xt ∈ Rp denotes the state of the climate at time t.

Embed these simulators within a state space model relating climate to
observations

dXt = g(Xt , θ)dt + F (t, γ)dt + ΣdW

Yt = d + sX1,t + εt

The models have 10–15 parameters that need to be estimated
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The statistical quantities we would like to calculate are

Climate reconstruction (filtering)

π(x1:T |y1:T , θ,M)

where x1:T = (x1, . . . , xT )

Model calibration (marginal parameter posterior)

π(θ|y1:T ,M)

Model selection (model evidence/Bayes factors)

π(y1:T |M)

These are progressively more difficult to calculate. Moreover,

π(Xt+1|Xt , θ,M)

is unknown ruling out many Monte Carlo approaches.



The statistical quantities we would like to calculate are

Climate reconstruction (filtering)

π(x1:T |y1:T , θ,M)

where x1:T = (x1, . . . , xT )

Model calibration (marginal parameter posterior)

π(θ|y1:T ,M)

Model selection (model evidence/Bayes factors)

π(y1:T |M)

These are progressively more difficult to calculate. Moreover,

π(Xt+1|Xt , θ,M)

is unknown ruling out many Monte Carlo approaches.



The statistical quantities we would like to calculate are

Climate reconstruction (filtering)

π(x1:T |y1:T , θ,M)

where x1:T = (x1, . . . , xT )

Model calibration (marginal parameter posterior)

π(θ|y1:T ,M)

Model selection (model evidence/Bayes factors)

π(y1:T |M)

These are progressively more difficult to calculate. Moreover,

π(Xt+1|Xt , θ,M)

is unknown ruling out many Monte Carlo approaches.



The statistical quantities we would like to calculate are

Climate reconstruction (filtering)

π(x1:T |y1:T , θ,M)

where x1:T = (x1, . . . , xT )

Model calibration (marginal parameter posterior)

π(θ|y1:T ,M)

Model selection (model evidence/Bayes factors)

π(y1:T |M)

These are progressively more difficult to calculate. Moreover,

π(Xt+1|Xt , θ,M)

is unknown ruling out many Monte Carlo approaches.



Bayes factors

Consider comparing two models, M1 and M2. Bayes factors (BF) are the
Bayesian approach to model selection.

The log Bayes factor is the difference between the log-likelihoods for two
models

log(BF ) = log π(y1:T | M1)− log π(y1:T | M2)

posterior odds = prior odds × Bayes factor

log(BF ) range P(M1|D) Interpretation

> 5 0.99 - 1 V. strong evidence in favour of model M1

3 to 5 0.95 - 0.99 Strong evidence in favour of model M1

-3 to 3 0.05 - 0.95 Grey zone
-3 to -5 0.01 - 0.05 Strong evidence in favour of M2

< −5 0 - 0.01 V. strong evidence in favour of model M2



Computational details
Sequential Monte Carlo (SMC) methods are the natural approach for
finding the filtering distributions π(x1:T |y1:T , θ)

Represent all distributions by
collection of weighted particles
{x (i),w (i)}, e.g.,

p(x) ≈
∑

w
(i)
0 δx(i)(x)

Sequentially build up
approximation to π(x1:t |y1:t , θ)
one step at a time.

We use Golightly and Wilkinson
(2008) style Brownian bridge
proposals to guide the particles and
reduce degeneracy.

From Pierre Del Moral’s
webpage



Parameter estimation

SMC provides an unbiased estimate of the marginal likelihood

π(y1:T |θ) = π(y1|θ)
T∏
t=2

π(yt |y1:t−1, θ)

when we substitute the estimate

π̃(yt |y1:t−1, θ) =
1

M

∑
wn
t

for π(yt |y1:t−1, θ).
We can then use these estimates in a pseudo marginal scheme such as
PMCMC (Andrieu et al. 2010) to estimate

π(θ, x1:T |y1:T ) and π(θ|y1:T )



SMC2

We’ve found that SMC2 (Chopin et al. 2011) works well for our problem

Basic idea:

Introduce M parameter particles θ1, . . . , θM

For t = 1, . . . ,T

I For each θi run a particle filter targeting π(X1:t |y1:t , θi )
I Recalculate all the importance weights and resample if necessary

Note that to avoid particle degeneracy, it is still usually necessary to run a
PMCMC sampler targeting π(θ,X1:t |y1:t) at each resampling step.

This takes 3-4 days on a standard server, or 4-6 hours on a GPU (2500
processors).

The results here used ∼ 108 simulator runs!

We tried using the Kalman filter instead of the PF, but the results were
unreliable
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Results: ODP677
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We use the ODP677 stack (a composite record from multiple cores),
which has been dated by two authors:

Lisiecki and Raymo (2005) used orbital tuning

Huybers 2007 used a depth-derived age model (no orbital tuning)

Do we get the same results using the two dating estimates?



Results: ODP677

Model Dataset
H07(unforced) LR04(forced)

SM91 Forced −8.4

−14.3

Unforced −3.9

−37.0

T06 Forced −6.2

−10.6

Unforced 0

−29.4

PP12 Forced −13.9

0

Using Huybers’ non-orbitally tuned data, we find evidence in favour of the
unforced T06 model.

Using Lisiecki’s orbitally tuned data, we find strong evidence for forced
models (PP12)

The dating method applied changes the answer
Orbitally tuned data leads us to strongly prefer the orbitally tuned version of
each model (and vice versa)

The age model used to date the stack (often taken as a given) has a strong
effect on model selection conclusions
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Age model

Can we also quantify chronological uncertainty?

Target
π(θ,T1:N ,X1:N |y1:N)

where T1:N are the times of the observation Y1:N , which were previously
taken as given.

Propose a simple age model for sediment accumulation:

dS = −µsdT + σsdWs S(T = 0) = 0
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Sample the core at depths Hm, m = 1...M.

When the core is sampled at depth Hm, the observation relates to
the climate at the most recent time at which S = −Hm.
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Sediment Model

Under a time reversal this becomes a first passage time problem:

Tm−1 | Tm ∼ Tm − IG

(
Hm−1 − Hm

µs
,

(Hm−1 − Hm)2

σ2
2

)
, T (H = 0) = 0.

Tm | Tm−1 is given by Bayes theorem.

We account for compaction by using uncompacted depth, Ĥm

(Huybers 2007), giving 2 more parameters.
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Simulation Study
Dots = truth, black line = estimate, grey = 95% CI
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Simulation Study
Dots = truth, black line = estimate, grey = 95% CI
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Simulation Study
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Real Data: ODP677 (top), ODP846
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Real Data: ODP677(top), ODP846
Posterior mean, 95%CI, Huybers 2007, Lisieki and Raymo 2005
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Real Data: ODP677(top), ODP846
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Real Data: ODP677(top), ODP846
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Real Data: ODP677(left), ODP846
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Model Comparison

Selecting between the forced CR14 model and the unforced CR14
model, the log10 BFs are

I Simulation Study: ∼9.

I ODP 677: ∼5.

I ODP 846: ∼0.



Model Comparison

Selecting between the forced CR14 model and the unforced CR14
model, the log10 BFs are

I Simulation Study: ∼9.

I ODP 677: ∼5.

I ODP 846: ∼0.

Sampling four chronologies from the ODP 846 analysis then treating
the ages as fixed, the log10 BFs are ∼0, ∼3, ∼9, ∼6.

Using a single fixed chronology leads to unreliable conclusions!



Conclusions

The data do contain enough information to discriminate between
models and fit parameters

Monte Carlo methodology and computer power are now sufficiently
advanced that we can tackle the joint reconstruction, age model, and
model selection problems for simple models

I Proxy combination
I but it remains computationally expensive (∼ 1 week to compute per

model here)

Dating uncertainty matters
I Independently calculating age estimates and fitting climate models can

be a bad idea
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Bayes factors

Advantages:

Can provide evidence for and against a model

Penalises for complexity (Occam’s razor).

Asymptotic consistency

Disadvantages

Hard to calculate

Sensitive to choice of prior

Integrated likelihood may not be desirable treatment
I predictive evaluation via scoring rules? (not p-values)


