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Introduction

The explosion in computer power and computational techniques has led
to huge changes in statistics/machine learning.

e HPC

@ Monte Carlo methods

@ Probabilistic programming, e.g., STAN, WinBUGS,
Models can now be fitted and used in a way that couldn’t have been
conceived of before.

@ Model complexity

e Big data

@ Enabled the increasing dominance of Bayesian methods

Aim of this session is not to teach algorithmic details, but describe what
is available for each type of problem.



Recap: Monte Carlo integration
Suppose we are interested in the integral

I = E(g(X)) = / g (x)f(x)dx

e P(AD) = / Lyear(6]D)d0,  E(T|D) = / T (T|0)m(6]D)d0



Recap: Monte Carlo integration
Suppose we are interested in the integral

I = E(g(X)) = / g (x)f(x)dx

e P(AD) = / Lyear(6]D)d0,  E(T|D) = / T (T|0)m(6]D)d0

Let Xy, X2, ..., X, be independent random variables with pdf f(x). Let
P
i=1

he main idea in Monte Carlo integration is to approximate / by I
) Iy is an unbiased estimator of /.

T

(1

(2) I, converges to | as n — oc.

(3) The central limit theorem tells us the rate of convergence of In:
A~ 0'2

In ~ N(I, 7) where 0 = Var[g(X)]



Monte Carlo Example
Consider the integral fol h(x)f(x)dx where
1if 1
h(x) = [cos(50x) + sin(0x)?  F(x) = 4 -1 X €101
0 otherwise

Generate X1, ..., X, from U[0,1] and estimate with [, = L5 h(X)).
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Monte Carlo Example
Consider the integral fol h(x)f(x)dx where

h(x) = [cos(50x) + Sin(20X)]2 f(x) = {(1) :t;(efw[i(::]

Generate X1, ..., X, from U[0,1] and estimate with [, = L5 h(X)).
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There are many ways of reducing the variance of the estimator.
The difficulty is in generating samples from f(x) particularly when
f(x) = m(x|D)



Bayesian inference

The Bayesian approach to statistics is beautifully simple
@ Uncertainty is represented by probability

» Explain the difference between likelihood, confidence, probability and a
p-value.

@ Bayes theorem used to combine probabilities

m(X)m(D[X)
7(D)

posterior o prior X likelihood

7(X|D) =



Bayesian inference

The Bayesian approach to statistics is beautifully simple
@ Uncertainty is represented by probability

» Explain the difference between likelihood, confidence, probability and a
p-value.

@ Bayes theorem used to combine probabilities

m(X)m(D[X)
7(D)

posterior o prior X likelihood

7(X|D) =

However, while philosophically this is simple and the same in every
problem, computation is hard.

For most models, we have to resort to approximation, e.g. Monte Carlo,
to compute the posterior.



MCMC

Markov chain Monte Carlo (MCMC) is a class of algorithms for sampling
from a distribution, e.g., a posterior distribution.

@ Construct a Markov chain X1, X3, ... such that samples from this
chain are samples from the distribution of interest, e.g., 7(X|D)




Metropolis-Hastings Algorithm

To sample from 7(x|D)

Metropolis-Hastings Algorithm

@ Suppose at time t, we have X; = x. Propose a candidate
value y from proposal distribution g(x, y).

@ Calculate the acceptance probability a(x, y)

m(Dly)n(y)aly, X))
" m(Dx)m(x)q(x,y)

Set X1 — y wfth probab?l?ty a(x,y)
x  with probability 1 — a(x, y)

. a(x, y) = min <1

q(x,y) must be easy to sample from and obey some simple rules.
@ random walks are common choices

Acceptance probability o converts the Markov chain from the wrong
distribution, to the desired distribution.



How to spot failure
Theory says samples from MCMC, Xi, X», ... converge to a sample from
7(X|D) regardless of choice of gf.
@ We must check convergence
» burn in
@ And mixing (has the chain explored all of space)
> thinning
A poor choice of g will lead to nonsense. Aim for an acceptance rate of
~ 20%
Trace and autocorrelation plots are useful.
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MCMC Problems - Example 1
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MCMC Problems - Example 2
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MCMC Problems - Example 3
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Advanced MCMC

MCMC allows for an almost arbitrary choice of proposal g(x,y).

A large volume of work exists on good chocies of ¢
@ Gibbs sampling
» WinBUGS
e Adaptive MCMC -y ~ q(x,-) = N(x, X) automatically tune ¥
@ Hybrid/Hamiltonian Monte Carlo
> Introduce dynamics - requires derivatives<- log(m(D|x)m(x))

» Good for strange shape likelihood functions
» STAN

@ Slice sampling
o Tempering
» Works well for multimodal posteriors

Plus combinations of all of the above



Parallel tempering

Run multiple MCMC chains targetting 7(x|D)Pi for p; <1

Trace plots Density plots
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http://www.youtube.com/watch?v=J6FrNf5__G0

Data assimilation



Data assimilation

Assume we have a time structured problem

Xty1 = f(xt) + ut
ye =g(xe) + vt

Y
yL-l

X,
L
Xo
“~

b Y
Xo Y, L
time

If f and g are linear functions, and u; and v; are Gaussian, the Kalman
filter (KF) gives us

7T(Xl:if‘yl:t)
For non-linear problems, the ensemble KF or unscented KF approximate
the filtering distributions using a Gaussian approximation.



Particle filter/SMC

Represent a distribution by a set of weighted particles {x;, w;}"_,

7(x) ~ Z w;dy, ()
The particle filter builds a (non-Gaussian approximation) to 7(x¢|y1:¢)
Start: {x,-(t), W,-(t) m o~ m(xe|yr:e)
Propagate: xi(tﬂ) = f(x,-(t)) + uy
Reweight: W,.(t+1) x 7r(yt+1|xl-(t+l))
Resample if necessary.



Particle filter/SMC

Represent a distribution by a set of weighted particles {x;, w;}"_,

7(x) ~ Z w;dy, ()
The particle filter builds a (non-Gaussian approximation) to 7(x¢|y1:¢)
o Start: {x,-(f)7 W,.(l')},’-’:1 ~ (Xely1:t)
e Propagate: xi(tH) = f(x,-(t)) + uy
o Reweight: WI-(H_I) x 7r(yt+1|xl-(t+l))
Resample if necessary.
Sequential Monte Carlo (SMC) adapts the PF to sample from 7(6|D)
e Sample from 71(0|D) (something easy, e.g. m(f))
@ Reweight and propagate 6 particles to sample from

m2(0|D)

m71(0|D) = 7(0|D)
The number of particles required depends upon dim(x) and T =length of
time series.



Degeneracy

For hard problems, we can quickly find degeneracy
@ A few particles have all the weight
We can try to avoid this using
@ Importance sampling and clever propagation proposals

@ Resampling the particles



Degeneracy

For hard problems, we can quickly find degeneracy
@ A few particles have all the weight

We can try to avoid this using
@ Importance sampling and clever propagation proposals
@ Resampling the particles

Solving the joint calibration and filtering problem:

Xep1 = fp(xe) + ue (X1, 0|y1:t)
e o =8o(xe) + vt (0]y1:¢)

is much harder.
@ Pseudo-marginal methods such as Particle MCMC, SMC?



ABC



Intractability

_ m(D|0)n(6)
w(010) = =S

@ usual intractability in Bayesian inference is not knowing 7(D).
@ a problem is doubly intractable if 7(D|0) = cyp(D|6) with ¢y
unknown (cf Murray, Ghahramani and MacKay 2006)

@ a problem is completely intractable if 7(D|#) is unknown and can't
be evaluated (unknown is subjective). l.e., if the analytic distribution
of the simulator, (), run at € is unknown.

Completely intractable models are where we need to resort to ABC
methods



Approximate Bayesian Computation (ABC)

Given a complex simulator for which we can't calculate the likelihood
function - how do we do inference?



Approximate Bayesian Computation (ABC)

Given a complex simulator for which we can't calculate the likelihood
function - how do we do inference?

If its cheap to simulate, then ABC (approximate Bayesian computation)is
one of the few approaches we can use.
ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators
@ they do not require explicit knowledge of the likelihood function
e inference is done using simulation from the model (they are
‘likelihood-free').



Approximate Bayesian Computation (ABC)

Given a complex simulator for which we can't calculate the likelihood
function - how do we do inference?

If its cheap to simulate, then ABC (approximate Bayesian computation)is
one of the few approaches we can use.
ABC algorithms are a collection of Monte Carlo methods used for

calibrating simulators
@ they do not require explicit knowledge of the likelihood function

e inference is done using simulation from the model (they are
‘likelihood-free').

ABC methods are primarily popular in biological disciplines
@ Simple and intuitive to implement
@ Embarrassingly parallelizable
@ Can usually be applied



Rejection ABC

Sample from
7(0|D) < w(0)m(D|6)

where 7(D|0) is the likelihood corresponding to a stochastic simulator
f(6)
Uniform Rejection Algorithm

e Draw 6 from 7(6)

e Simulate X ~ f(0)

@ Accept 0 if p(D,X) < e




Rejection ABC

Sample from
7(0|D) < w(0)m(D|6)

where 7(D|0) is the likelihood corresponding to a stochastic simulator
f(6)
Uniform Rejection Algorithm

e Draw 6 from 7(0)

e Simulate X ~ f(0)

@ Accept 0 if p(D,X) < e

This generates observations from 7(6 | p(D, X) < €):
@ As e — 00, we get observations from the prior, 7(6).
e If e =0, we generate observations from 7(6 | D).

€ reflects the tension between computability and accuracy.



theta vs D Density

Density
00 02 04 06 08 10 12 14

0 ~ U[-10,10], X ~ N(2(8 +2)8(6 — 2),0.1 + 6?)
p(D, X) = |D — X]|, D=2
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Density

theta vs D
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e=25

Density

theta vs D
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Density

theta vs D

T
0T

T T
w,om.ov

T T T
‘0 20 00

vt 2T
Ausuaq
i
o 10
awn o °1fr
@280 i
DD%W%&ZNM o
o C 8e, e

o

theta

theta



Summary statistics
If the data are too high dimensional we never observe simulations that are
‘close’ to the field data - curse of dimensionality
Reduce the dimension using summary statistics, S(D).
Approximate Rejection Algorithm With Summaries
@ Draw 6 from 7(6)
e Simulate X ~ f(6)
@ Accept 0 if p(S(D),S(X)) < e

If S is sufficient this is equivalent to the previous algorithm.



Summary statistics
If the data are too high dimensional we never observe simulations that are
‘close’ to the field data - curse of dimensionality
Reduce the dimension using summary statistics, S(D).
Approximate Rejection Algorithm With Summaries
@ Draw 6 from 7(6)
e Simulate X ~ f(6)
@ Accept 0 if p(S(D),S(X)) < e

If S is sufficient this is equivalent to the previous algorithm.
ABC is approximate for two reasons
@ Using tolerance € in p(S(D),S(X)) < e
e Using summary S(D).
There is a trade-off:
e dim(S) small allows us to use small €, but 7(0|sops) % 7(0|D)
e dim(S) large gives m(0|sops) ~ 7(6|D), but the ABC approximation
is poor as curse of dimensionality forces us to use larger ¢



Model selection

Consider comparing two models, M7 and M5.
Bayes factors (BF) are the Bayesian approach to model selection.

~ m(DIMy)
5 = L(DIM)

where
m(D|My) = /7T(D|9,M1)7T(9)d0
It is extremely challenging to calculate Bayes factors for even quite
simple models.
e SMC?, path-sampling, nested-sampling
Criterions such as the BIC are crude approximations to the BF.

Predictive evaluation using scoring rules looks to be a promising route.



Integrated nested Laplace approximation (INLA)
Rue, Martino, and Chopin, Ser. B, 2009

Computationally effective alternative to MCMC for Bayesian inference.
INLA is designed for latent Gaussian models, a wide and flexible class:

@ regression models

@ spatial and spatio-temporal models

0 ~ p(0)
x| ~ N(0, Q(0)™1)
n=c'x
yilxi, 0 ~ p(yi|ni, 0)

INLA will efficiently approximate 7(6|y) for low dimensional 6.



MCMC for Bayes Summary

o MCMC

» most generally applicable gold standard method
e SMC/PF

» primarily for time structured models or as an alternative to MCMC
e ABC

» for models where all you can do is simulate (likelihood unknown)
o INLA

» for latent Gaussian problems (x|@) where you only care about marginal
distributions w(0|y)

All of these methods require large number of simulator evaluations.



Resampling methods



Resampling methods

We often have a statistical procedure that we wish to evaluate.
@ A parameter estimate - how confident are we in our estimate?
@ A model which makes predictions - how accurate are the predictions?
@ A hypothesis we wish to test - but don't know how.

There is no need for much of the classical statistical theory we teach -
most of it was developed before computers and approximates what
resampling methods do.



Bootstrapping

The bootstrap is a method for assessing properties of a statistical
estimator in a non-parametric framework.

We use the data multiple times to generate ‘new’ data sets to assess the
properties of parameters.
@ Suppose we have data Xi, ..., X, for which we want to estimate
quantity 6(X)
» eg. 0(X) = Var(X)
@ A bootstrap replicate dataset is generated by sampling from the data
with replacement giving
X{yo o X0
and then calculating 6* = 6(X*).

By repeating this a large number of times, giving 07,053, ..., we can assess
the properties of 0(X)



LLawschool example
A sample of 15 law schools was taken, and two measurements were made
for each school:
x;j :  LSAT, average score for the class on a national law test
yi - GPA, average undergraduate grade-point average for the class
We are interested in the correlation coefficient between these two
quantities, which we estimate to be § = 0.776.

g
@ o

GPA
3,
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560 580 600 620 840 560

LSAT

How accurate is our estimate of the correlation coefficient?



LLawschool example - |l

Use the bootstrap to estimate the standard error of § = Cor(LSAT, GPA).

© Sample 15 data points with replacement to obtain bootstrap data z*.

@ Evaluate the sample correlation coefficient 8* for the newly sampled
data z*.

© Repeate steps 1 and 2 to obtain §*(1), ... 9*(B),

@ Estimate the standard error of the sample correlation coefficient by
the sample standard deviation of §*(1)_ ... §*(8),



LLawschool example - Il
With B = 1000, we find the estimated standard error of 6 to be 0.137.

@ a histogram of the bootstrap replicates gives more information about
the uncertainty about Cor(LSAT, GPA).
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Cross Validation

Cross validation is a useful computational tool for assessing the
performance of a model in terms of its predictive ability.

This is generally in the context of regression or classification where we
have trained the data using (x;, y;) pairs

Leave-one-out cross-validation For i =1,...,n

© Fit the model to the reduced data set (or training set),

{(Xl)yl)a ey (Xi—l,)/i—l), (Xi+17yi+l)7 ey (Xna.yn)}

@ Obtain from the fitted model the predicted value y; at x;.

© Compute the squared error ¢; = (9; — y;)?

The root mean square error can then be reported and used to compare
models.



Monte Carlo and Permutation tests

DietA‘233 291 312 250 246 197 268 224

DietB‘185 263 246 224 212 188 250 148

Are the diets equally effective?



Monte Carlo and Permutation tests

DietA‘233 291 312 250 246 197 268 224
DietB‘185 263 246 224 212 188 250 148

Are the diets equally effective? A good test statistic might be
T—A-B

But we need the sampling distribution of T in order to do a hypothesis
test.



Randomisation Test
© Randomly re-assign the 16 individuals to the two groups.
@ Re-calculate the test-statistic for this permuted data
© Repeat to obtain B sampled test-statistics T1,..., Tg.

@ For a two-sided test, the estimated p-value of the observed test
statistic Tops is

1 B
E Zﬂl-l—i'ZlTobsl
i=1

Using 10000 random permutations gave a p-value of 0.063.




Randomisation Test
© Randomly re-assign the 16 individuals to the two groups.
@ Re-calculate the test-statistic for this permuted data
© Repeat to obtain B sampled test-statistics T1,..., Tg.

@ For a two-sided test, the estimated p-value of the observed test
statistic Tops is

1 B
E Zﬂl-l—i'ZlTobsl
i=1

Using 10000 random permutations gave a p-value of 0.063.
The parametric test:
Assume X,-(j) ~ N(uj,0?)
The standard test is then a two sample t-test, based on the statistic
X1 — x(@2)
T /28 + 28
Under Hp, T has a ty4-distribution, giving a p-value of 0.0649.



Bayesian optimization

Black box (query only) model
x—f—y

Find x* = arg max f(x)
Bayesian optimisation techniques use a surrogate model of f(x) to do the
optimisation.

@ Used by Google, Facebook etc to fit their data models

@ Basis of Deepmind and many machine learning methods.



Conclusions

@ Computer power now allows Bayesian inference to be done for
complex problems

@ The calculations are not always cheap or simple
@ Resampling methods allow us to implement frequentist procedures.
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