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Computer experiments

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality?

how do we estimate tunable parameters?

how do we deal with computational constraints?

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors?

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.
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Bayesian statistics
Represent all uncertainties as probability distributions:

π(θ|D) =
π(D|θ)π(θ)

π(D)

π(θ|D) is the posterior distribution
I Always hard to compute:

SMC2, PGAS, Tempered NUTS-HMC

π(D|θ) is the likelihood function.
I For complex models can be slow to compute:

GP emulators

I Can also be impossible to compute in some cases:

ABC

I

π(D|θ) =

∫
π(D|X )π(X |θ)dX

Relating simulator to reality can make specifying π(D|θ) particularly
difficult:

Simlator discrepancy modelling

π(D) is the model evidence or normalising constant.
I Requires us to integrate, and is thus harder to compute than π(θ|D):

SMC2, nested sampling
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Uncertainty Quantification (UQ) for computer experiments

Calibration
I Estimate unknown parameters θ
I Usually via the posterior distribution π(θ|D)
I Or history matching

Uncertainty analysis
I f (x) a complex simulator. If we are uncertain about x , e.g.,

X ∼ π(x), what is π(f (X ))?

Sensitivity analysis
I X = (X1, . . . ,Xd)>. Can we decompose Var(f (X )) into contributions

from each Var(Xi )?
I If we can improve our knowledge of any Xi , which should we choose to

minimise Var(f (X ))?

Simulator discrepancy
I f (x) is imperfect. How can we quantify or correct simulator

discrepancy.

Data assimilation
I Find π(x1:t |y1:t)
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Meta-modelling
Surrogate modelling

Emulation



Code uncertainty

For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.

Consequently, we will only know the simulator output at a finite number
of points.

We call this code uncertainty.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , f (θi ))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of f (θ).
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Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this meta-model an emulator of our simulator.

Gaussian process emulators are most popular choice for emulator.

Built using an ensemble of model runs Dsim = {(θi , f (θi ))}i=1,...,N

They give an assessment of their prediction accuracy π(f (θ)|Dsim)
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Meta-modelling
Gaussian Process Emulators

Gaussian processes provide a flexible nonparametric distributions for our
prior beliefs about the functional form of the simulator:

f (·) ∼ GP(m(·), σ2c(·, ·))

where m(·) is the prior mean function, and c(·, ·) is the prior covariance
function (semi-definite).
Gaussian processes are invariant under Bayesian updating.

Definition If f (·) ∼ GP(m(·), c(·, ·)) then for any collection of inputs
x1, . . . , xn the vector

(f (x1), . . . , f (xn))T ∼ MVN(m(x), σ2Σ)

where Σij = c(xi , xj).
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Gaussian Process Illustration
Zero mean



Gaussian Process Illustration



Gaussian Process Illustration



Challenges

Design: if we can afford n simulator runs, which parameters should
we run it at?

High dimensional inputs
I If θ is multidimensional, then even short run times can rule out brute

force approaches

High dimensional outputs
I Spatio-temporal.

Incorporating physical knowledge

Difficult behaviour, e.g., switches, step-functions, non-stationarity...



Uncertainty quantification for Carbon Capture and Storage
EPSRC: transport
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Technical challenges:

How do we find non-parametric Gaussian process models that i) obey
the fugacity constraints ii) have the correct asymptotic behaviour
How do we fit parametric equations of state (Peng-Robinson and
variants) - tempered NUTS-HMC.



Storage

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field) y

f (K )y
Outputs:

Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),
...
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CCS examples
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield
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ABC: inference for complex
stochastic models



Estimating Divergence Times



Forward simulation

Model evolution and fossil finds

Let τ be the temporal gap between the divergence time and the
oldest fossil.

The posterior for τ is then used as a prior for a genetic analysis.

The likelihood function π(D|θ) is intractable, but it is cheap to simulate.



Approximate Bayesian Computation (ABC)
Wilkinson 2008/2013, Wilkinson and Tavaré 2009

If the likelihood function is intractable, then ABC is one of the few
approaches we can use to do inference.

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).

ABC does not require explicit knowledge of the likelihood function
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ε = 10
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ε = 7.5
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ε = 2.5
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ε = 1
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Rejection ABC
If the data are too high dimensional we never observe simulations that are
‘close’ to the field data - curse of dimensionality
Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(S(D), S(X )) < ε

If S is sufficient this is equivalent to the previous algorithm.

Simple → Popular with non-statisticians

∃ many extensions and improvements

How to choose S(D)

How to efficiently sample θ
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An integrated molecular and palaeontological analysis

The fossil record does not constrain the primate divergence time as
closely as previously believed.

Genetic and palaeontology estimates unified
Human-chimp divergence time pushed further back.

Wilkinson et al. 2011, Bracken-Grissom et al. 2014.



Accelerating ABC: GP-ABC
Monte Carlo methods (such as ABC) are costly and can require more
simulation than is possible. However,

most methods sample naively - they don’t learn from previous
simulations

they don’t exploit known properties of the likelihood function, such
as continuity

they sample randomly, rather than using careful design.

Emulators are the usual approach to dealing with complex models. But,
emulating stochastic simulators is problematic.

Instead of modelling the simulator output, we can instead model
L(θ) = π(D|θ)

D remains fixed: we only need learn L as a function of θ

1d response surface

But, it can be hard to model.
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Iteration 24
Left=estimate, right = truth

http://youtu.be/FF3KhKh6NHg


Climate science
What drives the glacial-interglacial cycle?

Eccentricity: orbital departure from a circle, controls duration of the seasons
Obliquity: axial tilt, controls amplitude of seasonal cycle
Precession: variation in Earth’s axis of rotation, affects difference between
seasons



Model selection

What drives the glacial-interglacial cycle?

Which aspect of the astronomical forcing is of primary importance?

Which models best represent the cycle?

Most simple models of the [...] glacial cycles have at least
four degrees of freedom [parameters], and some have as many
as twelve. Unsurprisingly [...this is] insufficient to distinguish
between the skill of the various models (Roe and Allen 1999)

Bayesian model selection revolves around the use of the Bayes factor,
which are notoriously difficult to compute.

Model selection for stochastic differential equations

1000 observations, 3000 unknown state variables, 1000 unknown
times, 17 unknown parameters, choice of 5 different simulators.

Simulation studies show we can accurately choose between competing
models, and identify the correct forcing.
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Age model

Can we also quantify chronological
uncertainty?

dXt = g(Xt , θ)dt + F (t, γ)dt + ΣdW

Yt = d + sX1,t + εt

Plus an age model

dH = −µsdT + σdW

Target
π(θ,T1:N ,X1:N ,Mk |y1:N)

where T1:N are the unknown times of the observations Y1:N , X1:N are the
climate state variables through time, Mk is the simulation model used,
and θ is the corresponding parameter.

I.e., can we simultaneously date the stack, do climate reconstruction, fit
the model, and choose between models?
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Simulation study results - age vs depth (trend removed)
Dots = truth, black line = estimate, grey = 95% CI
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Simulation study results - climate reconstruction
Dots = truth, black line = estimate, grey = 95% CI
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Simulation study results - parameter estimation
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Simultaneous inference of the choice between 5 models, 17 parameters,
800 ages, 2400 climate variables, using just 800 observations.



Results for ODP846 - age vs depth (trend removed)
Black = posterior mean, grey = 95%CI, red = Huybers 2007, blue = Lisieki and Raymo
2004
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Advantages: full UQ, model selection, simultaneous parameter estimation
and climate reconstruction
Ignoring uncertainty leads to incorrect conclusions



Model discrepancy
Consider the state space model:

xt+1 = fθ(xt) + et , yt = g(xt) + εt

et ∼ p(·), εt ∼ q(·)

How do we correct errors in f or g?

Use a GP discrepancy model - eg, xt+1 = fθ(xt) + δ(xt) + et

Chapter 6: Gaussian Process Models of Simulator Discrepancy
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Figure 6.6: The learnt discrepancy (solid black line) and the true discrepancy function

(red line) from using different incorrect simulators with Gaussian process discrepancy.

Note that data are generated from Equations 6.4.1 and 6.4.2 with true parameters

(q2, r2) as (0.1, 1) (3 plots in the top row), (1, 0.1) (3 plots in the middle row), and

(1, 100) (3 plots in the bottom row), respectively.

ancy from using different incorrect simulators with Gaussian process discrepancy to

model different set of data. We have found that when data come from the system with

193

Technical challenge: inference using PGAS works but is expensive. A
variational approach looks more promising.
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Conclusions

UQ can be vital: ignoring uncertainty can lead to incorrect
conclusions, often in subtle ways.

Computational tractability is one of the key bottlenecks: big
simulation and big data.

Methods from machine learning have the potential to help us make
large advances in statistical methodology.

Thank you for listening!
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