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Computer experiments

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality?

how do we estimate tunable parameters?

how do we deal with computational constraints?

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors?

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.
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Bayesian statistics
Represent all uncertainties as probability distributions:

π(θ|D) =
π(D|θ)π(θ)

π(D)

π(θ|D) is the posterior distribution
I Always hard to compute:

SMC2, PGAS, Tempered NUTS-HMC

π(D|θ) is the likelihood function.
I For complex models can be slow to compute:

GP emulators

I Can also be impossible to compute in some cases:

ABC

I

π(D|θ) =

∫
π(D|X )π(X |θ)dX

Relating simulator to reality can make specifying π(D|θ) particularly
difficult:

Simlator discrepancy modelling

π(D) is the model evidence or normalising constant.
I Requires us to integrate, and is thus harder to compute than π(θ|D):

SMC2, nested sampling
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Outline

Use scientific need to motivate methodological work.

1 Carbon capture and storage: estimating storage properties
I Gaussian process (GP) emulators
I Dealing with high dimension and physical constraints

2 Population genetics: inferring divergence times
I ABC
I Accelerating inference using GP-ABC

3 Climate science: palaeoclimate reconstruction
I Model selection
I simulator discrepancy



Uncertainty quantification for Carbon Capture and Storage
EPSRC: transport
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Technical challenges:

How do we find non-parametric Gaussian process models that i) obey
the fugacity constraints ii) have the correct asymptotic behaviour
How do we fit parametric equations of state (Peng-Robinson and
variants) - tempered NUTS-HMC.



Storage

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field) y

f (K )y
Outputs:

Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),
...
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Gaussian process emulators
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How do we deal with high dimensional inputs and outputs?

Represent input fields by truncated Karhunen-Loeve expansions

Represent output fields by truncated principal component expansions.

Challenges:

Design

Nugget issues

Wilkinson 2010, Holden et al. 2015, Bonceur et al. 2015.



CCS examples
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield
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Estimating Divergence Times
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Forward simulation
Model evolution and fossil finds

Let τ be the temporal gap between the divergence time and the
oldest fossil.
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The posterior for τ is then used as a prior for a genetic analysis.

The likelihood function π(D|θ) is intractable, but it is cheap to simulate.



Approximate Bayesian Computation (ABC)
Wilkinson 2008/2013, Wilkinson and Tavaré 2009

If the likelihood function is intractable, then ABC is one of the few
approaches we can use to do inference.

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).
If ε = 0, we generate observations from π(θ | D).

ABC does not require explicit knowledge of the likelihood function

Inference is done using simulation from the model
Very popular in biological disciplines

I Simple to implement
I Intuitive
I Can usually be applied
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An integrated molecular and palaeontological analysis

The fossil record does not constrain the primate divergence time as
closely as previously believed.

Genetic and palaeontology estimates unified
Human-chimp divergence time pushed further back.

Wilkinson et al. 2011, Bracken-Grissom et al. 2014.



Accelerating ABC: GP-ABC
Monte Carlo methods (such as ABC) are costly and can require more
simulation than is possible. However,

most methods sample naively - they don’t learn from previous
simulations

they don’t exploit known properties of the likelihood function, such
as continuity

they sample randomly, rather than using careful design.

Emulators are the usual approach to dealing with complex models. But,
emulating stochastic simulators is problematic.

Instead of modelling the simulator output, we can instead model
L(θ) = π(D|θ)

D remains fixed: we only need learn L as a function of θ

1d response surface

But, it can be hard to model.
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History matching waves

The log-likelihood for a typical problem ranges over several orders of
magnitude.

Consequently, it is hard to model the log-likelihood across the entire
parameter space.

Introduce waves of history matching.

In each wave, build a GP model that can rule out regions of space as
implausible.

Using GP-ABC it is possible to obtain the same results as more complex
MC algorithms, but with two-orders of magnitude fewer simulations
(Wilkinson 2014, Holden et al. 2015 (in revision)).
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Active learning for history-matching/GP-ABC
Work with James Hensman

Sequential design is the key to further reducing computational burden.

Given our current knowledge, where should we next run the simulator
to most improve our knowledge?

One option is to minimise the expected average entropy of the history
match

Any GP emulator allows us to calculate a probabilistic classification

p(θ) = P(θ implausible)

The entropy of our belief at θ is

E (θ) = −p log p − (1− p) log(1− p)

and the average entropy is

E =

∫
E (θ)dθ

Choose the next design point to minimise the expected value of E .
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Find the minima using Bayesian optimisation
Left=p(θ), middle= E(θ), right = E(E|θn+1 = θ)

Based on GPy and GPyOpt software.



Iteration 24
Left=estimate, right = truth

http://youtu.be/FF3KhKh6NHg


Climate science
What drives the glacial-interglacial cycle?

Eccentricity: orbital departure from a circle, controls duration of the seasons
Obliquity: axial tilt, controls amplitude of seasonal cycle
Precession: variation in Earth’s axis of rotation, affects difference between
seasons



Model selection
What drives the glacial-interglacial cycle?

Which aspect of the astronomical forcing is of primary importance?
Which models best represent the cycle?

Most simple models of the [...] glacial cycles have at least
four degrees of freedom [parameters], and some have as many
as twelve. Unsurprisingly [...this is] insufficient to distinguish
between the skill of the various models (Roe and Allen 1999)

Bayesian model selection revolves around the use of the Bayes factor,
which are notoriously difficult to compute.

Model selection for complex stochastic differential equations with
1000s data points
Can use SMC2, combined with Brownian bridge proposals,
implemented on GPU

Simulation studies show we can accurately choose between competing
models, and identify the correct forcing.

For real data, the age model used has an overwhelming effect on the
model selection conclusions (Carson et al. in submission).
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Age model
Can we also quantify
chronological uncertainty?

Target
π(θ,T1:N ,X1:N ,Mk |y1:N)

where T1:N are the unknown times of the observations Y1:N , X1:N are the
climate state variables through time, Mk is the simulation model used,
and θ is the corresponding parameter.

I.e., can we simultaneously date the stack, do climate reconstruction, fit
the model, and choose between models?
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Simulation study results - age vs depth (trend removed)
Dots = truth, black line = estimate, grey = 95% CI
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Simulation study results - climate reconstruction
Dots = truth, black line = estimate, grey = 95% CI
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Simulation study results - parameter estimation
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Simultaneous inference of the choice between 5 models, 17 parameters,
800 ages, 1600 climate variables, using just 800 observations.



Results for ODP846 - age vs depth (trend removed)
Black = posterior mean, grey = 95%CI, red = Huybers 2007, blue = Lisieki and Raymo
2004
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Model discrepancy
Consider the state space model:

xt+1 = fθ(xt) + et , yt = g(xt) + εt

et ∼ p(·), εt ∼ q(·)

How do we correct errors in f or g?

Use a GP discrepancy model - eg, xt+1 = fθ(xt) + δ(xt) + et

Chapter 6: Gaussian Process Models of Simulator Discrepancy

−30 −20 −10 0 10 20 30

−
1
5

−
1
0

−
5

0
5

1
0

1
5

f(xt,ut)=0.5xt+8ut+GP(0,K)

x(t)

x
(t
+
1
)−
f(
x
t,
u
t)

−30 −20 −10 0 10 20 30

−
1
5

−
1
0

−
5

0
5

1
0

1
5

f(xt,ut)= 25xt/(1+xt^2)+8ut+GP(0,K)

x(t)

x
(t
+
1
)−
f(
x
t,
u
t)

−30 −20 −10 0 10 20 30

−
1
5

−
1
0

−
5

0
5

1
0

1
5

f(xt,ut)= 8 ut+GP(0,K)

x(t)

x
(t
+
1
)−
f(
x
t,
u
t)

−30 −20 −10 0 10 20 30

−
1
5

−
1
0

−
5

0
5

1
0

1
5

f(xt,ut)= 0.5+8 ut+GP(0,K)

x(t)

x
(t
+
1
)−
f(
x
t,
u
t)

−30 −20 −10 0 10 20 30

−
1
5

−
1
0

−
5

0
5

1
0

1
5

f(xt,ut)=25 xt/(1+xt^2)+8 ut+GP(0,K)

x(t)

x
(t
+
1
)−
f(
x
t,
u
t)

−30 −20 −10 0 10 20 30

−
1
5

−
1
0

−
5

0
5

1
0

1
5

f(xt,ut)=8 ut+GP(0,K)

x(t)

x
(t
+
1
)−
f(
x
t,
u
t)

−30 −20 −10 0 10 20 30

−
1
5

−
1
0

−
5

0
5

1
0

1
5

f(xt,ut)= 0.5+8 ut+GP(0,K)

x(t)

x
(t
+
1
)−
f(
x
t,
u
t)

−30 −20 −10 0 10 20 30

−
1
5

−
1
0

−
5

0
5

1
0

1
5

f(xt,ut)= 25 xt/(1+xt^2)+8 ut+GP(0,K)

x(t)

x
(t
+
1
)−
f(
x
t,
u
t)

−30 −20 −10 0 10 20 30

−
1
5

−
1
0

−
5

0
5

1
0

1
5

f(xt,ut)= 8 ut+GP(0,K)

x(t)

x
(t
+
1
)−
f(
x
t,
u
t)

Figure 6.6: The learnt discrepancy (solid black line) and the true discrepancy function

(red line) from using different incorrect simulators with Gaussian process discrepancy.

Note that data are generated from Equations 6.4.1 and 6.4.2 with true parameters

(q2, r2) as (0.1, 1) (3 plots in the top row), (1, 0.1) (3 plots in the middle row), and

(1, 100) (3 plots in the bottom row), respectively.

ancy from using different incorrect simulators with Gaussian process discrepancy to

model different set of data. We have found that when data come from the system with

193

Technical challenge: inference using PGAS works but is expensive. A
variational approach looks more promising.
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Conclusions

David Cox: challenge for a statistician is to be involved in several
fields of application and to use that to motivate theoretical
contributions.

Computational tractability is one of the key bottlenecks for much of
science, either through big simulation or big data.

Methods from machine learning have the potential to help us make
large advances in statistical methodology.

I Bayesian optimization, variational approximations, Gaussian processes,
. . .

Thank you for listening!



Conclusions

David Cox: challenge for a statistician is to be involved in several
fields of application and to use that to motivate theoretical
contributions.

Computational tractability is one of the key bottlenecks for much of
science, either through big simulation or big data.

Methods from machine learning have the potential to help us make
large advances in statistical methodology.

I Bayesian optimization, variational approximations, Gaussian processes,
. . .

Thank you for listening!


