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LINEAR MODELS

THESE NOTES ARE SPLIT into two parts (theory and case-studies)

in the hope that this makes it easier for you to revise the theory for

the exam, and to learn how to put this theory into practice for the two

pieces of assessed coursework. The disadvantage of this structure is

that you will need to bring both parts to each lecture.

This section of notes contains only the theory and some simple

theoretical examples. I have significantly rewritten and reorganised the

notes this year based on feedback from last year’s students. Greater

focus has now been placed on application rather than theory and proof,

and I have removed some technical material that is not necessary in

the age of ready accessibility to computers and free statistical software.

The case-study handout contains a detailed analysis of some real

datasets. The case-studies contain a lot of material - this is to help

you do as good a job as possible with the coursework and for use as

a reference. It is not necessary for you to memorise everything in the

case studies for the exam. However, it is important that you master

both theory and practice.

Please email any corrections or suggestions to

r.d.wilkinson@nottingham.ac.uk
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Introduction to linear models

1.1 What is regression?

Regression is the name given to a huge collection of statistical tech-

niques used to analyse the relationship between two or more variables.

Regession aims to exploit the pattern of correlations in the data to

provide simple models that have explanatory and/or predictive power.

The first regression analysis was performed by Legendre in 1805

and by Gauss in 1809 to determine the orbits of bodies about the Sun

from astronomical observations. Since then, regression has been used

in pretty much every field imaginable.

Linear regression is the topic of this module. It is the simplest and

most important case of regression analysis, and despite the myriad of

techniques developed by statisticians over the past two centuries, it is

still one of the most common types of statistical analysis performed,

and the basis of much of the analysis done in the empirical sciences.

1.2 Data and variables

• We will consider data of the form:

n

(x

T
i , yi) : i = 1, . . . , n

o

(x

T
i – row vector of dimension k)

i.e. there are n experimental units or cases, each yielding a set of

measurements

1. yi is the response or outcome for the ith case,

2. x

T
i = (xi1, . . . , xik) is the ith covariate consisting of k input

variables.
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• The covariates may be

1. continuous

2. discrete: e.g. binary, nominal scale (no ordering) or ordinal scale

(some ordering).

Discrete variables are called factors and the values taken by a factor

are called levels. Warning: In previous modules all random

variables are given a capital letter, e.g. X,

and so are matrices e.g. A. This module

contains both matrices and random vectors,

and so you need to keep track of what is

random and what isn’t yourself.

1.3 A good strategy for statistical modelling

A. Propose a model for the data (i.e. a parametric formula linking

the response variable with the input variables, recognising the

stochastic nature of the response).

B. Fit the model (e.g. find the best set of parameters).

C. Ask ‘Is the model adequate?’ (i.e. consistent with the data). Does it

allow the main questions of the analysis to be answered?

D. Fit other plausible models, compare them, and choose the best.

E. Use the best model to answer the questions of interest. This isn’t the order we cover the material.

We do something like B, D,E, C with A

covered throughout.
1.4 The class of linear models

Consider models of the form

yi = f (xi, b) + ei i = 1, . . . , n, (1.1)

where b is a p�vector of parameters. Without loss of generality we

can assume E[ei] = 0.

This is the most general class of regression models. The aim in

regression analysis is to find a good choice of the value of b, and

perhaps also of the regression functions f .

In this module we consider the restricted class of linear models

f (xi, b) = g (xi)
T b (1.2)

where g is some known (i.e. chosen by us) function that transforms For example,

• If k = 1, then g(x) = (1, x)> is

a straight line with an intercept and

g(x) = (1, x, x2)> is a quadratic.

the k�vector xi into a p�vector g (xi) (generally, p need not equal

k). We also assume that for i 6= j, Cov(ei, ej) = 0 and Var(ei) =

Var(ej).



LINEAR MODELS 3

1.4.1 The design matrix

If we collect the g (xi)’s into rows g (xi)
T , i = 1, 2, . . . , n of a (n ⇥ p)

matrix Z, we then obtain a matrix representation for equations (1.1)

and (1.2):

y = Z b + e.

(n ⇥ 1) (n ⇥ p)(p ⇥ 1) (n ⇥ 1)
This is the general form of a linear model.

• y is called the response

• x is called the explanatory variable, the regressors, or the co-

variates.

• Z is called the design matrix.

Notes:

1. E[y] = Zb is called the linear structure of the model.

2. A linear model must be linear in the parameters (b j’s) but not E.g. y = a + bx2 + c log x + e is still a

linear model, but y = a + cos(bx) + e is

not.
necessarily linear in the input variables (x

1

,x
2

,. . . ,xk).

3. Once we have found Z, we can do without g(x) and so usually we

will skip straight to Z.

4. One dataset can lead to many different models – i.e. many different

design matrices can be formed from the same cases ⇥ variables

array.

Why use linear models?

1. It is a surprisingly large class of useful models.

2. The theory is well developed (i.e. analytically tractable).

3. Numerical aspects are relatively easy.

4. Lots of nice properties (see Chapter 2).

5. Long and proven history of success.

1.5 Simple and multiplelinear regression

Simple linear regression refers to the case where there is a single

covariate and we wish to fit the linear model

yi = a + bxi + ei, where i = 1, . . . , n. (1.3)

In this model we have just two parameters and one input variable and

we fit a straight line through the data.

What are b, g(x)T and Z here?

The vector of parameters is b =

2

4

a

b

3

5.
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g(x)T = [1, x] and so the design matrix is

Z =

2

6

6

6

6

6

4

1 x
1

1 x
2

...
...

1 xn

3

7

7

7

7

7

5

and the model in matrix form becomes

2

6

6

6

6

6

4

y
1

y
2

...

yn

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

1 x
1

1 x
2

...
...

1 xn

3

7

7

7

7

7

5

2

4

a

b

3

5+

2

6

6

6

6

6

4

e
1

e
2

...

en

3

7

7

7

7

7

5

. (1.4)

Multiple linear regression refers to the case where there are

multiple covariates, x
1

, x
2

, . . . , xk say, and we wish to fit the model

yi = a + b
1

x
1i + . . . + bkxki + ei, where i = 1, . . . , n. (1.5)

What are b, g(x)T and Z here?

Once you have done this a few times, you will be able to go directly

from (1.5) to Z skipping g.
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1.6 A salutary example

Figure 1.1: Histograms of the student for

each category.

yi = final mark received in the Linear Models module for student i

xi =

8

>

<

>

:

0 if student i attended at most 1 problem class

1 if student i attended at least 2 problem classes

y

T = (73, 41, 85, 49, 69, 63, 54, 70, 59, 49, 44, 74, 70, 0, . . . , 46, 41, 70)

x

T = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, . . . , 0, 0, 1).

A possible model of these data is This can also be expressed as

yi = a + bxi + ei

,yi =

8

>

<

>

:

a + ei if xi = 0

a + b + ei if xi = 1

What are Z and b?

What quantity does b correspond to? This is called a one-way analysis of vari-

ance (ANOVA) model, as there is one

covariate, which is a discrete factor.

After fitting the model, we find ba = 53.0, bb = 13.1 – What conclusion

do you draw?
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Model fitting: Least squares estimation

2.1 The least squares estimator
See Section 2.10 for a reminder of some

useful matrix algebra results.Consider the linear model y = Zb + e, with E[e] = 0.

Definition 1. The (ordinary) least squares (OLS) estimator of b is the

vector bb which minimizes the sum of squared differences

S(b) = (y � Zb)>(y � Zb)

=
n

Â
i=1

(yi � E[yi])
2

.

Proposition 1. Assume that Z is of rank p, so that (Z

T
Z)�1 exists.

Then the ordinary least squares estimate of b is

bb =
⇣

Z

T
Z

⌘�1

Z

T
y.

2.1.1 Examples

TWO OBSERVATIONS with E[y
1

] = q, E[y
2

] = 2q:

y
1

= q + e
1

y
2

= 2q + e
2

then Z =

2

4

1

2

3

5

⇣

Z

T
Z

⌘�1

=
1

5

and bq =
1

5

(y
1

+ 2y
2

)
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CONSIDER THE STRAIGHT LINE1 1 This is the simple linear regression model,
as there is only one covariate. This gives
the simple formulae you saw in G11STA.
You should always use the matrix form of
the estimator for this module!

yi = a + b (xi � x) + ei , i = 1, . . . , n.

Z =

2

6

6

6

6

6

4

1 x
1

� x

1 x
2

� x
...

...

1 xn � x

3

7

7

7

7

7

5

Z

T
Z =

2

6

4

n 0

0

n
Â

i=1

(xi � x)2

3

7

5

Z

T
y =

2

6

6

4

n
Â

i=1

yi

n
Â

i=1

yi(xi � x )

3

7

7

5

)

2

4

ba

bb

3

5 =

2

4

Ân
i=1

yi
n

Ân
i=1

yi(xi� x )
Ân

i=1

(xi� x )2

3

5

=

2

4

y
Ân

i=1

(yi� y )(xi� x )
Ân

i=1

(xi� x )2

3

5
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2.1.2 Proof of Proposition 1 (R0)

We want to prove that

bb =
⇣

Z

T
Z

⌘�1

Z

T
y.

First find the stationary points of S(b).

S(b) =
n

Â
i=1

⇣

yi � z

T
i b
⌘

2

= (y � Zb)T (y � Zb)

= y

T
y � y

T
Zb � bT

Z

T
y + bT

Z

T
Zb

= y

T
y � 2bT

Z

T
y + bT

Z

T
Zb

Thus,

∂S(b)
∂b

= �2Z

T
y + 2Z

T
Zb.

At the stationary point b = bb, these derivatives must be zero.

�2Z

T
y + 2Z

T
Z

bb = 0 (2.1)

(2.1) are the normal equations.

Next, we show that any solution to (2.1) is a minimum of S(b): Recall that bb minimizes S(b) if the Hessian

matrix,
d2S
db2

is a positive definite matrix.
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Finally we solve the normal equations to find bb explicitly.

In general Z is chosen to be of full rank, i.e.,

rank (Z) = p

thus

rank

⇣

Z

T
Z

⌘

= p

(i.e. Z

T
Z is non-singular and so its inverse exists). Then from (2.1) Note that if Z was a square invertible

matrix, then bb = Z

�1

y. In general Z
won’t be a square matrix (and so cannot be

inverted). The term
�

Z

T
Z

��1

Z

T is acting

as a pseudo-inverse, and is sometimes

called the Moore-Penrose pseudo-inverse

of Z.

bb =
⇣

Z

T
Z

⌘�1

Z

T
y.

Minimising the sum of squared differences S(b) is called the method

of least squares. Since our estimator uses y (a random vector) to

produce an estimate for b, then bb is also a random vector. We call bb

the least-squares estimate of b.

2.2 Some definitions

Definition 2. The fitted values are given by by = Z

bb, i.e. byi = zibb

where zi is the ith row of Z. byi is the expected value of the fitted model

for observation i.

Definition 3. The ith
residual is given by bei = yi � byi. The residuals

are the difference between the observed values and the fitted values.

We write ê = y � by for the vector of residuals.

2.2.1 Generalised Expectation and Variance

Before we can prove some properties of bb, we require a generalised

form of expectation and variance.

Let X =
⇥

Xij
⇤

be a matrix of random variables (r.v.s) with ijth entry Recall that E is a linear operator: if A, B, C

and D are constant matrices, and if X and

Y are vectors of r.v.’s., then

E [AXB + CY + D] = AE(X)B+CE(Y)+D.

Xij. Then E [X]ij := E
⇥

Xij
⇤

, i.e., the expectation of a matrix is the

matrix of expected values.

Definition 4. Let X and Y be vectors of random variables of length p

and q respectively. The covariance matrix Cov (X, Y) is defined to

be a p ⇥ q matrix with

Cov (X, Y)ij := Cov
�

Xi, Yj
�

where

Cov
�

Xi, Yj
�

= E
⇥

(Xi � E [Xi])
�

Yj � E[Yj]
� ⇤

is the usual univariate covariance.

Properties:

(i) Cov (X, Y) = E
h

(X � E [X]) (Y � E [Y ])T
i
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= E
h

XY

T
i

� E [X]E [Y ]T

(ii) If a, b are vectors of constants with lengths p and q respectively,

then

Cov (X � a, Y � b) = Cov (X, Y)

(iii) If A, B are constant matrices (of the correct size) then

Cov (AX, BY) = ACov (X, Y) B

T
.

Definition 5. For a (p ⇥ 1) vector X, we define the variance-

covariance matrix, Var (X) to be

Var (X) := Cov (X, X)

and so

Var (X) =

2

6

6

6

6

6

4

Var(X
1

) Cov(X
1

, X
2

) . . . Cov(X
1

, Xp)

Cov(X
2

, X
1

) Var(X
2

)
...

. . .

Cov(Xp, X
1

) Var(Xp)

3

7

7

7

7

7

5

(p⇥p)

Properties:

(i) Var (X) is symmetric. And positive semi-definite.

(ii) Var (X � a) = Var (X)

(iii) Var (AX) = AVar (X) A

T Important and useful

Proofs are left as exercises.

2.3 Properties of the OLS estimator ˆb

Consider the linear model for n observations and p parameters

y = Z b + e, with E [e] = 0
n⇥1 n⇥p p⇥1 n⇥1 Var (e) = s2

In

Assume that Z is of rank p, so that (Z

T
Z)�1 exists.

Theorem 1. Then

(R0) The least squares estimator of b is bb =
�

Z

T
Z

��1

Z

T
y

(R1) bb is an unbiased estimator of b, i.e., E
h

bb
i

= b

(R2) Var
⇣

bb
⌘

= s2

�

Z

T
Z

��1

(R3) s2 = 1

n�p

⇣

y � Z

bb
⌘T⇣

y � Z

bb
⌘

is an unbiased estimator for s2

2.3.1 Proofs of Theorem 1

(R1) bb is unbiased.
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(R2) Var

⇣

bb
⌘

= s2

�

Z

T
Z

��1

.

2.4 The null model

The null model fits a horizontal line to the data, i.e.

yi = a + ei i = 1, . . . , n.
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Figure 2.1: Some data with the fitted null

model.

The null model is the simplest possible model. There is just one param-

eter in the model, a. What is g(x) and Z?

• To estimate a by least squares: minimise S(a) =
n
Â

i=1

(yi � a)2

ˆa = y

• This model is only appropriate for a dataset where y is unrelated to

any of the input variables.
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2.5 Linear transformations

It is possible to parameterise a model in more than one way. Two

models that have the same fitted values (and hence residuals) for any

vector of observations y, can be considered to be the same model.

Suppose that we want to rewrite our model in terms of another

parameter vector g. Assume that g = Ab (A is a p ⇥ p non-singular

matrix) and so our model becomes y = ZA

�1g + e, which has design

matrix ZA

�1. Then:

bg =

✓

⇣

ZA

�1

⌘T ⇣
ZA

�1

⌘

◆�1

⇣

ZA

�1

⌘T
y

= A

bb

and the fitted values are:

by = ZA

�1

bg

= ZA

�1

A

bb

= Z

bb

i.e. fitted values (and thus residuals) are unchanged by a reparametri- This is comforting!

sation of the form g = Ab.

2.6 Deviance and R2

2.6.1 Deviance

Definition 6. D =
n
Â

i=1

(yi � byi)
2 = (y � ŷ)T(y � ŷ) is called

the model deviance or the residual sum of squares (ResidSS), as

D =
n
Â

i=1

be 2

i = êT ê.

The deviance is a measure of model fit. Unfortunately, this depends

on the scale of the yis. However, we can standardise it using the

deviance of the null model.

• The deviance of the null model is

D
0

=
n

Â
i=1

(yi � y )2

and is called the total sum of squares (TSS).

2.6.2 Decomposition of the total sum of squares

Theorem 2. If the null model is nested within the full model, then n

Â
i=1

(yi � y )2 is called the total sum of squares

n

Â
i=1

(yi � byi)
2 is called the residual sum of squares (or Deviance)

n

Â
i=1

(byi � y )2 is called the regression sum of squares.
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n

Â
i=1

(yi � y )2 =
n

Â
i=1

(yi � byi)
2 +

n

Â
i=1

(byi � y )2 (2.2)

total SoS = residual SoS + regression SoS

This equation is called the decomposition of the total sum of

squares.

Proof. First we show that if the design matrix contains a column of

ones, then the residuals must sum to zero. From the normal equations,

Z

>
Z

bb = Z

>
y

) 0 = Z

>(y � Z

bb)

) 0 = Z

>
be

and by considering the row of ones in Z

>, we find that the residuals

must sum to zero for any model that has the null model nested within it.

Thus, 0 =
n
Â

i=1

bei =
n
Â

i=1

(yi � byi).

Now,

n

Â
i=1

(yi � y )2 =
n

Â
i=1

(yi � byi + byi � y )2

=
n

Â
i=1

(yi � byi)
2 +

n

Â
i=1

(byi � y )2 + 2

n

Â
i=1

(yi � byi)(byi � y )

but,

n

Â
i=1

(yi � byi)(byi � y ) =
n

Â
i=1

(yi � byi)byi �
n

Â
i=1

(yi � byi) y

=
n

Â
i=1

byi(yi � byi)� y
n

Â
i=1

(yi � byi)

=
n

Â
i=1

byi(yi � byi) – because the sum of residuals is zero

= by>(y � by)

= (Z

bb)>(y � Z

bb)

= bb
>
(Z

>
y � Z

>
Z

bb)

= bb
>

0p⇥1

from the normal equations

= 0.

Hence,

n

Â
i=1

(yi � y )2 =
n

Â
i=1

(yi � byi)
2 +

n

Â
i=1

(byi � y )2

.

2
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2.6.3 R2

Definition 7. R2 is defined to be Also called the coefficient of determination

R2 = 1 � Deviance(current model)
Deviance(null model)

= 1 � D
1

D
0

= 1 � Â(yi � ˆyi)
2

Â(yi � ¯y)2

The deviance of the null model gives a baseline to compare the current

model to. Not all models can be compared with the null model in this

way. The comparison only makes sense when the null model is nested For example, the model Y = bX cannot be

compared to the null model Y = a, but the

model Y = a + bX can.
within the current model, i.e., when the model contains an intercept.

Properties of R

2:

(1) R2 =

n
Â

i=1

(byi � y )2

n
Â

i=1

(yi � y )2

=
Regression sum of squares

Total sum of squares

,

(2) 0 6 R2 6 1,

Proof.

n

Â
i=1

(yi � y )2 =
n

Â
i=1

(yi � byi)
2 +

n

Â
i=1

(byi � y )2

total SoS = residual SoS + regression SoS

Note that the deviance of the null model is equal to the total sum of

squares,

TotalSS =
n

Â
i=1

(yi � y )2

.

By applying the decomposition to the definition of R2, we find (1).

To prove (2) note that sums of squares must be non-negative and so

from the definition R2 6 1 and (1) implies R2 > 0.

Interpretation

• We can use R2 to compare the fit of models that are not nested,

as long as the null model is nested within them both. For example,

Y = a + bX can be compared with Y = a + beX .

• R2 can be interpretted as the proportion of the variation in the

response that is absorbed by the model. By the decomposition of

the total sum of squares, the ‘left-over’ variation in the response is

represented in the residual sum of squares.

However, care needs to be taken. The deviance is not a good absolute

measure, since if model M
1

is nested in M
2

, then DM
1

� DM
2

. thus even adding random variables into M
1

will improve the deviance and R2
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Because of this, the adjusted R-squared was proposed.

Definition 8. The adjusted R2 corrects R2 to account for the number

of variables and is defined to be With a little work, we can show that

R2

adj = 1 �
✓

n � 1

n � p

◆

⇣

1 � R2

⌘

.

R2

adj = 1 � s2(current)
s2(null)

.

Often this measure is preferred to R2, as it takes into account p, the

number of parameters in the current model, giving a preference for

more parsimonious models.

2.6.4 An extra example

Consider the linear model with

E[y
1

] = a E[y
2

] = b E[y
3

] = a � b.

(a) Calculate the design matrix Z and the estimator bb.

(b) Given that y = (6, 9, 3)T , give an unbiased estimate for s2.

(c) What is the deviance?

(a) Z =

2

6

6

4

1 0

0 1

1 �1

3

7

7

5

, Z

T
Z =

2

4

2 �1

�1 2

3

5 and (Z

T
Z)�1 =

1

3

2

4

2 1

1 2

3

5.

Thus,

bb = (Z

T
Z)�1

Z

T
y

=
1

3

2

4

2 1

1 2

3

5

2

4

y
1

+ y
3

y
2

� y
3

3

5

=
1

3

2

4

2y
1

+ y
2

+ y
3

y
1

+ 2y
2

� y
3

3

5

.

(b) bb =
⇥

8 7

⇤T and Z

bb =
⇥

8 7 1

⇤T .

By (R3), an unbiased estimate for s2 is given by

s2 = 1

n�p (y � Z

bb)T(y � Z

bb)

= 1

3�2

⇥

� 2 2 2

⇤

2

6

6

4

�2

2

2

3

7

7

5

= 12.
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2.7 Residuals and the hat matrix

be = y � by

= y � Z

bb

= y � Z

⇣

Z

T
Z

⌘�1

Z

T
y

=

✓

In � Z

⇣

Z

T
Z

⌘�1

Z

T
◆

y

= (In � P) y, say,

where P = Z

�

Z

T
Z

��1

Z

T is called the ‘hat matrix’. Note that ŷ =

Py so P adds a hat!

Properties of the hat matrix:

(i) P

T = P, P

2 = P i.e. P is symmetric idempotent.

(ii) (In � P) is symmetric idempotent.

(iii) tr (In � P) = n � p = rank (In � P).

Proof. (i) P

T =
�

Z(Z

T
Z)�1

Z

T�T
= Z(Z

T
Z)�1T

Z

T = P

P

2 = Z

�

Z

T
Z

��1

Z

T
Z

�

Z

T
Z

��1

Z

T = P.

(ii) (In � P)2 = I

2

n � InP � PIn + P

2 = In � P.

(iii) tr (In � P) = tr (In)� tr (P) and

tr (P) = tr

⇣

Z

�

Z

T
Z

��1

Z

T
⌘

= tr(Ip) = p

(since tr (AB) = tr (BA))

) tr (In � P) = n � p

and rank = trace for any idempotent matrix.

{trace = sum of diagonal elements.}

2.8 Gauss-Markov Theorem

Theorem 3. Let y be a random vector with

E [y] = Zb, Var (y) = s2

In, Z is (n ⇥ p) with rank p.

Then a

T
bb is the unique linear unbiased estimator of a

T b with mini-

mum variance.

We say that a

T
bb is the BLUE estimator of a

T b. Note that the linear-

ity here, is linearity in y.

Proof. (i) Linearity:

a

T
bb = a

T �
Z

T
Z

��1

Z

T
y = c

T
y say. i.e. a

T
bb is linear in y.
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(ii) Unbiasedness:

E
h

a

T
bb
i

= a

TE
h

bb
i

= a

T b =) unbiased.

(iii) Best:

Let b

T
y be a second linear unbiased estimate of a

T b. Then

a

T b = E
h

b

T
y

i

= b

TE [y] = b

T
Zb

)
⇣

a

T � b

T
Z

⌘

b = 0 8b

) a

T = b

T
Z (2.3)

Now

Var

⇣

b

T
y

⌘

= b

TVar (y) b = s2

b

T
b

and

Var

⇣

a

T
bb
⌘

= s2

a

T
⇣

Z

T
Z

⌘�1

a

= s2

b

T
Z

⇣

Z

T
Z

⌘�1

Z

T
b

= s2

b

T
Pb

So,

Var

⇣

b

T
y

⌘

� Var

⇣

a

T
bb
⌘

= s2

b

T
b � s2

b

T
Pb

= s2

b

T (In � P) b

= s2

b

T (In � P)2

b (2.4)

Let d

T = b

T (In � P)T then (2.4) becomes

Var

⇣

b

T
y

⌘

� Var

⇣

a

T
bb
⌘

= s2

d

T
d > 0. (2.5)

i.e. a

T
bb has minimum variance in the class of linear unbiased

estimators.

(iv) Uniqueness

Let b

T
y be a 2nd linear unbiased estimator with

Var

⇣

b

T
y

⌘

= Var

⇣

a

T
bb
⌘

.
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Then from (2.5), d = 0

) b

T(In � P) = 0

) b

T = b

T
P

= b

T
Z

⇣

Z

T
Z

⌘�1

Z

T

= a

T
⇣

Z

T
Z

⌘�1

Z

T using (2.3)

) b

T
y = a

T
bb

Corollary:

If a

T = (0, 0, . . . , 1, 0, . . . , 0) (1 in ith position), then bbi is the best

linear unbiased estimate (BLUE) of bi.

• These properties ‘characterise’ the least squares estimator, but

non-linear or biased estimators may also have good properties.

• Note that no distributions have been assumed at any stage.

• Note also that we don’t require the errors to be independent and

identically distributed. We only need them to be uncorrelated and

homoscedastic (constant variance).

2.8.1 Illustrative example:

Is yi the best linear unbiased estimator for E[yi]?

No! According to our model, E[yi] = z

T
i b. By the Gauss-Markov

Theorem, the best linear unbiased estimator for E[yi] is z

T
i
bb = byi.

Check:

Var(yi) = s2

Var(byi) = Var(zT
i
bb)

= z

T
i Var(bb)zi

= s2

z

T
i (Z

T
Z)�1

zi

= s2 [P]ii

= s2 pii (say),

However, pii =
⇥

P

2

⇤

ii =
n
Â

j=1

pij pji =
n
Â

j=1

p2

ij > p2

ii, and therefore

pii 6 1.

Thus, Var(byi) 6 Var(yi) and so byi is a better estimator for E[yi]

than yi.

This shouldn’t be surprising - if we believe our regression model to

be true, then it makes sense that we can get a better estimate using all

of the data than that possible from just using a single observation.
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2.9 Unbiased estimation of s2

Theorem 4. (R3) Let E [y] = Zb and Var (y) = s2

In. Then

s2 =
1

n � p

⇣

y � Z

bb
⌘T ⇣

y � Z

bb
⌘

is an unbiased estimator of s2.

Before we prove the theorem, we need a lemma.

Lemma 1. Let Y be an (n ⇥ 1) vector of random variables with Expectation of a quadratic form

E [Y ] = Q and Var (Y) = S =
⇥�

sij
�⇤

(n⇥n).

If A =
⇥�

aij
�⇤

(n⇥n) is a symmetric matrix, then

E
h

Y

T
AY

i

= tr (AS) + QT
AQ.

Proof. [non-examinable]

(Y � Q)T
A (Y � Q) = Y

T
AY � 2QT

AY + QT
AQ

and

E
h

Y

T
AY

i

= E

"

n

Â
i=1

n

Â
j=1

(Yi � qi) aij
�

Yj � qj
�

#

+ 2E
h

QT
AY

i

� QT
AQ

=

 

n

Â
i=1

n

Â
j=1

aijE
⇥

(Yi � qi)
�

Yj � qj
�⇤

!

+ QT
AQ

=
n

Â
i=1

n

Â
j=1

aijsij + QT
AQ

= tr (AS) + QT
AQ.

Proof of theorem. In Section 2.7, we showed that
⇣

y � Z

bb
⌘

=

(In � P) y. Then

⇣

y � Z

bb
⌘T ⇣

y � Z

bb
⌘

= y

T (In � P)T (In � P) y

= y

T (In � P) y

using the properties of the hat matrix.

When we apply the lemma to y

T (In � P) y, we get

E
h

y

T (In � P) y

i

= s2

tr (In � P) + (Zb)T (In � P) (Zb)
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but tr (In � P) = n � p (from section 2.7) and

bT
Z

T (In � P) Zb = 0

{since Z

T
Z � Z

T
Z

⇣

Z

T
Z

⌘�1

⇣

Z

T
Z

⌘

= 0p⇥p}

) E
h

y

T (In � P) y

i

= (n � p) s2

) E
h

s2

i

= s2 .

2.10 Some useful matrix algebra

Recall:

1. (AB)T = B

T
A

T ,

2. ∂
∂b =

2

6

6

6

6

6

6

4

∂
∂b

1

...

...
∂

∂bp

3

7

7

7

7

7

7

5

,

3. ∂
∂b

⇣

bT
a

⌘

= a

4.
∂

∂b

⇣

bT
Ab
⌘

= (A + A

T)b

= 2Ab when A is symmetric.
5. rank(A) = the number of linearly independent (LI) columns of A =

number of LI rows of A.

6. rank(A) = rank(AT) = rank(AT A)

7. If P and Q are conformable non-singular matrices, then rank(PAQ) =

rank(A).

8. A is idempotent if A2 = A.

9. A symmetric matrix A is positive definite if x

>Ax > 0 for every non-

zero column vector x. It is positive semi-definite if x

>Ax � 0. Note

that variance matrices must by definition be positive semi-definite.

10. We can diagonalise any real symmetric matrix S as

S = ADA>

where A is an orthonormal matrix with A>A = AA> = I and D is

a diagonal matrix consisting of eigenvalues of S.



3

Normal linear models

We now make the additional assumption that ei
iid⇠ N

�

0, s2

�

. This So far we have not made any assumptions

concerning the distribution of the errors eiclass of models is known as the class of normal linear models. Equiv-

alently,

yi
iid⇠ N

⇣

z

>
i b, s2

⌘

i = 1, . . . , n.

In matrix form the normal linear model is written as z

>
i is the ith row of Z.

y ⇠ Nn

⇣

Zb, s2

In

⌘

,

i.e. y follows a multivariate normal distribution, where Nn(µ, S) de-

notes the normal distribution in n dimensions with mean vector µ

(n ⇥ 1) and n ⇥ n covariance matrix S.

3.1 Distribution theory for ˆb

We can now strengthen Theorem 1, our main result about the distribu-

tion of bb.

Theorem 5. For the normal linear model

y = Zb + e

where ei
iid⇠ N

�

0, s2

�

, i = 1, . . . , n, then,

(R4) bb =
⇣

Z

>
Z

⌘�1

Z

>
y is the maximum likelihood estimator (MLE) of

b

(R5) bb ⇠ Np

✓

b, s2

⇣

Z

>
Z

⌘�1

◆

(R6)
bbi � bi

s
p

dii
⇠ tn�p, where dii is the ith diagonal element of

⇣

Z

>
Z

⌘�1

.
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3.1.1 Proofs

Theorem (R4). bb is the MLE of b.

Proof. The likelihood is

L
⇣

y; b, s2

⌘

=

�

�s2

In
�

�

�1/2

(2p)n/2

exp

⇢

� 1

2s2

h

(y � Zb)> (y � Zb)
i

�

and the log likelihood is

`
⇣

y; b, s2

⌘

= �n
2

log 2p � n
2

log s2 � 1

2s2

(y � Z b)> (y � Zb) .

(3.1)

To obtain the MLE’s we must solve

∂`
∂b

= 0 and
∂`

∂s2

= 0.

However
∂`
∂b

= 0 gives the normal equations (Eq. 2.1) and so the MLE

for b must be bb irrespective of the value of s2.

SETTING
∂`

∂s2

= 0

gives

0 =
�n
2

bs2

+
1

2

bs4

⇣

y � Z

bb
⌘> ⇣

y � Z

bb
⌘

) bs2 =
1

n

⇣

y � Z

bb
⌘> ⇣

y � Z

bb
⌘

i.e. the MLE bs2 =
1

n
⇥ Deviance =

(n � p)
n

s2

.

Result R3 showed that

s2 =
1

n � p

⇣

y � Z

bb
⌘>⇣

y � Z

bb
⌘

is an unbiased estimator of s2. Therefore, the MLE for s2 must be a

biased estimator: Consequently, instead of using the MLE to

estimate s2, we usually use the estimator

s2 instead.E[bs2] = E

✓

n � p
n

s2

◆

=
n � p

n
s2

6= s2

.



LINEAR MODELS 23

Theorem (R5). Let y ⇠ Nn
�

Zb, s2

In
�

, then

bb ⇠ Np

✓

b, s2

⇣

Z

>
Z

⌘�1

◆

,

Proof. bb =
⇣

Z

>
Z

⌘�1

Z

>
y = Ay say (A is p ⇥ n).

y ⇠ Nn

⇣

Zb, s2

In

⌘

) bb ⇠ Np

⇣

AZb, s2

AA

>
⌘

by Lemma 2

) bb ⇠ Np

⇣

b, s2(Z

>
Z)�1

⌘

If s2 is known then we can use (R5) to provide basic confidence

intervals for b. However, s2 is rarely known, and so we must estimate

it. We then must use (R6) to find confidence intervals.

3.2 Distributional properties of ˆb and s2

Suppose X ⇠ Nn (q, S) where S is an n ⇥ n positive definite matrix.

Lemma 2. AX ⇠ Nq

⇣

Aq, ASA

>
⌘

, where A is a q ⇥ n matrix.

Proof. See G12PMM. Matrix square roots are not unique. As

S is symmetric, we can diagonalise it

S = QDQ

> and use S� 1

2 = QD

� 1

2

If Y = S� 1

2 (X � q)>, then Y ⇠ Nn(0, I), where S� 1

2 is the matrix

square root of S�1.

Lemma 3. (X � q)> S�1 (X � q) ⇠ c2

n. See Section 3.6 for a reminder of the

definition of some common distributions.
Proof. Let Y = S� 1

2 (X � q)>. Then

Y

>
Y = (X � q)> S�1 (X � q)

=
n

Â
i=1

Y2

i ⇠
n

Â
i=1

N(0, 1)2 ⇠ c2

n.

Before proving (R6) we shall require

Theorem 6. Let y ⇠ Nn
�

Zb, s2

In
�

, then

(i) 1

s2

⇣

bb � b
⌘>

Z

>
Z

⇣

bb � b
⌘

⇠ c2

p,

(ii)
(n � p) s2

s2

⇠ c2

n�p, Tells us the distribution of the unbiased

estimator of s2.
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(iii) bb and s2 are independent.

Proof. (i) Note that

(bb � b)>Z

>
Z(bb � b)

s2

=
⇣

bb � E[bb]
⌘> h

Var(bb)
i�1

⇣

bb � E[bb]
⌘

by (R1) and (R5). Lemma 3 then implies that the left hand side has

a c2

p distribution.

2

(ii) and (iii) These proofs are not particularly difficult, but require sev-

eral pages of algebra. They are included in the appendix to this

chapter for completeness, but will not be examined.

3.3 Single parameter distributions

We are now in a position to prove (R6), namely that

bbi � bi

s
p

dii
⇠ tn�p,

where dii is the ith diagonal element of (Z

>
Z)�1.

We shall prove the stronger result which gives the distribution of a

linear function of the least squares estimator.

Proposition 2. Let Once we have proved the proposition,

we then arrive at R6 by setting a

> =

(0, . . . , 1, . . . , 0), a vector of zeros with 1 in

the ith position.T =
a

>
bb � a

>b

s

r

a

>
⇣

Z

>
Z

⌘�1

a

then T ⇠ tn�p.

Proof.
bb ⇠ Np

✓

b, s2

⇣

Z

>
Z

⌘�1

◆

(3.2)

and
(n � p) s2

s2

⇠ c2

n�p (3.3)

are independent (Thm 6).

Consider a

>
bb where a is a p-vector of known constants. Then1 1 Recall Lemma 2.

a

>
bb ⇠ N(a

>b, s2

a

>(Z

>
Z)�1

a),

and so

U =
a

>
bb � a

>b

s

r

a

>
⇣

Z

>
Z

⌘�1

a

⇠ N (0, 1) .
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From (3.3),

V =
s
s
⇠
s

1

(n � p)
c2

n�p

where U and V are independent.

Hence

T =
U
V

⇠ tn�p

from the definition of the t-distribution,

Finally, note that a

>(Z>Z)�1a = dii the ith diagonal element of

(Z>Z)�1.

3.4 Confidence intervals

We proved

bbi � bi

s
p

dii
⇠ tn�p,

where dii is the ith diagonal element of
⇣

Z

>
Z

⌘�1

. This immediately

gives a 100(1 � a)% confidence interval (C.I.) for bi: Note that std.error(bbi) = s
p

dii .

bbi ± tn�p (1 � a/2) s
p

dii

Using Proposition 2, we get the more general result that a 100(1 �
a)% confidence interval for a

>b is given by

a

>
bb ± tn�p(1 � a

2

)s
q

a

>(Z

>
Z)�1

a.

3.4.1 A simple example

Data:

x 4.6 5.1 4.8 4.4 5.9 4.7 5.1 5.2 4.9 5.1

y 87.1 93.1 89.8 91.4 99.5 92.1 95.5 99.3 98.9 94.4
Fitting a simple linear regression model with R gives output:

> x <- c(4.6, 5.1, 4.8, 4.4, 5.9, 4.7, 5.1, 5.2, 4.9, 5.1)

> y <- c(87.1, 93.1, 89.8, 91.4, 99.5, 92.1, 95.5, 99.3, 98.9, 94.4)

> fit <- lm (y ~ x)

> summary(fit)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max
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-4.1966 -1.7792 -0.2677 1.3135 5.3823

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.240 12.495 4.581 0.0018 **

x 7.404 2.501 2.960 0.0181 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.1 on 8 degrees of freedom

Multiple R-squared: 0.5227, Adjusted R-squared: 0.4631

F-statistic: 8.762 on 1 and 8 DF, p-value: 0.01815

What is the fitted regression line?

Given that

(Z>Z)�1 =

0

@

16.25 �3.24

�3.24 0.65

1

A

Calculate a 95% equi-tailed confidence interval for the gradient? You will need to use statistical tables

20 40 60 80

0
5

10
15

(Intercept) coefficient

x 
co

ef
fic

ie
nt

●

Figure 3.1: You can visualise joint confi-

dence intervals using

library(car)

confidenceEllipse(fit)

> confint(fit)

2.5 % 97.5 %

(Intercept) 28.427314 86.05237

x 1.635831 13.17146

3.5 Estimation and prediction

Imagine that we have fit a linear model and now wish to apply it to

some new combination of the input variates, x

0

. We can:

1. Estimate the expected value of the response for x

0

,

2. Predict the value of a new observation with input variates x

0

.

At first glance estimation and prediction appear to be the same - in

both cases we get z

>
0

bb as our estimate/prediction, where z

>
0

is the row
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of the design matrix that corresponds to the input variates x

0

. However,

the key difference arises in the variability of the estimator/predictor.

3.5.1 Estimation

We want to estimate E[y
0

]: the expected value of the response with

input variates x

0

. Our model says that E[y
0

] = z

>
0

b, and by the

Gauss-Markov Theorem, z

>
0

bb is the unique unbiased linear estimator

of z

>
0

b with minimum variance. From Section 3.3, a 100(1 � a)%

confidence interval for E[y
0

] is given by

z

>
0

bb ± tn�p(1 � a
2

)s
q

z

>
0

(Z

>
Z)�1

z

0

.

That is, the variance of the estimation error is:

Var(E[y
0

]� z

>
0

bb) = Var(z>
0

b � z

>
0

bb)

= z

>
0

Var(bb)z
0

= s2

z

>
0

(Z

>
Z)�1

z

0

.

4.5 5.0 5.5
85

90

95

100

105

x

y

●

●

●

●

●

●

●

●

●

●

Figure 3.2: You can visualise the estimation

intervals using

library(visreg)

visreg(fit)

3.5.2 Prediction

This time we want to estimate (predict) the actual value y
0

rather than

its expectation E[y
0

], and so our model is y
0

= z

>
0

b + e
0

, where

e
0

⇠ N(0, s2) is independent of e
1

, . . . , en.

Although our prediction is still z

>
0

bb, the variance in the prediction

error is

Var(y
0

� z

>
0

bb) = Var(z>
0

b + e
0

� z

>
0

bb)

= Var(e
0

) + z

>
0

Var(bb)z
0

= s2 + s2

z

>
0

(Z

>
Z)�1

z

0

,

which is clearly strictly greater than the estimation error.

Now, the prediction error y
0

� z

>
0

bb has a normal distribution, and so a

100(1 � a)% predictive interval for y
0

is given by

z

>
0

bb ± tn�p(1 � a
2

)s
q

1 + z

>
0

(Z

>
Z)�1

z

0

.
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3.5.3 Simple example ctd.

Suppose we are interested in the value of y at x = 5. Then the row of

the design matrix for this x value would be z

> =

What is the estimated value of E[y] and the predicted value of y?

Calculate a 95% confidence interval for E[y]

What is a 95% predictive interval for y

> newdata <- data.frame(x=5)

> predict(fit, newdata, interval = "confidence", level=0.95) # Confidence interval for the mean response

fit lwr upr

1 94.25807 91.99462 96.52153

> predict(fit, newdata, interval = "prediction", level=0.95) # prediction interval of the response

fit lwr upr

1 94.25807 86.75991 101.7562

The predictive interval is wider than the confidence interval for

the expected value, as the predictive interval includes extra variation

generated by the error for this observation, in addition to the variation

from the random vector bb which is present in both intervals.

3.6 Definitions of some common probability distributions

(1) If Xi
iid⇠ N(0, 1) for i = 1, . . . , d, then

Q =
d

Â
i=1

X2

i ⇠ c2

d.
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(2) If U ⇠ N(0, 1) and V ⇠ c2

d where U and V are independent then

Y =
Up
V/d

⇠ td.

(3) If A ⇠ c2

a and B ⇠ c2

b are independent then

F =
A/a
B/b

⇠ Fa,b.

These relations define these three distributions.

3.7 Proof of Theorem 6 - non-examinable

We will now prove
(n � p) s2

s2

⇠ c2

n�p

First we need a lemma.

Lemma 4. I � P has n � p eigenvalues of 1, and p eigenvalues of 0.

Proof. Suppose x is an eigenvector with eigenvalue l. Then

lx

>
x = x

>(I � P)x = x

>(I � P)>(I � P)x = l2

x

>
x

Thus l(l � 1) = 0, and so all the eigenvalues are 0 or 1.

I � P is symmetric, so we can diagonalise it and write

I � P = ADA

>

where D is a diagonal matrix of eigenvalues and A is an orthonormal

matrix with A

>
A = AA

> = I.

We saw previously that rank(I � P) = n � p and thus

rank(D) = rank(ADA

>) = rank(I � P) = n � p.

As D is a diagonal matrix, it must thus contain exactly n � p non-zero

terms and p zero terms along its diagonal.

Proof.

(n � p)s2

s2

=
RSS
s2

RSS = be>be

= y

>(I � P)y

= (y � Zb)>(I � P)(y � Zb)

= e>(I � P)e

where e ⇠ Nn(0, s2

I).

See Section 2.7 and the proof of Theorem 4
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Recall that I � P is symmetric. We can thus write I � P = ADA

>.

e>(I � P)e = eADA

>e

= Z

>
DZ

=
n

Â
i=1

diZ2

i

=
n�p

Â
i=1

Z2

i

where Z = A

>e. Note that because A is orthogonal Z ⇠ Nn(0, s2

I),

and hence
(n � p)s2

s2

=
e>(I � P)e

s2

⇠ c2

n�p.

Lemma 5. Suppose X ⇠ Nn (q, S) and let U = AX and V = BX. Moreover

(a) U

>
U and V

>
V are independent,

(b) U and V

>
V are independent.

If Cov (U, V) = 0, then U and V are independent.

Proof. Let

W =

0

@

U

V

1

A =

0

@

A

B

1

A

X

Thus W has a multivariate normal distribution with variance matrix

Var(W) =

0

@

ASA

>
ASB

>

BSA

>
BSB

>

1

A

Thus, if

Cov (U, V) = ASB

> = 0

the result follows.

Finally, lets prove that bb and s2 are independent.

Proof. Let U = bb and V = y � Z

bb then U and V

>
V are indepen- Note that U = Ay and V = By

dent by Lemma 5 since

Cov

h

bb, y � Z

bb
i

= (Z

>
Z)�1

Z

>Cov (y, (In � P)y)

= s2(Z

>
Z)�1

Z

>(In � P)>

= s2((Z

>
Z)�1

Z

>�(Z

>
Z)�1

Z

>
Z(Z

>
Z)�1

Z

>)

= 0p⇥n.

Hence, bb and s2 are independent.
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Hypothesis testing

4.1 Hypothesis testing reminder

Suppose that we have a null hypothesis H
0

represented by a com-

pletely specified model and that we wish to test this hypothesis using

data X
1

, . . . , Xn. We proceed as follows

1. Assume H
0

is true.

2. Find a test statistic T(X
1

, . . . , Xn) for which large values indicate

departure from H
0

.

3. Calculate the theoretical sampling distribution of T under H
0

.

4. The observed value Tobs = T(x
1

, . . . , xn) of the test statistic is

compared with the distribution of T under H
0

.

• Using the Neyman-Pearson approach we reject H
0

if Tobs > c.

Here c is chosen so that P(T � c|H
0

) = a where a is the size

of the test, i.e., P(reject H
0

|H
0

true) = a.

• Under the Fisherian approach we compute the p-value p =

P(T � Tobs|H0

) and report it. This represents the strength of

evidence against H
0

.

4.1.1 Simple regression hypothesis tests

Consider testing

H
0

: bi = 0

vs H
1

: bi 6= 0

at the 100a% level. The natural test statistic is T =
bbi

std.error(bbi)
, and

under the null hypothesis we know the distribution of T:

T =
bbi

std.error(bbi)
=

bbi

s
p

dii
⇠ tn�p.

We reject H
0

if |Tobs| > tn�p(1 � a
2

), or if the p-value is less than a. I’ve included a table of quantiles of the

t-distribution in the appendix.R reports the p-value of the test.
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4.1.2 Simple example from Ch3 continued

> summary(fit)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-4.1966 -1.7792 -0.2677 1.3135 5.3823

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.240 12.495 4.581 0.0018 **

x 7.404 2.501 2.960 0.0181 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.1 on 8 degrees of freedom

Multiple R-squared: 0.5227, Adjusted R-squared: 0.4631

F-statistic: 8.762 on 1 and 8 DF, p-value: 0.01815

(a) Is the intercept of the fitted line equal to zero?

i.e. test H
0

: a = 0 vs H
1

: a 6= 0

intercept

(b) Consider the quadratic model yi = a + bxi + cx2

i + ei,

The quadratic regression model can be fit using R:

> fit2 <- lm(y~x+I(x^2)) # Note the use of I(x^2) to separate terms

> summary(fit2)

Call:
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lm(formula = y ~ x + I(x^2))

Residuals:

Min 1Q Median 3Q Max

-3.8841 -2.0468 -0.1909 1.9633 5.0651

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -12.157 127.851 -0.095 0.927

x 34.550 49.819 0.694 0.510

I(x^2) -2.637 4.832 -0.546 0.602

Residual standard error: 3.246 on 7 degrees of freedom

Multiple R-squared: 0.5422, Adjusted R-squared: 0.4114

F-statistic: 4.145 on 2 and 7 DF, p-value: 0.06492

Is c significantly different from zero?

i.e. is the quadratic term worth including in the model?

Hypotheses: H
0

: c = 0 H
1

: c 6= 0.

4.1.3 Important note:

These T statistics are not independent. In the quadratic model none of

the parameters are significant, but once g is removed from the model,

the intercept and the slope become significant.



LINEAR MODELS 34

4.2 F-test for the General Linear Hypothesis

Consider the normal linear model

y = Zb + e,

where Z is n ⇥ p and e ⇠ Nn
�

0, s2

In
�

.

Suppose we want to test the so called general linear hypothesis

H
0

: Ab = c

vs

H
1

: b general,

where A is a q ⇥ p matrix of rank q and c is a q-vector.

Example restrictions:

• A = (1 0 0 . . . 0) and c = 0, gives H
0

: b
1

= 0.

• A = (0 1 1 . . . 1) and c = 0, gives H
0

: b
2

= b
3

= . . . = 0.1 1 So we would be testing whether M
1

is an
improvement over the null model

• A = (1 1 1 . . . 1) and c = 2, gives H
0

: Â bi = 2.

We can calculate the least squares estimator of b under any linear

constraint.

Lemma 6. Under H
0

: Ab = c the least squares estimator of b is:

bbH = bb +
⇣

Z

T
Z

⌘�1

A

T


A

⇣

Z

T
Z

⌘�1

A

T
��1

⇣

c � A

bb
⌘

.

Proof. We will use Lagrange multipliers l = (l
1

, l
2

, . . . , lq)T . The

objective is to minimise g(b) with respect to b.

g (b) = (y � Zb)T (y � Zb) +
⇣

bT
A

T � c

T
⌘

l

∂g (b)
∂b

= �2Z

T
y + 2

⇣

Z

T
Z

⌘

b + A

Tl

At the point b = bbH ,
∂g (b)

∂b
= 0. Solving this gives

bbH =
⇣

Z

T
Z

⌘�1

Z

T
y � 1

2

⇣

Z

T
Z

⌘�1

A

Tl

= bb � 1

2

⇣

Z

T
Z

⌘�1

A

Tl,

however A

bbH = c, and so

c = A

bb � 1

2

A

⇣

Z

T
Z

⌘�1

A

Tl

) �1

2

l =



A

⇣

Z

T
Z

⌘�1

A

T
��1

q⇥q with rank q

⇣

c � A

bb
⌘

.
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Substituting l into the equation for bbH completes the proof of the

lemma.

Theorem 7. General Linear Hypothesis Test

Let D
1

= (y � Z

bb)T(y � Z

bb) be the deviance of the larger model.

Let D
0

= (y � Z

bbH)
T(y � Z

bbH) be the deviance under H
0

.

Then:

(1) D
0

� D
1

=
⇣

A

bb � c

⌘T h
A

�

Z

T
Z

��1

A

T
i�1

⇣

A

bb � c

⌘

(R7) (2) F =
(D

0

� D
1

) /q
D

1

/(n � p)
⇠ Fq, n�p.

Proof. Proof of (1) follows by substituting the formula for bbH derived in

the lemma (Exercise).

To prove (2) first note that from (1),

D
0

� D
1

s2

=
⇣

A

bb � c

⌘T ⇣
AVar(bb)A

T
⌘�1

⇣

A

bb � c

⌘

.

Under H
0

, A

bb ⇠ Nq

⇣

c, AVar(bb)A

T
⌘

from Lemma 2. Thus, by

Lemma 3

D
0

� D
1

s2

⇠ c2

q.

Recall from Theorem 6 part (ii)

(n � p) s2

s2

=
D

1

s2

⇠ c2

n�p.

Hence from the definition of an F-distribution,

(D
0

� D
1

) /(s2q)
D

1

/s2(n � p)
=

(D
0

� D
1

)/q
D

1

/(n � p)

⇠
c2

q/q

c2

n�p/(n � p)
⇠ Fq, n�p.

as required.

4.2.1 Comments:

• The model under H
0

has p � q parameters (p parameters under H
1

with q restrictions/constraints).

• When a smaller model can be expressed as a simplification of a

larger model by setting Ab = c, then the smaller model is said to

be nested within the larger model.

• The F-test with statistic

F =
(D

0

� D
1

) /q
D

1

/(n � p)
D

0

– deviance of smaller model

D
1

– deviance of larger model

is only appropriate for comparing nested models.
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4.3 F test for the existence of regression

We want to test for the existence of regression. In other words, is

there statistical evidence that supports the use of the linear model

E(y) = Zb over the use of the null model E(y) = 1n⇥1

b
0

?

That is, we want to compare the models

M0: y = b
0

1n⇥1

+ e

M1: y = Zb + e.

If we write b =

2

4

b
0

b⇤

3

5 then the hypotheses for the test for the

existence of regression become

H
0

: M0 applies (b⇤ = 0), This test is called testing for the existence

of regressionH
1

: M1 applies (b⇤need not equal 0).

Under the normality assumptions e ⇠ Nn(0, s2

In) we can apply the

result (R7) from Theorem 7. We can see that the constraint in H
0

can

be considered to be

Ab = c

where

A =

0

B

B

B

B

B

@

0 1 0 . . . 0

0 0 1 . . . 0

...
. . .

...

0 0 0 . . . 1

1

C

C

C

C

C

A

is (p� 1)⇥ p c =

0

B

B

B

B

B

@

0

0

...

0

1

C

C

C

C

C

A

is (p� 1)⇥ 1

Then

D
1

= (y � Z

bb)T(y � Z

bb)

= Â(yi � ˆyi)
2 = ResidSS

D
0

= (y � Z

bbH)
T(y � Z

bbH)

= Â(yi � ¯y)2 = TotalSS

By Theorem 2, we can see that

D
0

� D
1

= Â( ˆyi � ¯y)2 = RegrSS.
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Thus, by results (R7) in Theorem 7 We have

F =
(D

0

� D
1

) /(p � 1)
D

1

/(n � p)

=
RegrSS/(p � 1)
ResidSS/(n � p)

=
RegrMS
ResidMS

RegrMS is the mean regression sum-of-

squares taking into account the degrees of

freedom, i.e.,

RegrMS =
RegrSS
p � 1

,

and similarly

ResidMS =
ResidSS

n � p
.

and F ⇠ Fp�1,n�p by (R7).

So we reject H
0

at the 100a% level if F > Fp�1,n�p(1 � a).

4.3.1 ANOVA table

An ANOVA table is a handy way of presenting this information:

Source d.f. SS MS F

Regression p � 1

n
Â

i=1

(byi � y )2

RegrSS
p�1

RegrMS
ResidMS

Residual n � p
n
Â

i=1

(yi � byi)
2

ResidSS
n�p

Total n � 1

n
Â

i=1

(yi � y )2

The R command for finding the ANOVA table is anova(fit).

Consider the simple toy example from Ch3.

> x <- c(4.6, 5.1, 4.8, 4.4, 5.9, 4.7, 5.1, 5.2, 4.9, 5.1)

> y <- c(87.1, 93.1, 89.8, 91.4, 99.5, 92.1, 95.5, 99.3, 98.9, 94.4)

> fit <- lm (y ~ x)

> deviance(fit)

[1] 76.87474

> deviance(fitNull)

[1] 161.069

Calculate the F statistic:

What do you conclude? F-tables are provided in the appendix.

> summary(fit)
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Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-4.1966 -1.7792 -0.2677 1.3135 5.3823

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.240 12.495 4.581 0.0018 **

x 7.404 2.501 2.960 0.0181 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.1 on 8 degrees of freedom

Multiple R-squared: 0.5227,Adjusted R-squared: 0.4631

F-statistic: 8.762 on 1 and 8 DF, p-value: 0.01815

> anova(fit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 84.194 84.194 8.7617 0.01815 *

Residuals 8 76.875 9.609

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

4.4 F-tests for comparing nested models

Now consider testing two nested models. Consider partitioning the

model

y = Zb + e

into two parts:

Z = (ZA, ZB) b =

2

4

bA

bB

3

5

where
bA is (p � q)⇥ 1, ZA is n ⇥ (p � q)

bB is q ⇥ 1, ZB is n ⇥ q
This gives us two models
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• Reduced model A (includes intercept):

y = ZAbA + e

• Full model B:

y = ZAbA + ZBbB + e

Note that model A is nested in model B, and that we need to fix q

parameters to reduce B to A.

We want to test

H
0

: bB = 0 vs H
1

: bB arbitrary.

Result R7 says that for nested linear models A and B, This is how we nearly always think of R7,

rather than counting rows of a constraint

matrix.(DA � DB)/q
DB/(n � p)

⇠ Fq,n�p under H
0

where q is the number of parameters we need to constrain to get from

model B to model A. We reject H
0

: bB = 0 in favour of H
1

: bB 6= 0 if

F is larger than Fq,n�p(1 � a) for a 100a% level test.

The command for this test in R is anova(fitA, fitB) which gives

us a table of the form

Resid d.f. RSS Df Sum of Sq F P(> F)

Model A n � p + q DA

Model B n � p DB q DA � DB
(DA�DB)/q
DB/(n�p) P(Fobs > Fq,n�p)

Returning to the simple example, lets see if the quadratic model is a

significant improvement over the straight line.

> fit2 <- lm(y~x+I(x^2))

> deviance(fit2)

[1] 73.73828

Write down the two hypotheses, and carry out an F-test
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> anova(fit, fit2)

Analysis of Variance Table

Model 1: y ~ x

Model 2: y ~ x + I(x^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 8 76.875

2 7 73.738 1 3.1365 0.2977 0.6022

4.5 A worked ANOVA example

Consider an agricultural experiment to determine the effect of 6 differ-

ent fertilisers on crop yield

Trial Fert A Fert B Fert C Fert D Fert E Fert F

1 14.5 13.5 11.5 13 15 12.5

2 12 10 11 13 12 13.5

3 9 9 14 13.5 8 14

4 6.5 8.5 10 7.5 7 8

Âj 42.0 41.0 46.5 47.0 42.0 48.0 Âij = 266.5

The response is the yield, and the covariate is which fertiliser was

used, which is a discrete factor with 6 levels.

Let yij be the yield from the jth trial using the ith fertiliser. Then an

appropriate model to test whether the fertiliser used affects yield would

be Other parameterisations such as

yij =

8

<

:

µ + eij if i = A

µ + ai + eij otherwise
(4.1)

are also used, and we would test if

ai = 0 8 i. This is simply a linear

reparameterization of Equation 4.2 and so it

doesn’t matter which we use.

yij = µi + eij (4.2)

and we would test

H
0

: µi = µ 8 i vs H
1

: µi arbitrary

Testing of this form is known as one-way analysis of variance, as we

have a single discrete factor. To carry out an F-test, we first need to

calculate the parameters under both models. It is very easy to see that

under H
0

The R command lm(yield ⇠ fert) would fit

(4.1), whereas lm(yield ⇠ fert-1) would fit

model (4.2).
ˆµ = y ·· =

1

24

Â
ij

yij

and under H
1

ˆµi = y i· =
1

4

4

Â
j=1

yij
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Next we must calculate the two deviances

D
0

= Â(yij � ¯y··)2

D
1

= Â(yij � ¯yi·)
2

Finally, we can calculate

F =
(D

0

� D
1

)/q
D

1

/(n � p)

and compare this with a Fq,n�p random variable.
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Model validation and improvement

Before fitting a model, we should plot the data in an exploratory data See the case study!

analysis. This will help suggest sensible models and highlight difficult

data points. After fitting a model, regression diagnostics should be

used to check whether our modelling assumptions are valid.

• Is the assumed mean function Zb a good choice?

• Are the errors normally distributed?

• Do they have constant variance?

• Are any of the observations wrong? (outliers)

• Are any of the data points more influential on the model fit than

others? (high leverage)

We’ve seen the use of R2 and adjusted-R2 for assessing model fit,

but using a single numerical summary can be misleading. Francis

Anscombe constructed 4 datasets to warn about the use of simple

statistics such as R2. They illustrate the importance of visually examin-

ing the data before assuming a particular type of relationship.
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Figure 5.1: Each of these datasets has the
same mean (of x and y), variance (of x and
y), line of best fit (y = 3 + 0.5x) and R2.If we find the modelling assumptions are violated, then there are var-

ious approaches for improving the model, including transformations,

adding higher order modelling terms, and weighted least squares.

These diagnostic and corrective techniques can greatly extend the

practical application of linear models. Careful investigation of data

and model is often the difference between a crude mechanical data
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analysis1 and a careful nuanced analysis that leads to meaningful 1 See www.automaticstatistician.com
- what is ’crude and automated’ is improving
all the time!interpretations and conclusions. This is a big topic, and we are only

going to scratch the surface of available techniques.

5.1 Remedies: transformations and weighted least squares

5.1.1 Transformations

By transforming either X or Y, we can often find better model fits. A

particularly useful family of transformations are the power transforma-

tions

X ! Xp

where we usually consider values of p between �2 and 3. Another

useful transformation is

X ! log X

which we informally consider corresponds to p = 0.

The Box-Cox family of transformations is

X ! Xp � 1

p

which has the benefit a preserving the

direction of X (which is reversed when p is

negative), and for which limp#0

Xp�1

p =

log X. However, in practice it is usually

simpler to just work with raw powers

instead.• If X contains negative values, we can instead use the transforma-

tion

X ! (X + s)p

where s is called a start.

• The ratio of smallest X to largest X is less than about 5, a power

transformation will not have much effect. We can shift the data to-

wards zero by using a negative value of s so that the transformation

does have some effect.

Transforming skewness

Skewed distributions can cause problems as many of the values

tend to be clustered together. This can make some observations in the

long tail wrongly appear to be outliers, and can hide outliers in the body

of the distribution. The effect of the power transformations is to spread

out either high or low values and can rectify skewness. Descending the

ladder of powers towards log X can correct a positive skew by pulling

in the right tail, and conversely, ascending the ladder of powers towards

X3 can correct a negative skew.

Transforming non-linearity

Transformations of X and Y can be used to make simple2 monotone 2 Simple here means the direction of
curvature doesn’t change.

non-linear relationships between X and Y appear more linear.
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Figure 5.2: Top row: A positive skew can
be removed by a power transformation
with p < 1. Bottom row: a negative
skew can often be removed with a power
transformation with p > 1.

Figure 5.3: Mosteller and Tukey’s bulging

rule

Mosteller and Tukey’s bulging rule can be used to suggest which

way we need to transform either X or Y up or down the ladder of pow-

ers in order to correct a non-linear relationship. Consider the following

UN data on infant mortality rates in 207 countries.
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Figure 5.4: Infant mortality rate per 1000
live births versus gdp in US dollars for the
207 countries in the UN.
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Figure 5.5: Log Infant mortality rate versus
log(gdp). Notice how the transformations
has corrected the non-linear relationship
and corrected the skew in the two distribu-
tions.

THE CHOICE OF TRANSFORMATION can be made on a trial-and-

error basis, and we usually only try a small number of powers such as

p = �1,� 1

2

,

1

2

, 1,

3

2

, 2, 3 and log X and eyeball the result to see which

performs best. Generally we prefer interpretable transformations.
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Transforming non-constant variance

A common violation of the linear regression assumptions, is to find

that the variance of the random error depends on the value of y, with

larger values of y having higher variance than smaller values (i.e.

heteroscedastic errors). We can often transform to constant variance

by transforming down Y down the ladder of powers towards log(y).

5.1.2 Including higher order terms

Although we can often correct simple monotone non-linear relation-

ships by transforming either X or Y, we cannot correct complex rela-

tionships or non-monotone relationships. In this case, it can be useful

to include higher order modelling terms such as X2, X3, log X etc.

Below are three plots showing a simple monotone relationship that

can be corrected by transforming either x or y, a simple non-monotone

relationship that can’t be corrected by transformation, and a complex

monotone relationship that can’t be corrected by transformation.
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5.1.3 Weighted least squares estimation

Occasionally we may wish to relax the assumption that Var(e) =

s2

In and consider the more general model in which

Var (e) = s2

V

where V is assumed to be known. However, as we will see, any

weighted least squares model can be transformed to an ordinary least

squares model3. 3 Which is why we focussed on OLS
throughout this module.

V is symmetric positive definite ) V = RR

T , where R is a n ⇥ n

square root matrix4. 4 Matrix square roots are not uniquely
defined. Recall that we can diagonalise
V = ADA

>, and so we could take
R = AD

0 1

2 as the matrix square root.
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Consider the model y = Zb + e, where E[e] = 0 and Var(e) =

s2

V . If we pre-multiply by R

�1 we have

R

�1

y = R

�1

Zb + R

�1e

i.e. y

0 = Z

0b + e0, where

y

0 = R

�1

y

Z

0 = R

�1

Z

and

Var

�

e0
�

= Var

⇣

R

�1e
⌘

= R

�1Var (e)
⇣

R

�1

⌘T

= s2

R

�1

V R

�1T

= s2

R

�1

RR

T
R

�1T

= s2

In.

Therefore the model y

0 = Z

0b + e0 is an ordinary least squares

regression model. Thus, the least squares estimator for b is bb:

bb =
⇣

Z

0T
Z

0
⌘�1

Z

0T
y

0

=

✓

⇣

R

�1

Z

⌘T
R

�1

Z

◆�1

⇣

R

�1

Z

⌘T
R

�1

y

=
⇣

Z

T
R

�1T
R

�1

Z

⌘�1

Z

T
R

�1T
R

�1

y

=

✓

Z

T
⇣

RR

T
⌘�1

Z

◆�1

Z

T
⇣

RR

T
⌘�1

y

=
⇣

Z

T
V

�1

Z

⌘�1

Z

T
V

�1

y

This is called the generalised least squares estimator.

Properties:

E
h

bb
i

= b (unbiased)

Var

⇣

bb
⌘

= s2

⇣

Z

T
V

�1

Z

⌘�1

.

5.2 Diagnostic plots

When we constructed the model, we made some assumptions about

the random errors.

1. uncorrelated,
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2. have equal variance,

3. have zero mean.

In addition, we also assumed

4. The errors are normally distributed.

when carrying out hypothesis tests. Once we have fitted the model we

can examine the residuals to see if these assumptions were acceptable

or not.

5.2.1 Residual plots

Proposition 3. If the model is true, then

Cov(bei, byi) = 0.

Proof.

Cov(by,be) = Cov(by, y � by)

= Cov(by, y)� Var(by)

= Cov(Z

bb, y)� Var(Z

bb)

= Cov(Py, y)� Var(Py)

= PVar(y)� PVar(y)PT

= s2

PIn � s2

PInP

= s2(P � P

2)

= 0n⇥n.

We get a visual indication of whether these assumptions are true by

examining a plot of the residuals bei against the fitted values byi.

• If the regression model is correct, then the residual plots should look

like null plots.

• If the variance depends on the fitted value (which is not uncommon,

especially increasing variance as by increases), this will show up as

a funnel or megaphone shape in the residual plot.
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Figure 5.6: An acceptable residual plot
is a null plot - a band of points with no
discernible trend between the residual and
the fitted value or between the residual and
the covariates.
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Figure 5.7: There is correlation in the resid-
uals, but the variance seems to be constant.
Because the trend is non-monotonic we
cannot use a simple transformation to cor-
rect this, so we’d need to fit a more complex
model, such as a quadratic model.
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Figure 5.8: A ‘right-opening megaphone’
residual plot. The variance is not constant
between observations. The best way to
correct this is with a transformation of the
y variable. In this example y0 = log(y)
is the best transformation. These plots
are very common in practice. For example
when measuring lengths or distances: short
distances can be measured very accurately,
but longer distances are harder to get quite
so accurate.



LINEAR MODELS 49

For multiple linear regression it can also be informative to plot the

residuals against each of the input variables. There should be no

dependence left between the residuals and the input variables. If there

is, then you may need to transform the input variable or include high

order terms such as quadratic terms.

Note that if dim(x) > 1 then if will be hard to spot the problem

from a scatter-plot matrix, but that the problem may still appear in the

residuals plot.

5.2.2 Checking normality: QQ-plots

We have assumed ei
iid⇠ N

�

0, s2

�

. A QQ-plot can be used to check Fortunately, the F-test is quite robust to

departures from normality, i.e. the test

results are only moderately affected by a

broad class of departures from normality.

However, we still should examine our

statistics for normality.

this assumption and to spot outliers. A QQ-plot plots quantiles from

one distribution against quantiles from another. If these quantiles

match, the distributions are the same.

Note that for normal linear models, If the normality assumption

holds, then the externally Studentised residuals ti follow the t-distribution

with n � p � 1 degrees of freedom. Let d(1) . . . d(n) be the rank And become increasingly similar to the

standard normal distribution as n � p
increases

ordered standardised residuals, i.e. d(1) = min(t
1

, t
2

, . . . , tn),

d(n) = max(t
1

, t
2

, . . . , tn). Let D(i) = E[d(i)], the expected values of

the d(i)’s, where the expectations are obtained under the tn�p�1

dis-

tribution. The D(i)’s are called the normal scores. A QQ-plot of d(i) vs Or if n � p is large we can just use a

standard normal distribution.D(i) can then be used to check the validity of the normal assumption.

If the data approximately match the straight line representing the

reference t-distribution, then the assumption that the data come from

the normal distribution is validated.

If the data depart from the straight line (there will always be some

natural variability), then the assumption of normality is called into

question. You can use the qqPlot command in the car

package to plot QQ-plots in R.
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Figure 5.9: This QQ plot looks good - the
points mostly fall on or near the diagonal
line. There is no evidence to suggest that
the residuals are not normally distributed.
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Figure 5.10: This plot suggests the normal
distribution is not a good fit to the data. In
particular, we can see that the tails of the
data are heavier than the tails of the normal
distribution. We could try to correct this with
a transformation of the data, such as taking
the logarithm of the response.

5.2.3 Component-Plus-Residual Plots

For simple linear regression (i.e., a single covariate), a scatter plot of

y vs x shows the shape the model should take. For multiple linear re-

gression (several covariates), then a scatter plot matrix can fail to illus-

trate the correct form of the model, as the effect of the other covariates

is hidden. Component-plus-residual plots, also called partial-residual

plots, can be useful for illustrating the relationship between y and each

of the covariates. Although they don’t always work. See the

Fox text book for an in-depth discussion.Define the partial residual for the jth explanatory variable to be

be
(j)
i = bei + b jZij

This adds back the linear component of the partial relationship between

Y and Xj, which may include an unmodeled nonlinear component. We

then plot be(j) vs Xj. The slope of this curve will be b j (by construction),

but it may also highlight non-linear relationships as well. By adding a

non-parametric smoother over the top, as well as the line of best fit, we

can get an idea of how to improve the model by seeing how the smooth

departs from the straight line.

See the case study for an example of their

use.

5.3 Unusual and influential data

We now turn our attention to problems with the data itself. Unusual

data are problematic as they can unduly influence the results of any

analysis.

Definition 9. An outlier is an observation yi that is not near its fitted

value byi, i.e. an observation with an unusually large residual.

Definition 10. High leverage points, are observations (xi, yi) that

have a large effect on the fitted regression model.
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Typically, high leverage points are observations with covariates xi

far from the other observations. Although we could say that xi are

outliers from the rest of the data, we only use the term outlier for when

yi differs from byi. Beware that some books give slightly

different definitions.
If an outlier is also a high-leverage point, then it will greatly influence

the model fit, which might mean that we are not able to detect that it is

an outlier. For this reason, it is important to examine closely any high

leverage points.

2 4 6 8

0
2

4
6

8
10

A simple linear regression example

x

y

Figure 5.11: Which points are outliers, and
which are high leverage points?

Points that are outliers and have high leverage have high influence

on the regression coefficients - it is these points that we need to be

particularly careful about. See the Davis data in the case study.

5.3.1 Assessing Leverage

Recall that

by = Z

bb

= Py

and so byi = piiyi + Â
j 6=i

pijyj, where pii is the ith hat-value.

Definition 11. The ith leverage is defined to be pii Use the R command hatvalues(fit) to

find the leverages.It determines the effect of the ith observation on the ith fitted value.

Proposition 4. The variance of the ith residual is

Var(bei) = s2 [(In � P)]ii = s2(1 � pii).

It can also be shown that 1

n 6 pii 6 1 (exercise). Therefore as pii

approaches 1 then the variance of the ith residual tends to zero, and so
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whatever the value of yi, the fitted line will go through it.

Proof. We saw in Section 2.7 that

be = (In � P)y

where P = Z(Z

T
Z)�1

Z

T is the hat-matrix . The variance-covariance

matrix of the residuals is given by

Var(be) = Var((In � P)y)

= (In � P)Var(y)(In � P)T

= s2(In � P)

since (In � P) (and also P) is symmetric idempotent. In scalar form

Var(bei) = s2(1 � [P]ii) = s2(1 � pii), for i = 1, . . . , n.

A rule of thumb is that any observation with pii > 2p/n should be

highlighted as a high-leverage point.

Example:

For simple linear regression we have that

pii =
h

Z(Z

T
Z)�1

Z

T
i

ii

=
h

1 xi

i

(Z

T
Z)�1

2

4

1

xi

3

5

=
1

n
+

(xi � ¯x)2

n
Â

j=1

(xj � ¯x)2

This implies that the points with the highest

leverages are those that are furthest from ¯x.

5.3.2 Detecting outliers

The scale of the response variable y is arbitrary, and therefore so is the

scale of the raw residuals. One way to standardise the residuals is to

divide by their standard error. We’ve just shown that

Var(e) = s2(I � P)Definition 12. The standardised residuals are

ri =
bei

std.error(bei)
=

bei

s
p

1 � pii
.

Large ri suggest that yi is an outlier. These are produced by R with the com-

mand rstandard(fit).The standardised residuals use the variance estimate s2, which has

been calculated using the entire data set. If there is an outlier, this will

skew the estimate of s2, and so dividing by s2 may not identify the point

as a residual. To get around this, we can remove the ith point from the

model and calculate an estimate of s2 without this point.
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Definition 13. The Studentized residuals are The externally Studentized residuals are

given in R by the function rstudent(fit)

ti =
bei

s(i)
p

1 � pii

where s2

(i) is the unbiased estimate of s2 computed with the ith obser-

vation removed from the data.

It can be shown that ti ⇠ tn�k�1

, and hence a value of |ti| > 2 is

generally considered to be large.

5.3.3 Influence

Informally, we can think of influence as the combination of being a

high-leverage point and an outlier. The simplest way to assess the

influence of the ith data point is to remove it from the analysis, and see

how much the regression coefficient estimates change.
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Figure 5.12: An extreme example. The

fitted model depends entirely on a single

point. If we move this point, the fitted line

moves with it, and if we were to delete it, we

could no longer fit a line.

Definition 14. The Cook’s distance,

Di =
(bb(i) � bb)T

Z

T
Z(bb(i) � bb)

ps2

is a measure of the influence that a data point has on all of the fitted

responses. It compares bb to bb(i), where bb(i) is the fitted value when

the ith observation is ignored.

This can be thought of as defining the distance from bb to bb(i),

taking the variance of bb into account. R2 stated that Var(bb) = s2(ZT Z)�1

It can be shown that

Di =
(by(i) � by)T(by(i) � by)

ps2

=
r2

i
p
⇥
✓

pii
1 � pii

◆

= "outlyingness" ⇥ "leverage"

where by(i) is the fitted response from the model which excludes the ith

Cook’s distances can be found in R using

cooks.distance(fit).

observation. Cases with large Di are ones whose deletion will lead to

substantial changes in the analysis.

What values for Di are considered to be large? There are several

rough guidelines, the simplest is simply to look for values with Di � 1.

HOWEVER, THE BEST PRACTICE is to plot the Di values for each ob-

servation, and to see if Di for one or two observations are significantly

larger than Di for the rest of the observations. An attractive alternative

is to plot the Studentised residuals ti against the hat values pii, and

look for observations which are big.

The influencePlot command in the car

package produces this plot, with point size

proportional to Di .
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5.3.4 Should we discard unusual data?

Outliers and influential data should not be ignored, but nor should they

simply be deleted. It may be, as in the Davis data in the case study,

that there are "bad" data points that can either be corrected or deleted.

However, "good" observations that are unusual may help to suggest

aspects of the model that are incorrect, or which we’ve over-looked.

The important thing is to investigate why an observation is unusual.



6

Model selection

A common statistical problem is to be given a large dataset consisting

of n observations, y
1

, . . . , yn and a n ⇥ k matrix, X, of covariates, and

to be asked to find a good model for predicting y. Often the number

of covariates k can be large, and we wish to find a smaller subset

of p, which can be used in a linear model to predict y. It is usually

undesirable to include all k covariates, as models that are too complex

are often over-fit, and give inaccurate predictions.

Model selection (often called ‘variable selection’ or more generally

’data mining’) is the process of finding only the most important predic-

tors. Application areas include:

• Social sciences (e.g. predicting crime hotspots)

• Marketing (e.g. Nectar card scheme).

• Pharmacology (e.g. drug discovery)

• Epidemiology (e.g. predicting disease incidence from genetic mark-

ers)

The most important criterion for including predictors in a model is We should always ask ourselves whether

the model is plausible? i.e. does it make

practical sense?
the analyst’s/experimenter’s expert knowledge of the area under study.

These techniques are usually applied when the focus is on predic-

tion rather than explanation. If two explanatory variables are highly

correlated, then from a predictive point of view it doesn’t matter which

we include in the model.

6.0.5 The model hierarchy

Definitions

• The null model is where we fit just a constant mean function to the

data.

• The minimal model is the simplest model consistent with known

features of the experiment, the data and the underlying theory.

• The maximal model is the most complex model worth considering

in the analysis.
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• The saturated model is the model with n parameters (the same In the saturated model, Z is n ⇥ n and (we

assume) of full rank, so Z

�1 exists.

bb = (Z

T
Z)�1

Z

T
y = Z

�1

y

and so

by = Z

bb = ZZ

�1

y = y,

i.e. the saturated model fits exactly.

Why is it a bad idea to use the saturated

model for prediction?

number as data points).

In judging the adequacy of the current model we must be aware of

the model hierarchy:
8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

null

minimal

current

maximal

saturated

6.1 Automated Variable Selection

F-tests are useful for comparing nested models, but can’t be used in

more general cases. Moreover, care needs to be taken when doing

repeated hypothesis tests: the type I error rate is no longer a if we

perform n independent hypothesis tests each at significance level a!

Moreover, for small samples F-tests may lack power leading us to fail

to reject a false null, which is completely different from confirming H
0

. The fallacy of affirming the consequent

Further, for large n, we shall nearly always reject H
0

.

Instead of using statistical significance for comparing two models,

we can use brute force model selection techniques that take advantage Variable selection methods have been

described like doing carpentry with a chain

saw: you can get a lot work done quickly,

but you may end up doing more harm than

good.

of modern computer power, and use a computer to search through

many different possible models to pick the best. While this is quick, if

used improperly, it can lead to poor choices being made.

We need a criterion to optimize in order to choose the “best” model.

The criteria are all a balance between requiring goodness of fit, while
Parsimony

‘Everything should be made

as simple as possible, but not

simpler.’ Albert Einstein

In statistics, the most parsimonious model

is the simplest one that still adequately fits

the data. In practice this means the model

with the fewest parameters. If a model is

unnecessarily complex, the precision of

estimation and prediction decreases.

penalising for complexity. Models that are too complex are often over-

fit1, and thus have poor performance on prediction tests. Various

1 A model is over-fit if it describes the
random noise rather than the underlying
relationship.

different measures have been proposed, but we focus on three:

(i) Adjusted R2. This is intuitively reasonable, but has no theoretical

justification.

(ii) Mallow’s C

p

Cp =
ResidSS(current model)

s2

+ 2p � n,

where

s2 =
ResidSS(full model)

n � k

is the unbiased estimator of the variance of the full model. To

interpret Cp, note that if a subset model with p covariates fits well,

then

E(RSS(p)) = (n � p)s2

so that Cp ⇡ p. Whereas if important predictor variables have
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been omitted from the model, then RSS(p) is an estimate of

(n � p)s2 plus a positive term, so that Cp > p. A good model

therefore has Cp either around or less than p. Minimising Cp for

models of a given size minimises the residual sum of squares and

thus maximises R2.

(iii) The Akaike information criterion (AIC) is defined to be

AIC = �2 log(L) + 2P

and the Bayesian information criterion (BIC) is defined to be

BIC = �2 log(L) + P log n

where log(L) is the log-likelihood calculated at the maximized

likelihood estimate of b and s2, and P is the number of parame-

ters that needed to be estimated. By noting that ˆs2 = RSS
n , we

can show that for linear models

AIC µ n log(RSS) + 2p

BIC µ n log(RSS) + p log n

The theoretical motivation for the AIC and BIC are complex, but The AIC and BIC can be calculated in

R using the command AIC(fit) and

BIC(fit).
they can both be seen as trade-offs between the goodness of fit of

the model (measured by �2 log(L)) and the model complexity P.

There are many other ICs that have been proposed.

Only relative values of the AIC/BIC are of interest - we com-

pare the AIC/BIC for two different models and choose the model

with the lowest value.

6.2 Best subsets regression

Best subsets regression is a method of variable selection in which

all possible regressions are performed and the best models for each

number of parameters are suggested. The statistician then chooses

the most appropriate model (or models) from the subset presented,

based on the values of measures like adjusted-R2, Mallow’s Cp, or

the AIC. If we are using Cp, we aim to find the simplest model with

Cp 6 p (if this isn’t possible report model(s) with lowest Cp).

Note that, if we have k covariates, then there are 2

k possible mod-

els. This will quickly become too large to do an exhausitve search, and

so instead we can use methods such as....
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6.3 Stepwise regression

If the number of input variables is very large, then stepwise regression

is often used for variable selection instead of best subsets regression.

In stepwise regression, we start from an initial model and then

add or remove predictors based on the criterion value of the model

that includes that variable. We choose to add or remove the variable

that leads to the model with the smallest value of the criterion. The

advantage of this approach, is that instead of trying 2

k different models,

we only need to try k different models at each stage. The disadvantage

is that we are not considering all possible models. For example if two

input variates are only informative in combination then neither will ever

be added to the model.

The special case of stepwise regression where we start from the

minimal model and only add predictors is called forward regression,

and the special case where we start from the full model and only re-

move predictors is called backward regression.

Warning:

• Automatic variable selection proceedures like best subsets regres-

sion and stepwise regression are not perfect.

• They are no substitute for thinking about which predictors should be

important.

• They may include variables that just happen to explain the data by

chance, and are therefore useless for prediction.

For example if you generated 10 columns of random numbers and

used them as predictors, automatic variable selection methods will

probably find that one or more of them ‘explains’ some of the varia-

tion in the response, even though each column is equally useful (ie.

completely useless) for prediction.

6.4 Ridge regression

Recall that theorem R0 required that Z>Z was invertible, and that

this was the case if rank(Z) = p. What happens if n < p? Then rank(Z) is the number of linearly inde-

pendent columns of Z, which equals the

number of linearly independent rows
we have more columns than rows so the columns can not be linearly

independent and so rank(Z) < p, and hence Z>Z is not invertible.

We can also find that (Z>Z)�1 does not exist when n > p if some of

the columns of Z are close to being colinear.

One solution to this problem is to use ridge regression. Ridge re-

gression is like ordinary least squares regression, except we add a

penalty term to constrain the size of the parameter.



LINEAR MODELS 59

We choose b to minimise

Sr(b) :=
n

Â
i=1

(yi � z>i b)2 + l
p

Â
i=1

b2

i

= (y � Zb)>(y � Zb) + lb>b (6.1)

The second term lb>b is a penalty term that penalises values of

b that are large. The parameter l is a complexity parameter which

controls how strongly large values of b are punished. We only allow

l � 0.

The ridge regression estimator, denoted bbr, is the value of b which

minimises Sr(b). Note that if l is zero, this is equivalent to least-

squares regression and we find bbr = bb. As l grows, the penalty for

large b values grows. In the limit l = • the optimal solution is to take
bbr = 0. We can see that the effect of the penalty term is to shrink the

parameter estimates towards 0. Note also that the estimator bbr is now

a function of l.

Adding a penalty term to the sum of squares is called regularisation

and is a very powerful approach for finding good parameter estimates

in over-parametrized models.

Proposition 5.

bbr = (Z>Z + lI)�1Z>
y

minimizes Equation (6.1).

Note that Z>Z + lI can be made to be invertible by increasing the

size of l sufficiently, regardless of the value of Z.

Proof. Very similar to the proof of R0.

We can think of ridge regression as shrinking the parameters to-

wards zero.
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Proposition 6.

||bbr||2  ||bb||
2

Proof. Suppose not. Then

Sr(bbr) = (y � Zbbr)
>(y � Zbbr) + l||bbr||

2

2

> (y � Zbb)>(y � Zbb) + l||bb||2
2

= Sr(bb)

which is a contradiction as bbr minimises Sr.

6.4.1 Why is ridge regression useful?

Retaining a subset of regressors and discarding the rest, as we did in

stepwise or best susbsets regression, produces a model that is easily

interpretable and has possibly lower prediction error than the true

model. However, because variables are either retained or discarded,

it often exhibits high variance. Shrinkage methods, such as ridge

Ridge regression adds an L
2

penalty

l||bb||2
2

to the sum of squares. Other forms

of penalisation are popular (and are actively

being researched) and can have different

effects. In particular, models fit using the

L
1

norm are have particularly attractive

properties.regression, are more continuous, and so don’t suffer as much from high

variance.

> install.package(’glmnet’)

> # install package first time it is used - requires an internet connection

> library(glmnet)

>

> ## create some data

> n=150 # number of data point

> p=100 # number of covaoriates in X

> ptrue=10 # number of covariates that have any effect

> x=matrix(rnorm(n*p),n,p) # covariate matrix

> beta=rnorm(ptrue) # generate random true parameter value

>

> # generate observations

> y= x[,1:ptrue] %*% beta + rnorm(n,0,5)

>

> ### Fit ordinary least squares regression

> OLS <- lm(y ~ x)

>

> ### Now do ridge regression

> ridge = glmnet(x, y, alpha=0) # alpha=0 gives ridge regression

> # Other values of alpha give different regularisation penalties

>

> plot(ridge, xvar=’lambda’)
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> # 10 fold cross-validation to find the best value of lambda

> cvridge=cv.glmnet(x,y, alpha=0)

>

> # How the prediction error varies with lambda

> plot(cvridge)

>
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> cvridge$lambda.min # value of lambda that minimizes the CV error

[1] 12.52552

>

> cvridge$lambda.1se

[1] 2516.669

> # largest value of lambda that gives a CV error within

> # 1standard deviation of the minimum

>

>

> ### create some test data

> xnew = matrix(rnorm(n*p),n,p)

> ynew =xnew[,seq(ptrue)] %*% beta + rnorm(n,0,5)

>

> ## predict at new x values

> OLS.prediction = predict(OLS, data.frame(xnew))

> ridge.prediction1 = predict(cvridge, xnew, s = "lambda.1se")

> ridge.prediction2 = predict(cvridge, xnew, s = "lambda.min")

>
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> ## calculate the prediction mean square error

> OLS.mse = mean((OLS.prediction - ynew)^2)

> ridge1.mse = mean((ridge.prediction1 - ynew)^2)

> ridge2.mse = mean((ridge.prediction2 - ynew)^2)

>

> print(OLS.mse)

[1] 69.11146

> print(ridge1.mse)

[1] 42.33062

> print(ridge2.mse)

[1] 36.55833

>

>

> ## Do the same with step-wise regression

> OLS2 <- lm(y ~ ., data.frame(x))

> stepfit <- step(OLS2)

[Output omitted - as its several pages long]

> stepfit

Call:

lm(formula = y ~ X1 + X2 + X4 + X7 + X8 + X10 + X11 + X12 + X13 +

X15 + X18 + X20 + X30 + X34 + X35 + X37 + X38 + X47 + X49 +

X51 + X53 + X56 + X64 + X65 + X66 + X68 + X69 + X71 + X72 +

X78 + X81 + X84 + X88 + X90 + X93 + X94 + X95 + X97 + X98,

data = data.frame(x))

Coefficients:

(Intercept) X1 X2 X4 X7

0.2180 -2.1981 1.4949 -0.8936 -2.1013

X8 X10 X11 X12 X13

2.4690 0.5780 -1.3254 0.6264 -0.7887

X15 X18 X20 X30 X34

-1.1453 0.6247 0.8945 -0.4747 -1.3311

X35 X37 X38 X47 X49

-0.6589 -0.8051 1.7640 -0.7050 -0.6686

X51 X53 X56 X64 X65

1.2445 1.1418 1.2341 0.9172 0.9905

X66 X68 X69 X71 X72

0.5608 0.9082 -0.7909 0.4558 0.5351
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X78 X81 X84 X88 X90

1.1435 0.9946 -0.8425 0.7150 0.5983

X93 X94 X95 X97 X98

-0.7096 0.8366 -0.7435 -0.7579 -0.9696

> step.prediction = predict(stepfit, data.frame(xnew))

> step.mse = mean((step.prediction - ynew)^2)

> print(step.mse)

[1] 64.79377

So in this case, OLS gives the worst model (as measured by the

prediction error), followed by the model found by stepwise linear regres-

sion, and ridge regression by far the best prediction error.

Notes

1. glmnet standardizes all the covariates so that they are on the same

scale, so that the estimated parameters are of similar size and are

penalized similarly. Coefficients are always returned on the original

scale though.

2. Usually, the intercept term is not penalized. This term (the mean)

isn’t seen as adding complexity, and so it makes no sense to shrink

it. By default, glmnet adds an intercept to the model and does not

apply a penalty term to the size of the intercept.

3. Ridge regression is not strictly a model-selection method, as it

doesn’t leave variables out it just shrinks the parameter estimates.

However, as we’ve just seen, it is useful for finding models that

predict well.
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Table entry for p and C is
the critical value t∗ with
probability p lying to its
right and probability C lying
between −t∗ and t∗.

Probability p

t*

TABLE D

t distribution critical values

Upper-tail probability p

df .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001 .0005

1 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
2 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60
3 0.765 0.978 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12.92
4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768
24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659
30 0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
40 0.681 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551
50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416

100 0.677 0.845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3.390
1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300

z∗ 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291

50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

Confidence level C
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 Table of critical values for the F distribution (for use with ANOVA):  
            
 How to use this table:        
 There are two tables here. The first one gives critical values of F at the p = 0.05 level of significance. 
 The second table gives critical values of F at the p = 0.01 level of significance.  
 1. Obtain your F-ratio. This has (x,y) degrees of freedom associated with it.   
 2. Go along x columns, and down y rows. The point of intersection is your critical F-ratio.  
 3. If your obtained value of F is equal to or larger than this critical F-value, then your result is 
 significant at that level of probability.       
 An example: I obtain an F ratio of 3.96 with (2, 24) degrees of freedom.   
 I go along 2 columns and down 24 rows. The critical value of F is 3.40. My obtained F-ratio 
 is larger than this, and so I conclude that my obtained F-ratio is likely to occur by chance with a p<.05. 
            
 Critical values of F for the 0.05 significance level:    
  1 2 3 4 5 6 7 8 9 10  

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88  
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.39 19.40  
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79  
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96  
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74  
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06  
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64  
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35  
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14  

10 4.97 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98  
11 4.84 3.98 3.59 3.36 3.20 3.10 3.01 2.95 2.90 2.85  
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75  
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67  
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60  
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54  
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49  
17 4.45 3.59 3.20 2.97 2.81 2.70 2.61 2.55 2.49 2.45  
18 4.41 3.56 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41  
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38  
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35  
21 4.33 3.47 3.07 2.84 2.69 2.57 2.49 2.42 2.37 2.32  
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30  
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.38 2.32 2.28  
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.26  
25 4.24 3.39 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24  
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22  
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20  
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19  
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18  
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.17  
31 4.16 3.31 2.91 2.68 2.52 2.41 2.32 2.26 2.20 2.15  
32 4.15 3.30 2.90 2.67 2.51 2.40 2.31 2.24 2.19 2.14  
33 4.14 3.29 2.89 2.66 2.50 2.39 2.30 2.24 2.18 2.13  
34 4.13 3.28 2.88 2.65 2.49 2.38 2.29 2.23 2.17 2.12  
35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11  



36 4.11 3.26 2.87 2.63 2.48 2.36 2.28 2.21 2.15 2.11  
37 4.11 3.25 2.86 2.63 2.47 2.36 2.27 2.20 2.15 2.10  
38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09  
39 4.09 3.24 2.85 2.61 2.46 2.34 2.26 2.19 2.13 2.08  
40 4.09 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08  
41 4.08 3.23 2.83 2.60 2.44 2.33 2.24 2.17 2.12 2.07  
42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.07  
43 4.07 3.21 2.82 2.59 2.43 2.32 2.23 2.16 2.11 2.06  
44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05  
45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05  
46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.15 2.09 2.04  
47 4.05 3.20 2.80 2.57 2.41 2.30 2.21 2.14 2.09 2.04  
48 4.04 3.19 2.80 2.57 2.41 2.30 2.21 2.14 2.08 2.04  
49 4.04 3.19 2.79 2.56 2.40 2.29 2.20 2.13 2.08 2.03  
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03  
51 4.03 3.18 2.79 2.55 2.40 2.28 2.20 2.13 2.07 2.02  
52 4.03 3.18 2.78 2.55 2.39 2.28 2.19 2.12 2.07 2.02  
53 4.02 3.17 2.78 2.55 2.39 2.28 2.19 2.12 2.06 2.02  
54 4.02 3.17 2.78 2.54 2.39 2.27 2.19 2.12 2.06 2.01  
55 4.02 3.17 2.77 2.54 2.38 2.27 2.18 2.11 2.06 2.01  
56 4.01 3.16 2.77 2.54 2.38 2.27 2.18 2.11 2.05 2.01  
57 4.01 3.16 2.77 2.53 2.38 2.26 2.18 2.11 2.05 2.00  
58 4.01 3.16 2.76 2.53 2.37 2.26 2.17 2.10 2.05 2.00  
59 4.00 3.15 2.76 2.53 2.37 2.26 2.17 2.10 2.04 2.00  
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99  
61 4.00 3.15 2.76 2.52 2.37 2.25 2.16 2.09 2.04 1.99  
62 4.00 3.15 2.75 2.52 2.36 2.25 2.16 2.09 2.04 1.99  
63 3.99 3.14 2.75 2.52 2.36 2.25 2.16 2.09 2.03 1.99  
64 3.99 3.14 2.75 2.52 2.36 2.24 2.16 2.09 2.03 1.98  
65 3.99 3.14 2.75 2.51 2.36 2.24 2.15 2.08 2.03 1.98  
66 3.99 3.14 2.74 2.51 2.35 2.24 2.15 2.08 2.03 1.98  
67 3.98 3.13 2.74 2.51 2.35 2.24 2.15 2.08 2.02 1.98  
68 3.98 3.13 2.74 2.51 2.35 2.24 2.15 2.08 2.02 1.97  
69 3.98 3.13 2.74 2.51 2.35 2.23 2.15 2.08 2.02 1.97  
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97  
71 3.98 3.13 2.73 2.50 2.34 2.23 2.14 2.07 2.02 1.97  
72 3.97 3.12 2.73 2.50 2.34 2.23 2.14 2.07 2.01 1.97  
73 3.97 3.12 2.73 2.50 2.34 2.23 2.14 2.07 2.01 1.96  
74 3.97 3.12 2.73 2.50 2.34 2.22 2.14 2.07 2.01 1.96  
75 3.97 3.12 2.73 2.49 2.34 2.22 2.13 2.06 2.01 1.96  
76 3.97 3.12 2.73 2.49 2.34 2.22 2.13 2.06 2.01 1.96  
77 3.97 3.12 2.72 2.49 2.33 2.22 2.13 2.06 2.00 1.96  
78 3.96 3.11 2.72 2.49 2.33 2.22 2.13 2.06 2.00 1.95  
79 3.96 3.11 2.72 2.49 2.33 2.22 2.13 2.06 2.00 1.95  
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95  
81 3.96 3.11 2.72 2.48 2.33 2.21 2.13 2.06 2.00 1.95  
82 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 2.00 1.95  
83 3.96 3.11 2.72 2.48 2.32 2.21 2.12 2.05 2.00 1.95  
84 3.96 3.11 2.71 2.48 2.32 2.21 2.12 2.05 1.99 1.95  
85 3.95 3.10 2.71 2.48 2.32 2.21 2.12 2.05 1.99 1.94  



86 3.95 3.10 2.71 2.48 2.32 2.21 2.12 2.05 1.99 1.94  
87 3.95 3.10 2.71 2.48 2.32 2.21 2.12 2.05 1.99 1.94  
88 3.95 3.10 2.71 2.48 2.32 2.20 2.12 2.05 1.99 1.94  
89 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94  
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94  
91 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.98 1.94  
92 3.95 3.10 2.70 2.47 2.31 2.20 2.11 2.04 1.98 1.94  
93 3.94 3.09 2.70 2.47 2.31 2.20 2.11 2.04 1.98 1.93  
94 3.94 3.09 2.70 2.47 2.31 2.20 2.11 2.04 1.98 1.93  
95 3.94 3.09 2.70 2.47 2.31 2.20 2.11 2.04 1.98 1.93  
96 3.94 3.09 2.70 2.47 2.31 2.20 2.11 2.04 1.98 1.93  
97 3.94 3.09 2.70 2.47 2.31 2.19 2.11 2.04 1.98 1.93  
98 3.94 3.09 2.70 2.47 2.31 2.19 2.10 2.03 1.98 1.93  
99 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.98 1.93  

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.98 1.93  
            
 Critical values of F for the 0.01 significance level:    
 1 2 3 4 5 6 7 8 9 10  

1 4052.19 4999.52 5403.34 5624.62 5763.65 5858.97 5928.33 5981.10 6022.50 6055.85  
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40  
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23  
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55  
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05  
6 13.75 10.93 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87  
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62  
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81  
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26  

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85  
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54  
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30  
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10  
14 8.86 6.52 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94  
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.90 3.81  
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69  
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59  
18 8.29 6.01 5.09 4.58 4.25 4.02 3.84 3.71 3.60 3.51  
19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43  
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37  
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31  
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26  
23 7.88 5.66 4.77 4.26 3.94 3.71 3.54 3.41 3.30 3.21  
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17  
25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13  
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09  
27 7.68 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.15 3.06  
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03  
29 7.60 5.42 4.54 4.05 3.73 3.50 3.33 3.20 3.09 3.01  
30 7.56 5.39 4.51 4.02 3.70 3.47 3.31 3.17 3.07 2.98  
31 7.53 5.36 4.48 3.99 3.68 3.45 3.28 3.15 3.04 2.96  
32 7.50 5.34 4.46 3.97 3.65 3.43 3.26 3.13 3.02 2.93  



33 7.47 5.31 4.44 3.95 3.63 3.41 3.24 3.11 3.00 2.91  
34 7.44 5.29 4.42 3.93 3.61 3.39 3.22 3.09 2.98 2.89  
35 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88  
36 7.40 5.25 4.38 3.89 3.57 3.35 3.18 3.05 2.95 2.86  
37 7.37 5.23 4.36 3.87 3.56 3.33 3.17 3.04 2.93 2.84  
38 7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.92 2.83  
39 7.33 5.19 4.33 3.84 3.53 3.31 3.14 3.01 2.90 2.81  
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80  
41 7.30 5.16 4.30 3.82 3.50 3.28 3.11 2.98 2.88 2.79  
42 7.28 5.15 4.29 3.80 3.49 3.27 3.10 2.97 2.86 2.78  
43 7.26 5.14 4.27 3.79 3.48 3.25 3.09 2.96 2.85 2.76  
44 7.25 5.12 4.26 3.78 3.47 3.24 3.08 2.95 2.84 2.75  
45 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74  
46 7.22 5.10 4.24 3.76 3.44 3.22 3.06 2.93 2.82 2.73  
47 7.21 5.09 4.23 3.75 3.43 3.21 3.05 2.92 2.81 2.72  
48 7.19 5.08 4.22 3.74 3.43 3.20 3.04 2.91 2.80 2.72  
49 7.18 5.07 4.21 3.73 3.42 3.20 3.03 2.90 2.79 2.71  
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.79 2.70  
51 7.16 5.05 4.19 3.71 3.40 3.18 3.01 2.88 2.78 2.69  
52 7.15 5.04 4.18 3.70 3.39 3.17 3.01 2.87 2.77 2.68  
53 7.14 5.03 4.17 3.70 3.38 3.16 3.00 2.87 2.76 2.68  
54 7.13 5.02 4.17 3.69 3.38 3.16 2.99 2.86 2.76 2.67  
55 7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66  
56 7.11 5.01 4.15 3.67 3.36 3.14 2.98 2.85 2.74 2.66  
57 7.10 5.00 4.15 3.67 3.36 3.14 2.97 2.84 2.74 2.65  
58 7.09 4.99 4.14 3.66 3.35 3.13 2.97 2.84 2.73 2.64  
59 7.09 4.98 4.13 3.66 3.35 3.12 2.96 2.83 2.72 2.64  
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63  
61 7.07 4.97 4.12 3.64 3.33 3.11 2.95 2.82 2.71 2.63  
62 7.06 4.97 4.11 3.64 3.33 3.11 2.94 2.81 2.71 2.62  
63 7.06 4.96 4.11 3.63 3.32 3.10 2.94 2.81 2.70 2.62  
64 7.05 4.95 4.10 3.63 3.32 3.10 2.93 2.80 2.70 2.61  
65 7.04 4.95 4.10 3.62 3.31 3.09 2.93 2.80 2.69 2.61  
66 7.04 4.94 4.09 3.62 3.31 3.09 2.92 2.79 2.69 2.60  
67 7.03 4.94 4.09 3.61 3.30 3.08 2.92 2.79 2.68 2.60  
68 7.02 4.93 4.08 3.61 3.30 3.08 2.91 2.79 2.68 2.59  
69 7.02 4.93 4.08 3.60 3.30 3.08 2.91 2.78 2.68 2.59  
70 7.01 4.92 4.07 3.60 3.29 3.07 2.91 2.78 2.67 2.59  
71 7.01 4.92 4.07 3.60 3.29 3.07 2.90 2.77 2.67 2.58  
72 7.00 4.91 4.07 3.59 3.28 3.06 2.90 2.77 2.66 2.58  
73 7.00 4.91 4.06 3.59 3.28 3.06 2.90 2.77 2.66 2.57  
74 6.99 4.90 4.06 3.58 3.28 3.06 2.89 2.76 2.66 2.57  
75 6.99 4.90 4.05 3.58 3.27 3.05 2.89 2.76 2.65 2.57  
76 6.98 4.90 4.05 3.58 3.27 3.05 2.88 2.76 2.65 2.56  
77 6.98 4.89 4.05 3.57 3.27 3.05 2.88 2.75 2.65 2.56  
78 6.97 4.89 4.04 3.57 3.26 3.04 2.88 2.75 2.64 2.56  
79 6.97 4.88 4.04 3.57 3.26 3.04 2.87 2.75 2.64 2.55  
80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55  
81 6.96 4.88 4.03 3.56 3.25 3.03 2.87 2.74 2.63 2.55  
82 6.95 4.87 4.03 3.56 3.25 3.03 2.87 2.74 2.63 2.55  



83 6.95 4.87 4.03 3.55 3.25 3.03 2.86 2.73 2.63 2.54  
84 6.95 4.87 4.02 3.55 3.24 3.03 2.86 2.73 2.63 2.54  
85 6.94 4.86 4.02 3.55 3.24 3.02 2.86 2.73 2.62 2.54  
86 6.94 4.86 4.02 3.55 3.24 3.02 2.85 2.73 2.62 2.53  
87 6.94 4.86 4.02 3.54 3.24 3.02 2.85 2.72 2.62 2.53  
88 6.93 4.86 4.01 3.54 3.23 3.01 2.85 2.72 2.62 2.53  
89 6.93 4.85 4.01 3.54 3.23 3.01 2.85 2.72 2.61 2.53  
90 6.93 4.85 4.01 3.54 3.23 3.01 2.85 2.72 2.61 2.52  
91 6.92 4.85 4.00 3.53 3.23 3.01 2.84 2.71 2.61 2.52  
92 6.92 4.84 4.00 3.53 3.22 3.00 2.84 2.71 2.61 2.52  
93 6.92 4.84 4.00 3.53 3.22 3.00 2.84 2.71 2.60 2.52  
94 6.91 4.84 4.00 3.53 3.22 3.00 2.84 2.71 2.60 2.52  
95 6.91 4.84 4.00 3.52 3.22 3.00 2.83 2.70 2.60 2.51  
96 6.91 4.83 3.99 3.52 3.21 3.00 2.83 2.70 2.60 2.51  
97 6.90 4.83 3.99 3.52 3.21 2.99 2.83 2.70 2.60 2.51  
98 6.90 4.83 3.99 3.52 3.21 2.99 2.83 2.70 2.59 2.51  
99 6.90 4.83 3.99 3.52 3.21 2.99 2.83 2.70 2.59 2.51  

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50  
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