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All models are wrong, but ...
Lets acknowledge that most models are imperfect.

Consequently,

predictions will be wrong, or will be made with misleading degree of
confidence
solving the inverse problem y = f (θ) + e may not give sensible
results.

I e is measurement error
I f (θ) is our computer model
I y is our data

Can we

account for the error?

correct the error?

Kennedy and O’Hagan (2001) suggested we introduce reality ζ into our
statistical inference

Reality ζ = f (θ̂) + δ, the best model prediction plus model error δ(x).

Data y = ζ + e where e represents measurement error
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Dynamic models

For dynamical systems the model sequentially makes predictions
before then observing the outcome.

Embedded in this process is information about how well the model
performs for a single time-step.

We can specify a class of models for the error, and then try to learn
about the error from our predictions and the realised data.
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Mathematical Framework

Suppose we have

State vector xt which evolves through time. Let x0:T denote
(x0, x1, . . . , xT ).

Computer model f which encapsulates our beliefs about the
dynamics of the state vector

xt+1 = f (xt , ut)

which depends on forcings ut . We treat f as a black-box.

Observations
yt = h(xt)

where h(·) usually contains some stochastic element
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Moving from white to coloured noise

A common approach is to treat the model error as white noise

State evolution: xt+1 = f (xt , ut) + εt where εt are iid rvs.

Instead of the white noise model error, we ask whether there is a stronger
signal that could be learnt:

State evolution: xt+1 = f (xt , ut) + δ(xt , ut) + εt

Observations: yt = h(xt).

Our aim is to learn a functional form plus stochastic error description of δ
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Why this is difficult?

x0:T is usually unobserved, but given observations y0:T and a fully
specified model we can infer x0:T .

I the filtering/smoothing problem

When we want to learn the discrepancy δ(x) we are in the situation
where we estimate δ from x0:T , . . .

but we must estimate x0:T from a description of δ.
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Toy Example: Freefall

Consider an experiment where we drop a weight
from a tower and measure its position xt every
∆t seconds.

Noisy observation: yn ∼ N(xn, σ
2
obs)

Suppose we are given a computer model based on

dv
dt

= g

Which gives predictions at the observations of

xn+1 = xn + vk∆t + 1
2g(∆t)2

vn+1 = vn + g∆t
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Toy Example: Freefall

Assume that the ‘true’ dynamics include a
Stokes’ drag term

dv
dt

= g − kv

Which gives single time step updates

xn+1 = xn +
1

k
(
g

k
− vt)(e−k∆t − 1) +

g∆t
k

vn+1 = (vn −
g

k
)e−k∆t +

g
k
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Model Error Term

In this toy problem, the true discrepancy function can be calculated.

It is a two dimensional function

δ =

(
δx
δv

)
= ζ − f

giving the difference between the one time-step ahead dynamics of
reality and the prediction from our model.

If we expand e−k∆t to second order we find

δ(x , v , t) =

(
δx
δv

)
=

(
0

−gk(∆t)2

2

)
− vt

(
k(∆t)2

2

k∆t(1− k∆t
2 )

)

This is solely a function of v .

Note, to learn δ we only have the observations y1, . . . , yn of
x1, . . . , xn - we do not observe v .

R.D. Wilkinson (University of Nottingham) Estimating model error UCM 2010 9 / 1



Model Error Term

In this toy problem, the true discrepancy function can be calculated.

It is a two dimensional function

δ =

(
δx
δv

)
= ζ − f

giving the difference between the one time-step ahead dynamics of
reality and the prediction from our model.

If we expand e−k∆t to second order we find

δ(x , v , t) =

(
δx
δv

)
=

(
0

−gk(∆t)2

2

)
− vt

(
k(∆t)2

2

k∆t(1− k∆t
2 )

)

This is solely a function of v .

Note, to learn δ we only have the observations y1, . . . , yn of
x1, . . . , xn - we do not observe v .

R.D. Wilkinson (University of Nottingham) Estimating model error UCM 2010 9 / 1



Expected form of the discrepancy

Forget the previous slide.

There are three variables in this problem, displacement, velocity and time
(x , v , t) so we might think to model δ as a function of these three terms.

However, the principal of universality says that nature is consistent
throughout all space and time (background independence), so with a little
thought we might reason that δ should be independent of x and t.

With input from an experienced user of our model, it is feasible we might
be able to get other information such as that δ approximately scales with
v , or at least that the error is small at low speeds and large at high speeds.
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Parametric approach

Start with a parametric model for δ, e.g.,

δx(x) =

p∑
i=0

αix
i +

q∑
i=0

βiv
i + ε

where ε ∼ N(0, τ), with θx = (τ, α0, . . . , αp, β0, . . . , βq) unknown (and
similarly for δv ).

The problem now looks like a missing data problem:

π(x0:t , y0:t |θ) = π(y0:t |x0:t)π(x0:t |θ)

is easy to work with when x0:t and y0:t are known. However x0:t is
missing and π(y0:t |θ) is unknown.

The EM algorithm can be used to estimate the best fitting model for
δ from the specified class of models.
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An EM algorithm for estimating δ
We iterate between the E and M steps:

E-step: Calculate

Q(θ, θ(m)) = EX0:T

[
log π(X0:T , y0:T |θ) | y0:T , θ

(m)
]

I This expectation is taken with respect to the distribution
π(x0:T | y0:T , θ

(m))
I This is the smoothing distribution from the fully specified model, and

is not known analytically. However, it can be sampled from and the
Monte Carlo expectation used for Q (stochastic EM algorithm, Wei
and Tanner 1990).

M-step: Maximize Q and set

θ(m+1) = arg maxθQ(θ, θ(m))

I For the linear parametric model assumed here, it can be shown that
this step reduces to fitting a linear regression model.
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Comments
This gives a sequence θ(0), θ(1), . . . that tends to the maximum likelihood
estimates argmaxθπ(y0:t |θ).

We can think of this as two steps which we loop around

1 Given an estimate for θ (and hence δ), estimate the true trajectory
x0:T from π(x0:T | y0:T , θ).

2 Given samples from π(x0:T | y0:T , θ), estimate a value for θ.

The EM algorithm suggests that this converges to the mle (subject to
problems with the expectation being approximated by a Monte Carlo
sum).

We require samples from the smoothing distribution π(x0:T |y0:T , θ)

We can generate approximate samples using the KF and its
extensions, but this can be difficult to achieve good results

Sequential Monte Carlo methods can be used to generate a more
accurate approximation.
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Filtering - π(xt |y0:t)

The bootstrap filter

1 Initialize t=1
For i = 1, . . . ,N sample x

(i)
1 ∼ π(x1), set t = 2

2 Importance step
I For i = 1, . . . ,N, sample

x̃
(i)
t ∼ π(xt |x (i)

t−1) ∼ f (xt−1) + δ(xt−1)

I Calculate the importance weights

w̃ (i) ∝ π(yt |x̃ (i)
t ) = φ(yt ; xt , σ

2
obs)

3 Selection step

I Sample with replacement N particles (x
(i)
t , i = 1, . . . ,N) from

(x̃
(i)
t , i = 1, . . . ,N) according to the importance weights.

I Set t = t + 1 and go to step 2. Reset all weights to be proportional to
1.
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Smoothing π(x0:T | y0:T )
Godsill, Doucet and West 2004

Assume we have filtered particles {x (i)
t }i=1,...,N,t=1,...,T with

x
(i)
t ∼ π(xt |y0:t) (assume all weights are ∝ 1 because of gratuitous

resampling in the filter).

Smoothing

Choose x̃T = x
(i)
T at random from filtered particles at time T .

For t = T − 1 to 1:
I Calculate w

(i)
t|t+1 ∝ π(x̃t+1|x (i)

t ) for each i

I Choose x̃t = x
(i)
t with probability w

(i)
t|t+1

Then x̃1:T is an approximate realization from π(x1:T |y1:T ).

NB The marginal smoother of Fearnhead, Wyncoll and Tawn (2008) gives
all we require (i.e., pairs (xt , xt+1)) and may be more efficient.
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Results from freefall example
k=0.1

We take a sequence of 100 measurements of x ,
taken every 0.25 seconds.

We assume the discrepancy is linear in v and x .

We use 1000 filtering particles and 3 smoothed
trajectories giving 3× 100 observations of δ.

We then iterate through the EM algorithm.
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Measurement error σobs = 0.25m
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Measurement error σobs = 1m
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Comments on results

We have learnt the discrepancy (a function of v) using only
observations on x .

Fitting higher order regression terms we find similar results over the
range of interest (although parameters are not necessarily well
identified).

Larger measurement errors give much less reliable results - sometimes
leading to misleading statements of accuracy.

500 iterations of EM is overkill! Many fewer would suffice.

Using an adaptive scheme for the number of filtering and smoothing
particles could improve accuracy and efficiency.

Tend to see estimates of slope converging rapidly, but estimates of
error variance taking a long time to decrease.

R.D. Wilkinson (University of Nottingham) Estimating model error UCM 2010 20 / 1



Gaussian Processes

We can use the same ideas, but replace the parametric model by a
non-parametric GP model.
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Algorithm Summary

A heuristic algorithm for learning δ(·)
1 Using the white noise discrepancy model, draw sample trajectories

x
(j)
0:T from π(x0:T |y0:T ).

2 Using these realizations, estimate values of δ1(·) and fit a Gaussian
process model for δ1.

3 At stage m, use discrepancy δm to sample from π(x0:T |y0:T , δm).

4 Use realizations x
(j)
0:T from step 3 to estimate δm+1:

δm+1(x
(j)
t ) = x

(j)
t+1 − fφ(x

(j)
t )

5 Fit a GP model to these data. Return to step 3.
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Sequence of GP discrepancy estimates
Toy 1D model
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Identifying potential for learning δ
It can be hard to discover whether it is worth departing from a white
noise model for δ. How can we assess whether there is a functional form δ
for the error that improves upon white noise?

If we plot yt+1 − f (yt) against yt , it can look like white noise is a good
model for the error.

If we know x0 without error, we might try plotting yt+1 − f (xt) vs xt

where xt is a trajectory simulated from the model. But this can be shown
to look like white noise even for very simple models.

Looking at x̃t+1 − f (x̃t) where x̃t is an estimate of the true trajectory (a
realization from π(x0:T |y0:T )) can help

but this requires a model for the error (white noise?)

and an estimation algorithm

and still doesn’t usually show any pattern.
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Concluding remarks

Using a functional model discrepancy can improve forecasts and state
estimates. The discrepancy can be learnt from observations.

Approach is computationally intensive and can be unstable. Even for
the toy gravity model, 100 iterations of the algorithm can take
several minutes.

Sequential approaches are extremely costly, which is why we’ve used
a batch approach here.

If the modellers have beliefs about the shape of the model error, it is
possible to incorporate this into our a priori description of the GP
model.

The stochastic EM algorithm can be made more efficient by
increasing the number of Monte Carlo samples (thus reducing the
MC error) as we iterate through the EM algorithm.

Simultaneous discrepancy estimation and (computer) model
parameter estimation is a hard problem.

I Intuition suggests a carefully restricted model for δ would be necessary.
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Thank you for listening!
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