Estimating model error in dynamic models

Richard Wilkinson¹ and Jeremy Oakley²

¹School of Mathematical Sciences, University of Nottingham ²Department of Probability and Statistics, University of Sheffield r.d.wilkinson@nottingham.ac.uk

UCM conference July 2010

(3) (3)

Lets acknowledge that most models are imperfect.

(3)

Lets acknowledge that most models are imperfect. Consequently,

- predictions will be wrong, or will be made with misleading degree of confidence
- solving the inverse problem $y = f(\theta) + e$ may not give sensible results.
 - *e* is measurement error
 - $f(\theta)$ is our computer model
 - y is our data

()

Lets acknowledge that most models are imperfect. Consequently,

- predictions will be wrong, or will be made with misleading degree of confidence
- solving the inverse problem $y = f(\theta) + e$ may not give sensible results.
 - e is measurement error
 - $f(\theta)$ is our computer model
 - y is our data

Can we

- account for the error?
- orrect the error?

Lets acknowledge that most models are imperfect. Consequently,

- predictions will be wrong, or will be made with misleading degree of confidence
- solving the inverse problem $y = f(\theta) + e$ may not give sensible results.
 - *e* is measurement error
 - $f(\theta)$ is our computer model
 - ► y is our data

Can we

- account for the error?
- o correct the error?

Kennedy and O'Hagan (2001) suggested we introduce reality ζ into our statistical inference

- Reality $\zeta = f(\hat{\theta}) + \delta$, the best model prediction plus model error $\delta(x)$.
- Data $y = \zeta + e$ where e represents measurement error

- For dynamical systems the model sequentially makes predictions before then observing the outcome.
- Embedded in this process is information about how well the model performs for a single time-step.
- We can specify a class of models for the error, and then try to learn about the error from our predictions and the realised data.

Mathematical Framework

Suppose we have

• State vector x_t which evolves through time. Let $x_{0:T}$ denote (x_0, x_1, \ldots, x_T) .

∃ → < ∃</p>

Mathematical Framework

Suppose we have

- State vector x_t which evolves through time. Let $x_{0:T}$ denote (x_0, x_1, \ldots, x_T) .
- Computer model *f* which encapsulates our beliefs about the dynamics of the state vector

$$x_{t+1} = f(x_t, u_t)$$

which depends on forcings u_t . We treat f as a black-box.

Mathematical Framework

Suppose we have

- State vector x_t which evolves through time. Let $x_{0:T}$ denote (x_0, x_1, \ldots, x_T) .
- Computer model *f* which encapsulates our beliefs about the dynamics of the state vector

$$x_{t+1} = f(x_t, u_t)$$

which depends on forcings u_t . We treat f as a black-box.

Observations

$$y_t = h(x_t)$$

where $h(\cdot)$ usually contains some stochastic element

Moving from white to coloured noise

A common approach is to treat the model error as white noise

• State evolution: $x_{t+1} = f(x_t, u_t) + \epsilon_t$ where ϵ_t are iid rvs.

Moving from white to coloured noise

A common approach is to treat the model error as white noise

• State evolution: $x_{t+1} = f(x_t, u_t) + \epsilon_t$ where ϵ_t are iid rvs.

Instead of the white noise model error, we ask whether there is a stronger signal that could be learnt:

- State evolution: $x_{t+1} = f(x_t, u_t) + \delta(x_t, u_t) + \epsilon_t$
- Observations: $y_t = h(x_t)$.

Moving from white to coloured noise

A common approach is to treat the model error as white noise

• State evolution: $x_{t+1} = f(x_t, u_t) + \epsilon_t$ where ϵ_t are iid rvs.

Instead of the white noise model error, we ask whether there is a stronger signal that could be learnt:

- State evolution: $x_{t+1} = f(x_t, u_t) + \delta(x_t, u_t) + \epsilon_t$
- Observations: $y_t = h(x_t)$.

Our aim is to learn a functional form plus stochastic error description of δ

(日) (同) (三) (三)

Why this is difficult?

- x_{0:T} is usually unobserved, but given observations y_{0:T} and a fully specified model we can infer x_{0:T}.
 - the filtering/smoothing problem
- When we want to learn the discrepancy δ(x) we are in the situation where we estimate δ from x_{0:T},...
- but we must estimate $x_{0:T}$ from a description of δ .

Consider an experiment where we drop a weight from a tower and measure its position x_t every Δt seconds.

• Noisy observation: $y_n \sim N(x_n, \sigma_{obs}^2)$

Consider an experiment where we drop a weight from a tower and measure its position x_t every Δt seconds.

• Noisy observation: $y_n \sim N(x_n, \sigma_{obs}^2)$ Suppose we are given a computer model based on

$$\frac{\mathrm{dv}}{\mathrm{dt}} = g$$

Consider an experiment where we drop a weight from a tower and measure its position x_t every Δt seconds.

• Noisy observation: $y_n \sim N(x_n, \sigma_{obs}^2)$ Suppose we are given a computer model based on

$$\frac{\mathrm{dv}}{\mathrm{dt}} = g$$

Which gives predictions at the observations of

• $x_{n+1} = x_n + v_k \Delta t + \frac{1}{2}g(\Delta t)^2$

•
$$v_{n+1} = v_n + g\Delta t$$

Assume that the 'true' dynamics include a Stokes' drag term

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{t}} = \mathbf{g} - \mathbf{k}\mathbf{v}$$

(3)

Assume that the 'true' dynamics include a Stokes' drag term

$$\frac{\mathrm{dv}}{\mathrm{dt}} = g - kv$$

Which gives single time step updates

$$\begin{aligned} x_{n+1} &= x_n + \frac{1}{k} \left(\frac{g}{k} - v_t\right) \left(e^{-k\Delta t} - 1 \right) + \frac{g\Delta t}{k} \\ v_{n+1} &= \left(v_n - \frac{g}{k} \right) e^{-k\Delta t} + \frac{g}{k} \end{aligned}$$

3 🕨 🖌 3

Model Error Term

In this toy problem, the true discrepancy function can be calculated.

• It is a two dimensional function

$$\delta = \left(\begin{array}{c} \delta_{\mathsf{x}} \\ \delta_{\mathsf{v}} \end{array}\right) = \zeta - f$$

giving the difference between the one time-step ahead dynamics of reality and the prediction from our model.

If we expand $e^{-k\Delta t}$ to second order we find

$$\delta(x, v, t) = \begin{pmatrix} \delta_x \\ \delta_v \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{-gk(\Delta t)^2}{2} \end{pmatrix} - v_t \begin{pmatrix} \frac{k(\Delta t)^2}{2} \\ k\Delta t(1 - \frac{k\Delta t}{2}) \end{pmatrix}$$

(B)

Model Error Term

In this toy problem, the true discrepancy function can be calculated.

• It is a two dimensional function

$$\delta = \left(\begin{array}{c} \delta_{\mathsf{x}} \\ \delta_{\mathsf{v}} \end{array}\right) = \zeta - f$$

giving the difference between the one time-step ahead dynamics of reality and the prediction from our model.

If we expand $e^{-k\Delta t}$ to second order we find

$$\delta(x, v, t) = \begin{pmatrix} \delta_x \\ \delta_v \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{-gk(\Delta t)^2}{2} \end{pmatrix} - v_t \begin{pmatrix} \frac{k(\Delta t)^2}{2} \\ k\Delta t(1 - \frac{k\Delta t}{2}) \end{pmatrix}$$

This is solely a function of v.

• Note, to learn δ we only have the observations y_1, \ldots, y_n of x_1, \ldots, x_n - we do not observe v.

A B A A B A

Forget the previous slide.

< ∃ > <

Forget the previous slide.

There are three variables in this problem, displacement, velocity and time (x, v, t) so we might think to model δ as a function of these three terms.

Forget the previous slide.

There are three variables in this problem, displacement, velocity and time (x, v, t) so we might think to model δ as a function of these three terms.

However, the principal of universality says that nature is consistent throughout all space and time (background independence), so with a little thought we might reason that δ should be independent of x and t.

Forget the previous slide.

There are three variables in this problem, displacement, velocity and time (x, v, t) so we might think to model δ as a function of these three terms.

However, the principal of universality says that nature is consistent throughout all space and time (background independence), so with a little thought we might reason that δ should be independent of x and t.

With input from an experienced user of our model, it is feasible we might be able to get other information such as that δ approximately scales with v, or at least that the error is small at low speeds and large at high speeds.

Parametric approach

Start with a parametric model for δ , e.g.,

$$\delta_x(x) = \sum_{i=0}^p \alpha_i x^i + \sum_{i=0}^q \beta_i v^i + \epsilon$$

where $\epsilon \sim N(0, \tau)$, with $\theta_x = (\tau, \alpha_0, \dots, \alpha_p, \beta_0, \dots, \beta_q)$ unknown (and similarly for δ_v).

(3)

Parametric approach

Start with a parametric model for δ , e.g.,

$$\delta_x(x) = \sum_{i=0}^p \alpha_i x^i + \sum_{i=0}^q \beta_i v^i + \epsilon$$

where $\epsilon \sim N(0, \tau)$, with $\theta_x = (\tau, \alpha_0, \dots, \alpha_p, \beta_0, \dots, \beta_q)$ unknown (and similarly for δ_v).

• The problem now looks like a missing data problem:

$$\pi(x_{0:t}, y_{0:t}|\theta) = \pi(y_{0:t}|x_{0:t})\pi(x_{0:t}|\theta)$$

is easy to work with when $x_{0:t}$ and $y_{0:t}$ are known. However $x_{0:t}$ is missing and $\pi(y_{0:t}|\theta)$ is unknown.

A B M A B M

Parametric approach

Start with a parametric model for δ , e.g.,

$$\delta_x(x) = \sum_{i=0}^p \alpha_i x^i + \sum_{i=0}^q \beta_i v^i + \epsilon$$

where $\epsilon \sim N(0, \tau)$, with $\theta_x = (\tau, \alpha_0, \dots, \alpha_p, \beta_0, \dots, \beta_q)$ unknown (and similarly for δ_v).

• The problem now looks like a missing data problem:

$$\pi(x_{0:t}, y_{0:t}|\theta) = \pi(y_{0:t}|x_{0:t})\pi(x_{0:t}|\theta)$$

is easy to work with when $x_{0:t}$ and $y_{0:t}$ are known. However $x_{0:t}$ is missing and $\pi(y_{0:t}|\theta)$ is unknown.

• The EM algorithm can be used to estimate the best fitting model for δ from the specified class of models.

< 回 ト < 三 ト < 三 ト

We iterate between the E and M steps:

• E-step: Calculate

$$Q(\theta, \theta^{(m)}) = \mathbb{E}_{X_{0:T}} \left[\log \pi(X_{0:T}, y_{0:T} | \theta) \mid y_{0:T}, \theta^{(m)} \right]$$

• M-step: Maximize Q and set

$$\theta^{(m+1)} = \arg \max_{\theta} Q(\theta, \theta^{(m)})$$

∃ ▶ ∢

We iterate between the E and M steps:

• E-step: Calculate

$$Q(\theta, \theta^{(m)}) = \mathbb{E}_{X_{0:T}} \left[\log \pi(X_{0:T}, y_{0:T} | \theta) \mid y_{0:T}, \theta^{(m)} \right]$$

• This expectation is taken with respect to the distribution $\pi(x_{0:T} \mid y_{0:T}, \theta^{(m)})$

• M-step: Maximize Q and set

$$\theta^{(m+1)} = \arg \max_{\theta} Q(\theta, \theta^{(m)})$$

∃ ▶ ∢

We iterate between the E and M steps:

• E-step: Calculate

$$Q(\theta, \theta^{(m)}) = \mathbb{E}_{X_{0:T}} \left[\log \pi(X_{0:T}, y_{0:T} | \theta) \mid y_{0:T}, \theta^{(m)} \right]$$

- ► This expectation is taken with respect to the distribution $\pi(x_{0:T} \mid y_{0:T}, \theta^{(m)})$
- ► This is the smoothing distribution from the fully specified model, and is not known analytically. However, it can be sampled from and the Monte Carlo expectation used for Q (stochastic EM algorithm, Wei and Tanner 1990).
- M-step: Maximize Q and set

$$\theta^{(m+1)} = \arg \max_{\theta} Q(\theta, \theta^{(m)})$$

We iterate between the E and M steps:

• E-step: Calculate

$$Q(\theta, \theta^{(m)}) = \mathbb{E}_{X_{0:T}} \left[\log \pi(X_{0:T}, y_{0:T} | \theta) \mid y_{0:T}, \theta^{(m)} \right]$$

- ► This expectation is taken with respect to the distribution $\pi(x_{0:T} \mid y_{0:T}, \theta^{(m)})$
- ► This is the smoothing distribution from the fully specified model, and is not known analytically. However, it can be sampled from and the Monte Carlo expectation used for Q (stochastic EM algorithm, Wei and Tanner 1990).
- M-step: Maximize Q and set

$$\theta^{(m+1)} = \arg \max_{\theta} Q(\theta, \theta^{(m)})$$

For the linear parametric model assumed here, it can be shown that this step reduces to fitting a linear regression model.

Comments

This gives a sequence $\theta^{(0)}, \theta^{(1)}, \ldots$ that tends to the maximum likelihood estimates $\arg\max_{\theta} \pi(y_{0:t}|\theta)$.

We can think of this as two steps which we loop around

- Given an estimate for θ (and hence δ), estimate the true trajectory x_{0:T} from π(x_{0:T} | y_{0:T}, θ).
- **2** Given samples from $\pi(x_{0:T} \mid y_{0:T}, \theta)$, estimate a value for θ .

The EM algorithm suggests that this converges to the mle (subject to problems with the expectation being approximated by a Monte Carlo sum).

A B M A B M

Comments

This gives a sequence $\theta^{(0)}, \theta^{(1)}, \ldots$ that tends to the maximum likelihood estimates $\arg\max_{\theta} \pi(y_{0:t}|\theta)$.

We can think of this as two steps which we loop around

- Given an estimate for θ (and hence δ), estimate the true trajectory x_{0:T} from π(x_{0:T} | y_{0:T}, θ).
- **2** Given samples from $\pi(x_{0:T} \mid y_{0:T}, \theta)$, estimate a value for θ .

The EM algorithm suggests that this converges to the mle (subject to problems with the expectation being approximated by a Monte Carlo sum).

We require samples from the smoothing distribution $\pi(x_{0:T}|y_{0:T},\theta)$

- We can generate approximate samples using the KF and its extensions, but this can be difficult to achieve good results
- Sequential Monte Carlo methods can be used to generate a more accurate approximation.

Filtering - $\pi(x_t|y_{0:t})$

The bootstrap filter

- Initialize t=1 For i = 1, ..., N sample $x_1^{(i)} \sim \pi(x_1)$, set t = 2
- Importance step
 - For $i = 1, \ldots, N$, sample

$$\hat{\kappa}_{t}^{(i)} \sim \pi(x_{t}|x_{t-1}^{(i)}) \qquad \sim f(x_{t-1}) + \delta(x_{t-1})$$

Calculate the importance weights

$$ilde{w}^{(i)} \propto \pi(y_t | ilde{x}_t^{(i)}) \qquad = \phi(y_t; x_t, \sigma_{obs}^2)$$

Selection step

Sample with replacement N particles (x_t⁽ⁱ⁾, i = 1,..., N) from (x̃_t⁽ⁱ⁾, i = 1,..., N) according to the importance weights.
Set t = t + 1 and go to step 2. Reset all weights to be proportional to 1.

Smoothing $\pi(x_{0:T} \mid y_{0:T})$

Godsill, Doucet and West 2004

Assume we have filtered particles $\{x_t^{(i)}\}_{i=1,...,N,t=1,...,T}$ with $x_t^{(i)} \sim \pi(x_t|y_{0:t})$ (assume all weights are $\propto 1$ because of gratuitous resampling in the filter).

Smoothing

Choose \$\tilde{x}_T = x_T^{(i)}\$ at random from filtered particles at time \$T\$.
 For \$t = T - 1\$ to 1:

Calculate
$$w_{t|t+1}^{(i)} \propto \pi(\tilde{x}_{t+1}|x_t^{(i)})$$
 for each i
Choose $\tilde{x}_t = x_t^{(i)}$ with probability $w_{t|t+1}^{(i)}$

Then $\tilde{x}_{1:T}$ is an approximate realization from $\pi(x_{1:T}|y_{1:T})$.

NB The marginal smoother of Fearnhead, Wyncoll and Tawn (2008) gives all we require (i.e., pairs (x_t, x_{t+1})) and may be more efficient.

Results from freefall example k=0.1

We take a sequence of 100 measurements of x, taken every 0.25 seconds.

We assume the discrepancy is linear in v and x.

We use 1000 filtering particles and 3 smoothed trajectories giving 3×100 observations of δ .

We then iterate through the EM algorithm.

Measurement error $\sigma_{obs} = 0.25m$

<ロ> (日) (日) (日) (日) (日)

Measurement error $\sigma_{obs} = 0.25m$

<ロ> (日) (日) (日) (日) (日)

Measurement error $\sigma_{obs} = 1m$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Comments on results

- We have learnt the discrepancy (a function of v) using only observations on x.
- Fitting higher order regression terms we find similar results over the range of interest (although parameters are not necessarily well identified).
- Larger measurement errors give much less reliable results sometimes leading to misleading statements of accuracy.
- 500 iterations of EM is overkill! Many fewer would suffice.
- Using an adaptive scheme for the number of filtering and smoothing particles could improve accuracy and efficiency.
- Tend to see estimates of slope converging rapidly, but estimates of error variance taking a long time to decrease.

A B < A B <</p>

Gaussian Processes

We can use the same ideas, but replace the parametric model by a non-parametric GP model.

• = • •

Algorithm Summary

A heuristic algorithm for learning $\delta(\cdot)$

- Using the white noise discrepancy model, draw sample trajectories x^(j)_{0:T} from π(x_{0:T}|y_{0:T}).
- **②** Using these realizations, estimate values of $\delta_1(\cdot)$ and fit a Gaussian process model for δ_1 .
- **3** At stage *m*, use discrepancy δ_m to sample from $\pi(x_{0:T}|y_{0:T}, \delta_m)$.
- Use realizations $x_{0:T}^{(j)}$ from step 3 to estimate δ_{m+1} :

$$\delta_{m+1}(x_t^{(j)}) = x_{t+1}^{(j)} - f_{\phi}(x_t^{(j)})$$

So Fit a GP model to these data. Return to step 3.

Sequence of GP discrepancy estimates

Toy 1D model

(金属) (金)

Identifying potential for learning δ

It can be hard to discover whether it is worth departing from a white noise model for δ . How can we assess whether there is a functional form δ for the error that improves upon white noise?

If we plot $y_{t+1} - f(y_t)$ against y_t , it can look like white noise is a good model for the error.

If we know x_0 without error, we might try plotting $y_{t+1} - f(x_t)$ vs x_t where x_t is a trajectory simulated from the model. But this can be shown to look like white noise even for very simple models.

Looking at $\tilde{x}_{t+1} - f(\tilde{x}_t)$ where \tilde{x}_t is an estimate of the true trajectory (a realization from $\pi(x_{0:T}|y_{0:T})$) can help

- but this requires a model for the error (white noise?)
- and an estimation algorithm

and still doesn't usually show any pattern.

Concluding remarks

- Using a functional model discrepancy can improve forecasts and state estimates. The discrepancy can be learnt from observations.
- Approach is computationally intensive and can be unstable. Even for the toy gravity model, 100 iterations of the algorithm can take several minutes.
- Sequential approaches are extremely costly, which is why we've used a batch approach here.
- If the modellers have beliefs about the shape of the model error, it is possible to incorporate this into our *a priori* description of the GP model.
- The stochastic EM algorithm can be made more efficient by increasing the number of Monte Carlo samples (thus reducing the MC error) as we iterate through the EM algorithm.
- Simultaneous discrepancy estimation and (computer) model parameter estimation is a hard problem.
 - Intuition suggests a carefully restricted model for δ would be necessary.

Thank you for listening!

→ Ξ →

< 67 ▶