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Dynamical systems simulators

State vector xt which evolves through time. Let x0:T denote
(x0, x1, . . . , xT ).
Computer model f which encapsulates our beliefs about the
dynamics of the state vector

xt+1 = f (xt , ut) + wt

where wt represents a simulator discrepancy term (can depend on u
and x). Treat f as a black-box
Observations yt = h(xt) where h(·) usually contains some stochastic
element

We’re not doing parameter estimation.
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Assume

xt+1 = f (xt) + δ(xt)

where δ(x) is a functional
simulator discrepancy.

We then proposed a model for
δ(·), parametric or otherwise,
and attempted to learn it.

This turned out to be hard -
we never observe xt , only yt ,
which may be lower
dimensional and only provide
limited information about xt .

Simpler question: Given an imperfect statistical forecasting system,
diagnose which aspect of the system is causing the error
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All models are wrong...

The forecasting system consists of a simulator, statistical model of
simulator discrepancy, observation equation and statistical model,
inferential scheme... call the entire system a statistical forecasting system

There are various types of error we might see

Incorrect simulator dynamics (simulator discrepancy)

Simulator discrepancy term mis-specified

Measurement process mis-specified (incorrect variance, incorrect h)

Initial condition errors - poor choice of xo when initialising forecasts
...

Given an imperfect forecasting system, how do we know what type of
error we are faced with?

we’ve looked in various literatures, but found little



System output
We must decide what aspect of the system output to use, and then how
to judge it.
Possible system outputs:

Posterior predictive distributions π(y rep
t |y1:t) or smoothed

distributions π(yt |y1:T ) for 1 ≤ t ≤ T

Predictive distributions π(yt+k |y1:t) - k-step-ahead forecast

Point estimates from any of the above

Note: obtaining these distributions typically requires some work, e.g.
Kalman filter and its variants, sequential Monte Carlo methods, ABC
methods. (needed?)

posterior predictive distributions: ∃ a debate over their validity

Difficulty of interpretation - conditioning on the data moves the state
prediction closer to the data, making probabilities harder to interpret.

p-values don’t have a U[0, 1] distribution under the null

Prior predictive p-values have been recommended instead by various
authors (e.g., Bayarri and Castellanos 2007)
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k-step ahead-predictive distributions
In the dynamical systems setting, the prior predictive density is the
k-step-ahead forecast π(yt+k |y1:t)

Prediction vs explanation (Shmueli 2011)

base validation and diagnostics solely on the forecasting system’s
abilty to predict, not explain
Link to Dawid’s prequential approach
over-fitting less of a problem if we are only using predictive measures

By looking at predictions at different lead times we can emphasise
different aspects of the forecasting system:
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How to judge: Numerical Scores
Numerous numerical scores are used e.g., MSE, MAD, MAPE, and
corresponding skill-scores obtained by comparing these values to those
given for a reference forecasting system such as climatology or
persistence, e.g., Nash-Sutcliffe efficiency, Theil’s U.

Theory of proper scoring rules undergoing a resurgence in recent years.
A scoring rule S takes forecast distribution π and observed value y and
returns a numerical score S(π, x) ∈ R
S is proper ifF

EqS(π,X ) =

∫
S(π, x)q(dx)

is maximised at π = q. That is, if we believe q, then we maximize our
expected score by reporting q.

Important to use proper scores, as improper scores are an inducement to
hedging
Examples include the CRPS, logarithmic score, Brier score, Dawid score. . .
Any proper score can be decomposed into a reliability term and a
sharpness term.
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Improper score vs proper score
Two parameter model, both scale parameters, 1-step ahead forecasts

Simulator discrepancy variance on x-axis - true value at 1

Measurement error variance on y-axis - true value at 1

Score on z-axis
MSE contour surface CRPS contour surface
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CRPS correctly identifies region containing true value
MSE can only find good ratios of parameter values.



Diagnostic plots

We want to be able to say where the problem lies, not just that there is a
problem.

Testing and formal inference are hard problems for state-space problems
because of the high-dimensional nature of the missing data.

Tukey (1962, and many others) suggested we use graphical methods to
highlight problems, rather than parametrizing types of departure in
advance and developing significance tests.

Diagnostic plots seem to be a better option than deterministic scores.
Useful plots include

Residuals εt+k = yt+k − E(yt+k |yt) vs time t + k

Residuals εt+k vs posterior mean E(yt+k |yt)

Autocorrelation (ACF) plots at various lags

CUSUM type plots.



Attribute diagrams
Hsu and Murphy 1986

Sequence of binary events with outcomes d1, d2, . . . , dT

Sequence of forecast probabilities f1, ft , . . . , fT .

Partition [0, 1] into K intervals with each interval characterized by a
representative forecast probability f̄k .

let d̄k be the
relative occurence
of the event when
the forecast was in
interval k .

Attribute diagram is
the plot of d̄k vs f̄k .

We can add simple
error bars using the
Monte Carlo
variance.



Attribute diagrams for continuous random variables
Attribute diagrams are defined for sequences of binary events.
We artificially create such a sequence by defining prediction intervals It

central interval I
(c)
t = [at , bt ]

left interval I
(l)
t = (−∞, lt ]

right interval I
(r)
t = [rt ,∞)

so that P(yt+k ∈ I
(·)
t+k |y1:t) = p

and then define the sequence
of binary events to be

r
(p)
t =

{
1 if yt+k ∈ I

(·)
t+k

0 otherwise
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We can then compare the
relative frequency r̄ (p) with p
(perfectly calibrated forecast
has r̄ (p) = p).

Repeat for various p and plot to get a version of the attribute diagram for
continuous random variables.



Illustrative example 1

To illustrate the patterns we expect to see for the various diagnostic plots
as errors of different types of error are introduced, consider the simple
linear Gaussian model

Xt+1 = aXt + b + N(0, σ2)

Yt = cYt + N(0, τ2)

We can use the Kalman filter to obtain the filtering distributions and the
k-step ahead predictions in this case.

We generate an “observed” dataset with a = b = c = τ = σ = 1 and
then introduce errors one at a time to illustrate the deviations we expect
from the null form of the various plots.



Null plots - 1 step ahead
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Null plots - 5 step ahead
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see some
correlation as the
residuals from
predictions less
than 5 time points
apart will correlated

ACF plot shows
positive correlation
for lags upto 5, and
then a period of
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Attribute diagrams
show no significant
departiure from
y = x



Incorrect measurement error - too small
k = 1
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k = 5
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Lag 1 correlation will
be negative

Atribute diagram:
central interval -
over-confident for
central interval. For
L/R intervals,
under-confident for
p < 0.5 and
over-confident for
p > 0.5.

As the lead time k
increases, the ratio
kσ2+τ2

kσ2+τ2
true
→ 1, and so

the attribute diagrams
will begin to look OK



Incorrect measurement error - too large

k = 1
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With τ2 too large,
the pattern is
reversed.

Central interval will
be under-confident.

L/R intervals will
be over-confident
for p < 0.5,
otherwise
under-confident.

Attribute diagram
looks better as lead
time increases.



Incorrect simulator discrepancy error - too small
k = 1
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ACF plot will tend to
be positive - too much
emphasis on model

Atribute diagram
shows same pattern as
when meas. error is
too small.

However, as the lead
time k increases, the
ratio kσ2+τ2

kσ2+τ2
true
→ 1

slowly increases, and
so the attribute
diagrams don’t
improve (and may look
worse).



Incorrect simulator discrepancy error - too large
k = 1
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osciallate (chasing the
data)

Atribute diagram
shows same pattern as
when meas. error is
too large, but the error
doesn’t improve with
lead time.



Incorrect simulator dynamics

Harder to deal with, as the variety of possible errors is larger.

Similar to having too small a simulator discrepancy term.

Central interval attribute diagrams will be over-confident.

However, there are some differences we may be able to spot.

Patterns of correlation in the residual plots

ACF plot positive at all lags

Error grows faster with longer lead times

A difference evident between the left and right attribute diagram
curves.



Incorrect simulator dynamics: a = 1.1, lead time k = 1
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Residual plot starts
to show the shape
of the missing
dynamics

L/R attribute
diagrams show a
difference

All ACFs positive



Incorrect simulator dynamics: a = 1.1, lead time k = 5
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Residual plot
pattern becomes
more obvious with
longer lead time

L/R/C attribute
diagrams get worse

L/R interval
attribute curves are
different

ACFs large and
positive.



Incorrect simulator dynamics: a = 1.1, lead time k = 10
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Incorrect simulator dynamics: a = 0.5, lead time k = 1
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Incorrect simulator dynamics: a = 0.5, lead time k = 1
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Rainfall-runoff simulator
Data from the Abercrombie Valley, Aus

Percolation to
deep aquifers

Baseflow

    flow

Overland flow

Evapotranspiration Rain

River

Water
Ground

Percolation

Soil

Lateral subsuface

hgw

hsoil

hriver
River flow

We have measurements of
the river flow,
evopotranspiration, and
rainfall for a 2 year period.

The measurement error
process is unknown, but
we’ve assumed

log(R(t) + λ)

∼ N(log(R(t)sim + λ), s2)

where R(t) is the river

flow measurement, and

R(t)sim is the simulator

prediction + discrepancy.

Discrepancy estimated
by ML previously.



k = 1, estimated discrepancy
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k = 5, estimated discrepancy
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k = 10, estimated discrepancy/3
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k = 1, estimated discrepancy/3
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k = 1, estimated discrepancy×1.7, measurement error/3
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k = 10, estimated discrepancy×1.7, measurement error/3
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Conclusions
Parametrizing all errors and estimating parameter values is fraught with
difficulties.

We think a case can be made for using simpler diagnostic tools, at least
in the early stage of modelling.

Predictive distributions more useful for diagnostics than
posterior-predictive distributions (forecasts not hindcasts)

Proper scoring rules needed if scale parameters are unknown

Using different lead times emphasises different aspects of the problem
Diagnostic plots more useful than numerical summaries for
diagnosing errors

I Attribute diagrams with artificial prediction intervals can be useful.

However, it seems to be inherently difficult to spot the source of errors,
particularly if they are small unless long time-series are available
(computational resource?).

Thank you for listening!



To do

Apply to more real examples

Combinations of different types of errors - how do we spot and
disentangle

Theoretical properties
I Prove expected sign of lags
I Prove expected other patterns in attribute diagrams etc
I Problems with correlation/dependence in the attribute plots - are the

confidence bands correct?
I Something doesn’t seem quite right. As we let T increase, the L/R

interval attribute diagrams don’t seem to work
I Theoretically, L/R curves should be the same when no simulator bias,

only incorrect simulator or measurement error.
I Even with true parameter values, the residuals plots doesn’t look like a

null plot for large lags - eg lag 100 shows clear trend. Why? Is it
correlation in the residuals - should we thin to 1/k?


