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Computer experiments
Baker 1977 (Science):

‘Computerese is the new lingua franca of science’

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality? (model error)

how do we estimate tunable parameters? (calibration)

how do we deal with computational constraints? (stat. comp.)

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors? (UQ)

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.
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Calibration
Focus on simulator calibration:

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .
We are interested in the inverse-problem, i.e., observe data D, want
to estimate parameter values θ which explain this data.

For Bayesians, this is a question of finding
the posterior distribution

π(θ|D) ∝;π(θ)π(D|θ)

posterior ∝
prior × likelihd



Statistical inference

Consider the following three parts of inference:

1 Modelling

I Simulator - generative model
I Statistical model - priors on unknown parameters, observation error on

the data, simulator error (if its not a perfect representation of reality)

2 Inferential framework

- Bayesian: update beliefs in light of data and
aim to find posterior distributions

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝ prior × likelihood

Note: the posterior depends on all of the modelling choices

3 Statistical computation

- this remains hard even with increased
computational resource

The existence of model or measurement error can make the specification
of both the prior and likelihood challenging.
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Calibration framework

Writing π(θ|D) ∝ π(θ)π(D|θ) can be misleading, as π(D|θ) is not just
the simulator likelihood function.

The usual way of thinking of the calibration problem is

Relate the best-simulator run (X = f (θ̂, t)) to reality ζ(t)

Relate reality to the observations.

DA B C
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See, for example, Kennedy and O’Hagan (2001, Ser. B) & Goldstein and
Rougier (2009, JSPI).



Calibration framework
Mathematically, we can write the likelihood as

π(D|θ) =

∫
π(D|x)π(x |θ)dx

where

π(D|x) is a pdf relating the simulator output to reality - the
acceptance kernel.
π(x |θ) is the likelihood function of the simulator (ie not relating to
reality)

This gives the desired posterior to be

π(θ|D) =
1

Z

∫
π(D|x)π(x |θ)dx. π(θ)

where Z =
∫∫

π(D|x)π(x |θ)dxπ(θ)dθ

To simplify matters, we can work in joint (θ, x) space

π(θ, x |D) =
π(D|x)π(x |θ)π(θ)

Z

NB: we can allow π(D|X ) to depend on (part of) θ.
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Acceptance Kernel - π(D|x)

How do we relate the simulator to reality?

1 Measurement error - D = ζ + e - let π(D|X ) = π(D − X ) be the
distribution of measurement error e.

2 Model error - ζ = f (θ) + ε - let π(D|X ) = π(D − X ) be the
distribution of the model error ε.

Kennedy and O’Hagan & Goldstein and Rougier used model and
measurement error, which makes π(D|x) a convolution of the two
distributions (although they simplified this by making Gaussian
assumptions).

3 Sampling of a hidden space - often the data D are simple noisy
observations of some latent feature (call it X ), which itself is generated
by a stochastic process. By removing the stochastic sampling from the
simulator we can let π(D|x) do the sampling for us
(Rao-Blackwellisation).
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Approximate Bayesian Computation (ABC)

Approximate Bayesian computation (ABC) algorithms are a collection of
Monte Carlo algorithms used for calibrating simulators

they do not require explicit knowledge of the likelihood function
π(x |θ)

instead, inference is done using simulation from the model
(consequently they are sometimes called ‘likelihood-free’).

ABC methods have become popular in the biological sciences.

Although their current statistical incarnation originates from a 1999 paper
(Pritchard et al. ), heuristic versions of the algorithm exist in most
modelling communities.



Uniform Approximate Bayesian Computation Algorithms

Uniform ABC

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ δ

For reasons that will become clear later, we shall call this Uniform ABC.

As δ →∞, we get observations from the prior, π(θ).

If δ = 0, we generate observations from π(θ | D, PMH) (where PMH
signifies that we have made a perfect model hypothesis - no model or
measurement error - unless it is simulated).

δ reflects the tension between computability and accuracy.
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How does ABC relate to calibration?

The distribution obtained from ABC is usually denoted

π(θ|ρ(D,X ) ≤ δ)

This notation is unhelpful.

The hope is that π(θ|ρ(D,X ) ≤ δ) ≈ π(θ|D, PMH) for δ small.

Instead, lets aim to understand the approximation, control it, and make
the most of it.

To do this we can think about how the algorithm above relates to the
calibration framework outlined earlier:

π(θ, x |D) ∝ π(D|x)π(x |θ)π(θ)
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Generalized ABC (GABC)

Consider simulating from the target distribution

πABC (θ, x) =
π(D|x)π(x |θ)π(θ)

Z

Lets sample from this using the rejection algorithm with instrumental
distribution

g(θ, x) = π(x |θ)π(θ)

and note that supp(πABC ) ⊆ supp(g) and that there exists a constant

M = maxx π(D|X )
Z such that

πABC (θ, x) ≤ Mg(θ, x) ∀ (θ, x)



Generalized ABC (GABC)

The rejection algorithm then becomes

Approximate Rejection Algorithm With Summaries

1 θ ∼ π(θ) and X ∼ π(x |θ) (ie (θ,X ) ∼ g(·))

2 Accept (θ,X ) if

U ∼ U[0, 1] ≤ πABC (θ, x)

Mg(θ, x)
=
π(D|X )

MZABC
=

π(D|X )

maxx π(D|x)

In uniform ABC we take

π(D|X ) =

{
1 if ρ(D,X ) ≤ δ
0 otherwise

this reduces the algorithm to

2’ Accept θ ifF ρ(D,X ) ≤ δ
ie, we recover the uniform ABC algorithm.
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Uniform ABC algorithm

This allows us to interpret uniform ABC. Suppose X ,D ∈ R

Proposition

Accepted θ from the uniform ABC algorithm (with ρ(D,X ) = |D − X |)
are samples from the posterior distribution of θ given D where we assume
D = f (θ) + ε and that

ε ∼ U[−δ, δ]

In general, uniform ABC assumes that

D|x ∼ U{d : ρ(d , x) ≤ δ}

We can think of this as assuming a uniform error term when we relate the
simulator to the observations.

ABC gives ‘exact’ inference under a different model!
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Advantages of GABC

GABC

allows us to make the inference we want to make
I - makes explicit the assumptions about the relationship between

simulator and observations.

allows for the possibility of more efficient ABC algorithms
I - the 0-1 uniform cut-off is less flexible and forgiving than using

generalised kernels for π(D|X )

allows for new ABC algorithms, as (non-trivial) importance sampling
algorithms are now possible.

allows us to interpret the results of ABC



Importance sampling GABC

In uniform ABC, importance sampling simply reduces to the rejection
algorithm with a fixed budget for the number of simulator runs.

But for GABC it opens new algorithms:

GABC - Importance sampling

1 θi ∼ π(θ) and Xi ∼ π(x |θi ).

2 Give (θi , xi ) weight wi = π(D|xi ).

Which is more efficient - IS-GABC or Rej-GABC?

Proposition 2

IS-GABC has a larger effective sample size than Rej-GABC, or equivalently

VarRej(w) ≥ VarIS(w)

This can be seen as a Rao-Blackwell type result.
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Rejection Control (RC)
A difficulty with IS algorithms is that they can require the storage of a
large number of particles with small weights.

A solution is to thin particles with small weights using rejection control:

Rejection Control in IS-GABC

1 θi ∼ π(θ) and Xi ∼ π(X |θi )
2 Accept (θi ,Xi ) with probability

r(Xi ) = min

(
1,
π(D|Xi )

C

)
for any threshold constant C ≥ 0.

3 Give accepted particles weights

wi = max(π(D|Xi ),C )

IS is more efficient than RC, unless we have memory constraints (relative
to processor time). Note that for uniform-ABC, RC is pointless.



MCMC-GABC
We can also write down a Metropolis-Hastings kernel for exploring
parameter space, generalising the uniform MCMC-ABC algorithm of
Marjoram et al.

To explore the (θ, x) space, proposals of the form

Q((θ, x), (θ′, x ′)) = q(θ, θ′)π(x ′|θ′)

seem to be inevitable (q arbitrary).

This gives the following MH kernel

MH-GABC

1 Propose a move from zt = (θ,X ) to (θ′,X ′) using proposal Q above.

2 Accept move with probability

r((θ,X ), (θ′,X ′)) = min

(
1,
π(D|X ′)q(θ′, θ)π(θ′)

π(D|X )q(θ, θ′)π(θ)

)
, (1)

otherwise set zt+1 = zt .



Sequential GABC algorithms

Three sequential ABC algorithms have been proposed (Sisson et al.
(2007), Beaumont et al. (2009), Toni et al. (2008)) - all of which can be
seen to be a special case of the sequential GABC algorithm.

Specify a sequence of target distributions

πn(θ, x) =
πn(D|x)π(x |θ)π(θ)

Cn
=
γn(θ, x)

Cn

where πn(D|x) has decreasing variance (corresponding to decreasing
tolerance δ in uniform SMC-ABC).

At each stage n, we aim to construct a weighted sample of particles that
approximates πn(θ, x).{(

z
(i)
n ,W

(i)
n

)}N

i=1
such that πn(z) ≈

∑
W

(i)
n δ

z
(i)
n

(dz)

where z
(i)
n = (θ

(i)
n , x

(i)
n ).
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Sequential Monte Carlo (SMC)

If at stage n we use proposal distribution ηn(z) for the particles, then we
create the weighted sample as follows:

Generic Sequential Monte Carlo - stage n

(i) For i = 1, . . . ,N

Z
(i)
n ∼ ηn(z)

and correct between ηn and πn

wn(Z
(i)
n ) =

γn(Z
(i)
n )

ηn(Z
(i)
n )

(ii) Normalize to find weights {W (i)
n }.

(iii) If effective sample size (ESS) is less than some threshold T,

resample the particles and set W
(i)
n = 1/N. Set n = n + 1.

Q: How do we build a sequence of proposals ηn?



Del Moral et al. SMC algorithm

We can build the proposal distribution ηn(z), from the particles available
at time n − 1.

One way to do this is to propose new particles by passing the old particles
through a Markov kernel Kn(z , z ′).

For i = 1, . . . ,N

z
(i)
n ∼ Kn(z

(i)
n−1, ·)

This makes ηn(z) =
∫
ηn−1(z ′)Kn(z ′, z)dz′ – which is unknown in general.

Del Moral et al. showed how to avoid this problem by introducing a
sequence of backward kernels, Ln−1.



Del Moral et al. SMC algorithm - step n

(i) Propagate: Extend the particle paths using Markov kernel Kn.

For i = 1, . . . ,N, Z
(i)
n ∼ Kn(z

(i)
n−1, ·)

(ii) Weight: Correct between ηn(z0:n) and π̃n(z0:n). For i = 1, . . . ,N

wn(z
(i)
0:n) =

γ̃n(z
(i)
0:n)

ηn(z
(i)
0:n)

(2)

= Wn−1(z
(i)
0:n−1)w̃n(z

(i)
n−1, z

(i)
n ) (3)

where

w̃n(z
(i)
n−1, z

(i)
n ) =

γn(z
(i)
n )Ln−1(z

(i)
n , z

(i)
n−1)

γn−1(z
(i)
n−1)Kn(z

(i)
n−1, z

(i)
n )

(4)

is the incremental weight.

(iii) Normalise the weights to obtain {W (i)
n }.

(iv) Resample if ESS< T and set W
(i)
n = 1/N for all i . Set n = n + 1.



SMC with partial rejection control (PRC)

We can add in the rejection control idea of Liu

Del Moral SMC algorithm with Partial Rejection Control - step n

(i) For i = 1, . . . ,N

(a) Sample z∗ from {z (i)n−1} according to weights W
(i)
n−1.

(b) Perturb:
z∗∗ ∼ Kn(z∗, ·)

(c) Weight

w∗ =
γn(z

(i)
n )Ln−1(z

(i)
n , z

(i)
n−1)

γn−1(z
(i)
n−1)Kn(z

(i)
n−1, z

(i)
n )

(d) PRC: Accept z∗ with probability min(1, w
∗

cn
). If accepted set z

(i)
n = z∗∗

and set w
(i)
n = max(w∗, cn). Otherwise return to (a).

(ii) Normalise the weights to get W
(i)
n .



GABC versions of SMC

We need to choose

Sequence of targets πn

Forward perturbation kernels Kn

Backward kernels Ln

Thresholds ci .

Del Moral et al. showed that the optimum choice for the backward
kernels is

Loptk−1(zk , zk−1) =
ηk−1(zk−1)Kk(zk−1, zk)

ηk(zk)

This isn’t available, but the choice should be made to approximate Lopt .



Uniform SMC-ABC
By making particular choices for these quantities we can recover all
previously published sequential ABC samplers. For example,

let πn be the uniform ABC target using δn,

πn(D|X ) =

{
1 if ρ(D,X ) ≤ δn
0 otherwise

let Kn(z , z ′) = Kn(θ, θ′)π(x ′|θ)
let c1 = 1 and cn = 0 for n ≥ 2
let

Ln−1(zn, zn−1) =
πn−1(zn−1)Kn(zn−1, zn)

πn−1Kn(zn)

and approximate πn−1Kn(z) =
∫
πn−1(z ′)Kn(z ′, z)dz′ by

πn−1Kn(z) ≈
∑
j

W
(j)
n−1Kn(z

(j)
n−1, z)

then the algorithm reduces to Beaumont et al. We recover the Sisson
errata algorithm if we add in a further (unnecessary) resampling step.
Toni et al. is recovered by including a compulsory resampling step.



SMC-GABC
The use of generalised acceptance kernels (rather than uniform) opens up
several new possibilies. The direct generalised analogue of previous
uniform SMC algorithms is

SMC-GABC

(i) For i = 1, . . . ,N

(a) Sample θ∗ from {θ(i)n−1} according to weights W
(i)
n−1.

(b) Perturb:

θ∗∗ ∼ Kn(θ∗, ·)
x∗∗ ∼ π(x |θ∗∗)

w∗ =
πn(D|x∗∗)π(θ∗∗)∑
j W

(j)
n−1Kn(θ

(j)
n−1, θ

∗∗)
(5)

(c) PRC: Accept (θ∗∗, x∗∗) with probability min(1, w
∗

cn
). If accepted set

z
(i)
n = (θ∗∗, x∗∗) and set w

(i)
n = max(w∗, cn). Otherwise return to (a).

(ii) Normalise the weights to get W
(i)
n .



SMC-GABC

Note that unlike in uniform ABC, using partial rejection control isn’t
necessary (the number of particles in uniform ABC would decrease in each
step). Without PRC we would need to resample manually as before,
according to some criteria (ESS< T say).

Note also that we could modify this algorithm to keep sampling until the
effective sample size of the new population is at least as large as some
threshold value, N say.



Other sequential GABC algorithms

This is only one particular form of sequential GABC algorithm which
arises as a consequence of using

Ln−1(zn, zn−1) =
πn−1(zn−1)Kn(zn−1, zn)

πn−1Kn(zn)

If we use a πn invariant Metropolis-Hastings kernel Kn and let

Ln−1(zn, zn−1) =
πn(zn−1)Kn(zn−1, zn)

πn(zn)

then we get a new algorithm - a GABC Resample-Move (?) algorithm.



Approximate Resample-Move (with PRC)

RM-GABC

(i) While ESS < N

(a) Sample z∗ = (θ∗,X ∗) from {z (i)n−1} according to weights W
(i)
n−1.

(b) Weight:

w∗ = w̃n(X ∗) =
πn(D|X ∗)

πn−1(D|X ∗)

(c) PRC: With probability min(1, w
∗

cn
), sample

z (i)n ∼ Kn(z∗, ·)

where Kn is an MCMC kernel with invariant distribution πn. Set
i = i + 1.
Otherwise, return to (i)(a).

(ii) Normalise the weights to get W
(i)
n . Set n = n + 1

Note that because the incremental weights are independent of zn we are
able to swap the perturbation and PRC steps.



Approximate RM
This algorithm is only likely to work well when πn ≈ πn−1
For ABC type algorithms we can make sure this is the case by reducing
the variance of πn(D|X ) slowly.

Notice that because the algorithm weights the particles with the new
weight before deciding what to propogate forwards, we can potentially
save on the number of simulator evaluations that are required.

Another advantage is that the weight is of a much simpler form, whereas
previously we had an O(N2) operation at every iteration

w∗ =
πn(D|x∗∗)π(θ∗∗)∑
j W

(j)
n−1Kn(θ

(j)
n−1, θ

∗∗)

(this is unlikely to be a concern unless the simulator is very quick).

A potential disadvantage is that initial simulation studies have shown the
RM algorithm to be more prone to degeneracy than the other SMC
algorithm.



A quick note on summaries

ABC algorithms often include the use of summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(S(D),S(X )) < δ

Considerable research effort has focused on automated methods to choose
good summaries (sufficiency is not typically achievable) - great if X is
some fairly homogenous field of output which we expect the model to
reproduce well. Less useful if X is a large collection of different quantities.

Instead ask, what aspects of the data do we expect our model to be able
to reproduce? And with what degree of accuracy? S(D) may be highly
informative about θ, but if the model was not built to reproduce S(D)
then why should we calibrate to it?



Example: Estimating the Primate Divergence
Geologic time



Reconciling molecular and fossil records?
Molecules vs morphology

Genetic estimates of the primate divergence time are approximately
80-100 mya:

I Uses dna from extant primates, along with the concept of a molecular
clock, to estimate the time needed for the genetic diversification.

I Calibrating the molecular clock relies on other fossil evidence to date
other nodes in the mammalian tree.

I Dates the time of geographic separation
A direct reading of the fossil record suggests a primate divergence
time of 60-65 mya:

I The fossil record, especially for primates, is poor.
I Fossil evidence can only provide a lower bound on the age.
I Dates the appearance of morphological differences.
I Prevailing view: the first appearance of a species in the fossil record is

”... accepted as more nearly objective and basic than opinions as to
the time when the group really originated”, Simpson, 1965.

I Oldest primate fossil is 55 million years old.

The date has consequences for human-chimp divergence, primate and
dinosaur coexistence etc.
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Why is this difficult?
Non-repeatable event



Data
Robert Martin (Chicago) and Christophe Soligo (UCL)

Epoch k Time at base Primate fossil Anthropoid fossil
of Interval k counts (Dk ) counts (Sk )

Extant 0 0 376 281
Late-Pleistocene 1 0.15 22 22
Middle-Pleistocene 2 0.9 28 28
Early-Pleistocene 3 1.8 30 30
Late-Pliocene 4 3.6 43 40
Early-Pliocene 5 5.3 12 11
Late-Miocene 6 11.2 38 34
Middle-Miocene 7 16.4 46 43
Early-Miocene 8 23.8 34 28
Late-Oligocene 9 28.5 3 2
Early-Oligocene 10 33.7 22 6
Late-Eocene 11 37.0 30 2
Middle-Eocene 12 49.0 119 0
Early-Eocene 13 54.8 65
Pre-Eocene 14 0

The oldest primate fossil is 54.8 million years old.

The oldest anthropoid fossil is 37 million years old.



Speciation
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T τAn inhomogeneous binary Markov branching process used to model
evolution:

Assume each species lives for a random period of time
σ ∼ Exponential(λ)

Specify the offspring distribution; if a species dies at time t replace it
by Lt new species where P(Lt = 0) = p0(t),P(Lt = 2) = p2(t).



Offspring distribution
If a species dies at time t replace it by Lt new species where
P(Lt = 0) = p0(t),P(Lt = 2) = p2(t).

Determine the offspring probabilities by fixing the expected
population growth E(Z (t)) = f (t;λ) and using the fact that

E(Z (t) = n|Z (0) = 2) = 2 exp

(
λ

∫ t

0
(m(u)− 1)du

)
where m(u) = ELu.

For example, assume logistic
growth and set

EZ (t) =
2

γ + (1− γ) exp(−ρt)

Treat γ and ρ as unknown
parameters and infer them in
the subsequent analysis. 0 10 20 30 40 50 60
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Fossil Find Model

Recall that time is split into geologic epochs. We have two different
models for the number of fossils found in each epoch {Di}, given an
evolutionary tree T .

Binomial Model: each species that is extant for any time in epoch i
has a probability αi of being preserved as a fossil. So that

P(Di |T ) = Bin(Ni , αi )

where Ni = no. species alive during epoch i
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Specify the divergence time

Assume

the primates diverged 54.8 + τ million years ago.
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Prior Distributions

We give all parameters prior distributions:

Temporal gaps between the oldest fossil and the root of the primate
and anthropoid trees τ ∼ U[0, 100] and τ∗ ∼ U[0, 100].

Expected life duration of each species 1/λ ∼ U[2, 3]

Growth parameters γ ∼ [0.005, 0.015] and ρ ∼ U[0, 0.5].

Sampling fractions αi ∼ U[0, 1] (or sampling rates βi ∼ Γ(a, b)).

The aim is to find the posterior distribution of the parameters given the
data D, namely P(θ|D) ∝ P(D|θ)π(θ).

The likelihood function P(D|θ) is intractable.

⇓

MCMC, IS, etc, not possible!
So we use ABC instead.
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Choice of metric

We started by using

ρ(D,X ) =
14∑
i=0

(Di − Xi )
2

This is equivalent to assuming uniform error on a ball of radius
√
δ

about D.

It also assumes that errors on each Di are dependent in some
non-trivial manner.

The error on each Di is assumed to have the same variance.



Choice of metric

We could move to assuming independent errors by accepting only if

(Di − Xi )
2 ≤ δi for all i

which is equivalent to using the acceptance probability∏
I(Di−Xi )2≤δi

which we can interpret to be that the error on Di is uniformly distributed
on [
√
δi ,
√
δi ], independently of other errors.

In general, when using summaries S1, S2, . . ., it has been suggested that
we should choose summaries to be a priori independent to increase speed
of computation. This will only help if our metric/acceptance kernel
assumes independent errors on each Si .



Uncertainty in the data

The number of extant primates is uncertain:

Martin (1993) listed 235 primate species

Groves (2005) listed 376 primate species

Wikipedia yesterday listed 424 species including
I the GoldenPalace.com monkey
I the Avahi cleesei lemur.

On top of this, there is uncertainty regarding

whether a bone fragment represents a new species, e.g., homo
floresiensis (the hobbit man), or a microcephalic human

whether two bone fragments represent the same species

which epoch the species should be assigned to.

....

None of these potential sources of errors are accounted for in the model -
we only model sampling variation.
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Uncertainty in the model
Modelling inevitably involves numerous subjective assumptions. Some of
these we judge to be less important.

Binary trees

Splitting rather than budding

Memoryless age distribution

Other assumptions are potentially more influential, particularly where
features have been ignored.

Early Eocene warming (the Paleocene-Eocene Thermal Maximum)

Warming in the mid-miocene

Small mass-extinction events in the Cenozoic

We assumed logistic growth for the expected diversity, ignoring smaller
fluctuations (we did include the K-T crash).

How can we use this information?

Given that we must add additional uncertainty when using ABC, add
it on the parts of the data we are most uncertain about.
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Choice of metric
We know that the data from some epochs is more reliable:

Presumably classification and dating errors are more likely in well
sampled epochs - any fossil that is possibly a Cretaceous primate is
likely to be well studied, so perhaps we are more confident that
D14 = 0 than that D7 = 46.
Similarly, large Di presumably have a larger error than small values of
Di .

Similarly, we know the computer model prediction is more unreliable in
some epochs.

We ignored warm periods in the Eocene and Miocene. During these
times primates are believed to have moved away from the tropics,
perhaps allowing for more speciation (due to additional space and
resources).
The majority of primate fossils come from the UK, US, France and
China, despite our belief that primates originated in the Africa and
the observation that nearly all extant species live in tropical or
subtropical regions.



An improved metric

In theory, we can account for some of these issues by using the
generalised ABC algorithm, using an acceptance probability of the form

πε(X |D) =
14∏
i=0

πi (Xi |Di )

where πi (Xi |Di ) depends on our belief about measurement and model
error on Di . We might judge that the variance of the measurement error
is a function of Di/D+ (e.g. interval 14 - the Cretaceous - is likely to
have smaller classification error).

Similarly, the model ignores several known features in the Cenozoic, such
as warming events. Consequently, we could reduce the importance of the
prediction for intervals 11-13 (the Eocene) by allowing a larger error
variance during these intervals (we could also allow biases).



An improved metric
In practice, it is a difficult elicitation exercise to specify the errors, and to
convolve all the different sources of error.

It is also a difficult computational challenge. Two ideas that might help:

We can use the fact that we know the distribution of Di given Ni ,
the number of simulated species, to help break down the problem
(removing the sampling process from the simulation). For example,
using the acceptance probability

P(accept) ∝ π(Xi |Di ) =

{
1 if Di = Xi

0 otherwise

is equivalent to using

P(accept) ∝
(
Ni

Di

)
αDi
i (1− αi )

Ni−Di

and we can use Ni = Di/αi to find a normalising constant.
πε(X |D) =

∏14
i=0 πi (Xi |Di ) provides a sequential structure to the

problem that might allow particle methods to be used.



Conclusions
Approximate Bayesian Computation gives exact inference for the wrong
model.

To move beyond inference conditioned on a perfect model
hypothesis, we should account for model error.
ABC algorithms can be considered as adding additional variability on
to the model outputs.
We can generalise ABC algorithms to move beyond the use of
uniform error structures and use the added variation to include
information about the error on the data and in the model.
Relating simulators to reality is hard, even with expert knowledge.
However, most modellers have beliefs about where their simulator is
accurate, and where it is not.
If done wisely, ABC can be viewed not as an approximate form of
Bayesian inference, but instead as coming closer to the inference we
want to do.

Thank you for listening!
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