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Abstract

Numerical groundwater flow and dissolution models of physico-chemical processes in deep aquifers

are usually subject to uncertainty in one or more of the model input parameters. This uncertainty

is propagated through the equations and needs to be quantified and characterised in order to rely

on the model outputs. In this paper we present a Gaussian process emulation method as a tool

for performing uncertainty quantification in mathematical models for convection and dissolution

processes in porous media. One of the advantages of this method is its ability to significantly

reduce the computational cost of an uncertainty analysis, while yielding accurate results, compared

to classical Monte Carlo methods. We apply the methodology to a model of convectively-enhanced

dissolution processes occurring during carbon capture and storage. In this model, the Gaussian

process methodology fails due to the presence of multiple branches of solutions emanating from a

bifurcation point, i.e., two equilibrium states exist rather than one. To overcome this issue we use

a classifier as a precursor to the Gaussian process emulation, after which we are able to successfully

perform a full uncertainty analysis in the vicinity of the bifurcation point.

Keywords: Convectively-enhanced dissolution, Partial differential equations with random inputs,

Multiple solutions and bifurcation, Gaussian process emulation and classification, Uncertainty

quantification.

∗Corresponding author. Tel: +44 (0)24 7652 8193. Fax: +44 (0)24 7641 8922. E-mail address: D.Crevillen-
Garcia@warwick.ac.uk

Preprint submitted to Advances in Water Resources November 8, 2016



1. Introduction

Geological storage of CO2 in deep saline aquifers is a potential way of limiting greenhouse gas emis-

sions to the atmosphere while continuing the use of fossil fuels. The major spreading and trapping

mechanisms of CO2 in geological media are subject to spatial variability due to heterogeneity of

the physical and chemical properties of the medium. Heterogeneity affects the multi-phase flow

properties of the CO2-brine system and can lead to trapping of brine behind the CO2 phase as well

as increased spread of the CO2-brine interface [8]. These heterogeneity-induced processes increase

the CO2-brine contact area and thus the dissolution efficiency of CO2. Dissolution of CO2 into the

resident brine of the storage site causes an increase in the mixture density, which promotes the sink-

ing of the enriched brine-CO2 mixture, and results in an enhancement of the dissolution process due

to mixing and recirculation. This process is known as convectively-enhanced dissolution (C-ED).

The mixing of the denser CO2 rich water with the reservoir water is dominated by dispersion and

the interaction with spatial heterogeneity as well as buoyancy effects. The efficiency of the chemical

reactions, which are controlled by mass transfer limitations and interaction with the medium, is also

affected by spatial heterogeneity in the properties of the medium [17]. While heterogeneity can lead

to increased spreading and mixing of waters with different chemical compositions, chemical reaction

rates for heterogeneous media can be much lower than those in a laboratory setting (homogeneous

conditions) [18].

To the best of our knowledge, there are only a limited number of publications in the literature

(e.g., [24]) dealing with multi-phase flow and reactive transport models of CO2 sequestration and

the associated trapping process, taking into account the impact of heterogeneity on front spreading

and mass transfer between high and low permeability zones of the heterogeneous medium, together

with the impact of physical and chemical heterogeneity on the chemical reactions. Most of the

literature on enhanced dissolution in CO2 sequestration is concerned with the time evolution of the

process and not with the analysis of the non-uniqueness of solutions, the corresponding bifurcation

map and the stability of solutions. Moreover, in most of these works only molecular diffusion is

considered (e.g., [44]), chemical reaction is neglected (e.g., [28]) and the porous medium is taken as

homogeneous (e.g., [26, 56]). In this paper we target the problem of uncertainty quantification in

the C-ED mechanism due to the medium heterogeneity, and taking into account dispersivity and

chemical reaction, by considering possible stable (physically feasible) solutions on a bifurcation map,

i.e., the long term evolution.

The impact of medium heterogeneity could be critical; for instance, for assessing the long-term

fate of the geological storage of CO2 during carbon capture and storage (CCS). One of the main

aims of this paper is to develop computationally feasible methods for investigating the effects of

dispersivity in a porous medium, i.e., that the complex microscopic flow in a porous medium leads
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to an apparent macroscopic dispersive transport, enhancing molecular diffusion. To date, the quan-

tification of uncertainty arising from heterogeneities in rock properties and temporal fluctuations

has not received much attention in large scale CO2 sequestration modelling. The few studies con-

ducted have used classical Monte Carlo (MC) methods and have required enormous computational

resources due to the slow rate of MC convergence: The error scales according N−1/2, where N is

the number of MC samples [13].

The aforementioned uncertainties, normally represented as random inputs within the systems of

partial differential equations (PDEs), may have limited impact on the outputs of interest. If this

can be established, it is not necessary to incorporate them explicitly in the model. Those sources of

uncertainty that do have a significant impact, must, on the other hand, be taken into account. This

is a challenging problem. For instance, for the large-scale, time-dependent simulations that must

be carried out when investigating a CO2 storage site, classical MC simulation will be impractical

unless considerable computing resources are available. Even if such resources are available, they

could be better deployed if more efficient methods are available to solve the random-input model,

e.g., investigating alternative conceptual models and models that incorporate more detailed physical

phenomena.

One method for overcoming the computational resource limitations is to build a statistical sur-

rogate model (or ‘emulator’) for the computer model (the ‘simulator’). In this approach, an approx-

imate mapping between the inputs and outputs is established using a supervised machine learning

method (such as Gaussian process (GP) regression) based on the outputs of the simulator (training

points) from a limited number of simulations. The emulator can then be used as a replacement for

the full simulator in, for instance, a classical MC calculation.

A detailed review of surrogate modelling in groundwater flow modelling is provided in [5]. They

split surrogates into three main categories. (a) Data-driven surrogates. These involve empirical

approximations of the complex model output calibrated on a set of inputs and outputs of the complex

model, for instance neural networks [60], Gaussian processes [31, 6], and polynomial chaos expansions

[32]. (b) Projection-based methods. The governing equation(s) or the spatially discretised system

is projected onto a low-dimensional subspace spanned by a set of orthonormal modes. The most

prominent methods are proper orthogonal decomposition [36] and Krylov-subspace methods [21],

both of which are used to define the approximating basis. Karhunen-Loéve (KL) expansions of

input fields such as the permeability [32] can also be considered in this category. (c) Multifidelity

(or hierarchical) based surrogates. These are built by simplifying the underlying physics or reducing

the numerical resolution (coarse grids or relaxed error tolerances). They include multigrid methods

[4] and multiscale finite element methods [30].

In addition to the comprehensive model we consider, the work proposed in this paper combines
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a novel GP emulation/classification with a KL decomposition to perform uncertainty quantification

(UQ) in a C-ED model with random inputs, where the main source of uncertainty is considered to

be the heterogeneity of the porous rock formation. The model presented here has an infinite number

of stochastic degrees of freedom and will be approximated by a finite number of degrees of freedom

using KL decompositions.

The appearance of multiple solutions around a bifurcation point in the C-ED model (located

using arclength continuation), however, poses challenges for any emulator of the simulator outputs.

GP emulation alone is found to be inaccurate. To overcome the difficulties, we develop an emula-

tion/classification approach that allows us to label (or classify) the variety of outputs for a given

input. Once the output has been classified we can apply GP emulation individually to each of

the classes. A further issue is that the GP emulation training is impractical for the original high

dimensional input space (the number of nodes in the numerical formulation), involving an optimi-

sation over a very large number of hyperparameters. Thus, we exploit the properties of the KL

decomposition to develop computationally efficient emulators.

The outline of this paper is as follows. In Section 2 we present the equations with random inputs

for the model problem, the C-ED process. We present the numerical method used to solve the

system of PDEs with random inputs. In Section 3 we describe the GP emulation methodology and

its application to the model problem, including the combination GP emulation and classification to

reduce the uncertainty in regions where the numerical model returns multiple outputs for a given

input. In Section 4 we define the quantity of interest and present our numerical results. Concluding

remarks are provided in Section 5, together with suggestions for future work.

2. Mathematical model: Surface flux in C-ED processes in porous media

In this section we present the C-ED simulator. The goal of this work is to build a statistical surrogate

model for the simulator which will allow us to perform a full uncertainty analysis on the simulator

outputs.

During CCS processes, the CO2 is trapped in saline geological formations located deep under-

ground. Once there, it reacts with minerals in the geologic formation, leading to the precipitation

of a secondary carbonate mineral [26]. When the CO2 is dissolved into the brine, the density of

the resulting solution is higher than that of brine, and this density difference can engender flow

instabilities that lead to the formation of CO2 downward growing plumes with finger structures.

The descending mixed fluid along the fingers will induce recirculation cells of brine fluid with an

associated fluid entrainment into the fingers. The entrained brine reduces the density difference and

the CO2 concentration at the diffusive boundary layer, resulting in enhancement of the dissolution

process (see e.g., [41, 56]).
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In this paper, the dissolution flux will be characterized by a generalization of the Sherwood

number (see, e.g., [44, 56]), which is a dimensionless measure of the convective flux across the upper

boundary of the domain. We call this quantity the surface flux (S). We will consider the effect

of the porous rock heterogeneity on the C-ED process, in which the solute undergoes a first order

chemical reaction, by investigating how S is affected by rock heterogeneities. Thus, the main goal

of this section will be to quantify the uncertainty in the CO2 dissolution flux into the brine due to

uncertainty in the rock morphology .

The complex microscopic flow in a porous medium leads to an apparent macroscopic dispersive

transport, enhancing the molecular diffusion. We model this phenomenon by an apparent dispersion

tensor, D, dependant on the local Darcy velocity of the fluid u (see e.g., [49, 51]) as follows:

D = DmI + βT ||u||I + (βL − βT )
u⊗ u

||u||
, (1)

where ⊗ represents the tensor product, I is the unit (identity) tensor, Dm is the molecular diffusion

coefficient of the solute in the fluid, and βL and βT are respectively the longitudinal and transverse

dispersion coefficients, which satisfy βL ≥ βT ≥ 0. We use the rule-of-thumb βT = βL/10 suggested

in [28], which was based on an analysis by Gelhar et al. [23] of measurements from different field

sites; realistic ranges of values for the dispersivity coefficients βT and βL obtained from these field

sites are provided in [23]. A detailed discussion on the influence that these coefficients have on the

enhanced dissolution process is given in [47].

We consider the dissolution of a solute (CO2) in a fluid (brine) flowing in a two-dimensional

domain representing a heterogeneous, isotropic porous medium of depth 2H and length L. The

spatial variable is denoted x = (x, z) on the domain [0, L]× [−H,H]. The governing equations used

to describe the C-ED process are continuity (2), Darcy’s law (3) and convection-diffusion-reaction

(4) (for more details see [44, 56, 58]):

∇ · u = 0, (2)

u = −K
µ

(∇P + ρgez), (3)

φ
∂C

∂t
+ u · ∇C = φ∇ · (D∇C)− γcC. (4)

In these equations, ez is the outward-pointing unit vector along the ordinate axis, C is the con-

centration of dissolved CO2, u = (ux, uz) is the liquid velocity and P is the liquid pressure. The

parameters K, µ, φ, γc and g are the medium permeability field, the fluid viscosity, the rock porosity,

the reaction rate and acceleration due to gravity.

In the above system of governing equations, the solute locally increases the solution density of

the fluid, and the linearised density of the fluid takes the form, ρ = ρ0 + βcC, where ρ0 and βc

are the density of the pure fluid and the volumetric expansion coefficient. The change in density is
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small, which enables us to use the Boussinesq approximation [56]. Moreover, the solute undergoes

a first order reaction and is converted into an inert product with no effect on the solution density.

The above system of PDEs is required to satisfy the following boundary conditions:

C(x, z = H) = C0,

ux(0, z) = ux(L, z) = uz(x,±H) = 0,

∂C

∂z
(x,−H) =

∂C

∂x
(0, z) =

∂C

∂x
(L, z) = 0.

(5)

By representing the velocity field using a stream function formulation, ux = ∂Ψ/∂z and uz =

−∂Ψ/∂x, where Ψ is the streamfunction, it is possible to eliminate the pressure field from the

governing equations, resulting in a new set of equations for the unknown field variables (Ψ, C). The

resulting set of governing equations and boundary conditions can be written in a dimensionless form

by defining:

(x′, z′) =
(x, z)

H
, Ψ′ =

Ψµ

HC0K0βcg
, C ′ =

C

C0
, t′ =

tC0K0βcρ

µφH
, (6)

(β′L, β
′
T ) =

(βL, βT )C0K0βcg

D0µ
, K ′ =

K

K0
, L =

L

H
, (7)

Ra =
K0C0gβcH

φµD0
, Da =

γcµH

K0C0gβc
. (8)

βT and βL are respectively the longitudinal and transverse dispersion coefficients [58, 28]; K0 and

D0 are reference permeability and diffusion coefficients, respectively; L is the aspect ratio of the

domain; Ra is the Rayleigh number, related to the buoyancy driven flow; and Da is the Damkhöler

number, which is the ratio of the chemical reaction rate to the mass transfer rate [56]. In terms

of these dimensionless variables and numbers, the following dimensionless governing equations are

obtained (where for convenience the primes have been dropped):

∂

∂x

(
1

K

∂Ψ

∂x

)
+

∂

∂z

(
1

K

∂Ψ

∂z

)
+
∂C

∂x
= 0,

∂C

∂t
− ∂Ψ

∂z

∂C

∂x
+
∂Ψ

∂x

∂C

∂z
− 1

Ra

(
∂Jx
∂x

+
∂Jz
∂z

)
+ DaC = 0.

 x = (x, z) ∈ R = [0,L]× [−1, 1]

(9)

The Fickian mass flux J = (Jx, Jz) (Scheidegger-Bear [58]) satisfies J = D∇C, the components of

which are expressed in terms of the above dimensionless variables and numbers as follows:

Jx = (1 + βT ||∇Ψ||2)
∂C

∂x
+

(βL − βT )

||∇Ψ||2

((
∂Ψ

∂z

)2
∂C

∂x
− ∂Ψ

∂x

∂Ψ

∂z

∂C

∂z

)
,

Jz = (1 + βT ||∇Ψ||2)
∂C

∂z
+

(βL − βT )

||∇Ψ||2

((
∂Ψ

∂x

)2
∂C

∂z
− ∂Ψ

∂x

∂Ψ

∂z

∂C

∂x

)
,

(10)
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where || · ||2 denotes the standard Euclidean norm. Finally, the corresponding dimensionless form of

the boundary conditions is:

C(x, 1) = 1, Ψ(x,±1) = Ψ(0, z) = Ψ(L, z) = 0,

∂C

∂z
(x,−1) =

∂C

∂x
(0, z) =

∂C

∂x
(L, z) = 0.

(11)

Note that the above conditions imply that the flow is solely a result of the density-induced instability

and the concurrent flow recirculation to conserve mass.

The quantity of interest for the C-ED problem will be the surface flux S. Integrating the second

equation of (9) over R we obtain:∫
R

∂C

∂t
ds−

∫
R

(
∂Ψ

∂z

∂C

∂x
+
∂Ψ

∂x

∂C

∂z

)
ds−

∫
R

1

Ra

(
∂Jx
∂x

+
∂Jz
∂z

)
ds+

∫
R

DaCds = 0. (12)

If we now define M =
∫
R Cds, we obtain:

dM
dt
−
∫
R

(
∂Ψ

∂z

∂C

∂x
− ∂Ψ

∂x

∂C

∂z

)
ds =

S
Ra
−MDa. (13)

Since the second integral in the left hand side is equal to zero we can re-write (13) as:

dM
dt

=
S

Ra
−MDa, (14)

with:

S =

∫
R

(
∂Jx
∂x

+
∂Jz
∂z

)
ds. (15)

Applying the divergence theorem to the integral above, we can finally write S as,

S = −
∫ L

0

(
1 + βT

∣∣∣∣∂Ψ

∂z

∣∣∣∣
z=1

)(
∂C

∂z

)
z=1

dx. (16)

Expression (16) above expresses the fact that the total mass flux across the upper boundary is

due to the combined effect of molecular diffusion and dispersion, where the dispersion component

(βT |∂Ψ/∂z|) determines the enhanced dissolution effect. Equation (14) shows that the total mass

of solute in the domain increases through solute injection across the upper boundary and decreases

through the first order reaction. We also note that in this particular problem, the more CO2 is

absorbed through the upper boundary, the more the process is considered to be efficient.

Although the mathematical formulation of the problem was described in terms of its transient

formulation, in this work we are interested in the long term behaviour of the system and consequently

we will consider only non-trivial solutions of the corresponding steady state equations.

2.1. Arclength continuation for finding numerical solutions of the C-ED

model

The C-ED problem depends on several scalar parameters that need to be specified before attempting

to find a numerical solution, namely, Ra, Da, βL and βT . Once these four parameters are specified,
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for a given permeability field, equations (9) are solved for the unknowns (Ψ, C) to yield S.

The system of equations admits multiple solutions. In other words, for a given permeability field,

there exists more than one streamfunction and concentration field, and therefore more than one S.

Ward et al. [56], for instance, demonstrated the existence of multiple solutions for each given Ra in

the particular case of K ≡ 1, βL = βT = 0, and Da = 0.1. The existence of multiple outputs for

the same input adds an additional challenge to the search for numerical solutions other than the

no-flow solution. A numerical code, based on the finite element method (FEM) and detailed further

in Section 4, was used to solve the problem (9). The FEM was only able to find one solution (the

no-flow) for the problem. To find different solutions, it was necessary to use additional techniques

in conjunction with the FEM. In this work we used arclength continuation theory , as described in

[12] and which is briefly introduced below.

For varying non-dimensional parameters such as Ra, numerous steady-states of (9) appear

through bifurcations [12, 56, 47, 15]. The purpose of this section is to evaluate the effects that

the heterogeneity of the porous medium has on steady-states solutions; in particular, on the bifur-

cations from the no-flow steady-state, as represented in Figure 1.

Let Φ = (Ψ, C) be the state vector and Υ = (Ra,Da,L) be the vector of parameters of our

model. Then, for given βL, βT and K, the problem (9) defines a nonlinear time-dependent problem

of the form:

G

(
∂Φ

∂t

)
= F(Φ,Υ)

where:

F(Φ,Υ) =


∂

∂x

(
1

K

∂Ψ

∂x

)
+

∂

∂z

(
1

K

∂Ψ

∂z

)
+
∂C

∂x

−∂Ψ

∂z

∂C

∂x
+
∂Ψ

∂x

∂C

∂z
− 1

Ra

(
∂Jx
∂x

+
∂Jz
∂z

)
+ DaC


and:

G

(
∂Φ

∂t

)
=

 0
∂C

∂t

 .

The study of steady-states is therefore reduced to the nonlinear problem:

F(Φ,Υ) = 0 (17)

to which we can apply the general bifurcation theory. We can numerically compute paths and

branches of solutions of (17). For each steady-state along the paths, a linear analysis enables us to

determine the linear stability (or instability) of the steady-states. Provided that the Jacobian of F

exists, the linearization about Φ (solution of (17)) of the equation for the perturbation is:

G

(
∂Φ′

∂t

)
=
∂F

∂Φ
(Φ,Υ)Φ′.
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From the above considerations, we can analytically compute the no-flow steady-state:

Ψ = 0, C(z) =
cosh(

√
RaDa(z + 1))

cosh(2
√
RaDa)

, (18)

which is a solution of (17) for all Υ. This solution corresponds to pure diffusion-reaction of the

solute in the domain. The above base solution is unstable for certain parameter values and new

bifurcation branches of stable steady state solutions can appear (non-trivial solutions). Under steady

state conditions, the mass balance equation (14) reduces to: S = RaDaM. Since Ra and Da are

parameters of the model, and recalling thatM =
∫
R Cds, this shows that S is directly proportional

to M. For computing S, therefore, it is sufficient to solve equations (9) for Ψ and C, followed by

the application of equation (14).

Using equation (18), the total mass of solute in R corresponding to the base steady solution is:

M0 =

∫
R
C0dx = L tanh(2

√
RaDa)√

RaDa
, (19)

which is independent of the permeability field, increases with the aspect ratio L and decreases with

the magnitudes of Ra and Da. This value of M0 is due only to the dissolution of the solute across

the upper boundary. This is not, however, the case for non-trivial solutions, for which the surface

dissolution flux varies according to the values of the permeability field. In the case of non-trivial

solutions, the surface dissolution flux is enhanced by the effect of the convective recirculating flow, in

which the flow intensity depends on the magnitude and spatial variation of the medium permeability.

The system studied in this paper undergoes a bifurcation, namely the appearance of multiple

solutions (more than one equilibrium state) for values of Ra above a critical value. At the critical

value, a supercritical pitchfork bifurcation (first bifurcation) occurs and two additional branches of

stable solutions appear (see Figure 1). Further bifurcations can take place for higher values of Ra,

leading to more stable and unstable solutions. For a detailed analysis of the evolution of bifurcations

in porous media convection the reader is referred to, e.g., [46, 56, 47, 15]. All of the stable solutions,

corresponding to different bifurcation branches, are physically feasible and which one is observed in

reality depends on the effects of natural perturbations occurring during the time evolution process.

Figure 1 shows a representation of the solution bifurcation map, i.e., all stable and unstable

solutions, found with our numerical scheme for the C-ED problem in a homogeneous medium for

different Ra and Da fixed. The reference value to characterise each computed solution was the value

of the streamfunction (velocity) at the center of the domain, Ψc, according to the corresponding Ra.

Note that for Ra < 42.5, i.e., below the numerically computed bifurcation point, all solutions have

the same streamfunction constant value at the centre of the domain, corresponding to the no-flow

solution with total dissolved mass given byM0 in equation (19). On the other hand, for Ra > 42.5

there are two different non-trivial solutions, with total dissolved mass greater than M0, since the
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base solution corresponds to the lower bound of capture given that the uptake of the solute increases

as soon as convection occurs in the domain. For more details regarding the bifurcation problem, we

refer the reader to [12, 56].

Figure 1: Bifurcation diagram with respect to Ra for a homogeneous permeability field. The black lines correspond

to steady-state solutions of the streamfunction at the center of the domain. The other model parameters are K ≡ 1,

Da = 0.1 and βT = βL = 0.

Figure 2: Branches of steady-state solutions for the original and perturbed problems according to different values of

Ra. The ordinate axis represents steady-state solutions of the streamfunction at the center of the domain. The rest

of parameters are K ≡ 1, Da = 0.1 and βT = βL = 0.

In practice, to compute a non-trivial solution of (9) for a given Ra using arclength continuation,
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we first perturb the convection-diffusion-reaction equation by an amount ε, i.e., we set:

∂C

∂t
− ∂Ψ

∂z

∂C

∂x
+
∂Ψ

∂x

∂C

∂z
− 1

Ra

(
∂Jx
∂x

+
∂Jz
∂z

)
+ DaC + ε = 0, (20)

and solve the ‘perturbed’ problem (20) with the FE method as described earlier for an increasing

sequence of Ra values (Ra(j), j = 0, 1, . . .), where in each step j+ 1 of the iterative algorithm we set

as the initial guess for the next iteration the precomputed solution for Ra(j) (see Figure 2). Once

we have computed the solution for the ε-perturbed problem at the desired Ra, we reduce ε with the

same arclength methodology until ε = 0.

The permeability parameter appearing in our model needs to be characterised in order to be used

as an input for the simulator. Bear [7], for instance, provides empirical data for the permeability and

classifies several scenarios according to the data. Farthing et al. [22] presented results for different

porous media scenarios by using different types of sands. It has been shown [11, 29, 48] that although

the permeability values can exhibit large spatial variations, these variations are not entirely random

but spatially correlated. Previously, such fields have been modelled using a log-normal distribution

assumption [39]. In this paper we will also use a log-normal distribution to model the parameter

K, i.e., in the two dimensional case we replace the conductivity tensor by a scalar valued field,

the log of which is Gaussian. In the next section we describe how we model the permeability as a

log normal random field and how the C-ED model presented earlier yields a system of PDEs with

random coefficients.

2.2. Generation of random permeability fields

Let (Ω,F ,P) be a probability space. Given x ∈ R, we use Z(x, ω) (or simply Z(x)) to denote a

real-valued random field (RF) indexed by x on the probability space (Ω,F ,P). For each x ∈ R,

Z(x, ·) : Ω → R is a random variable, while for a fixed ω ∈ Ω, Z, is a deterministic function

Z(·, ω) : R → R, called a realisation or sample path of the process. We define the mean function

m(·) : R → R of a RF Z(x) by:

m(x) = E[Z(x)] =

∫
Ω

Z(x) dP(ω),

and the covariance function c(·, ·) : R×R → R, by:

c(x,x′) = E [(Z(x)−m(x))(Z(x′)−m(x′)] . (21)

The numerical codes used in this work require the values of the permeability at the M nodes obtained

during the discretization of the physical domain. To generate different permeability fields according

to a log Gaussian distribution, let Z(x) be a RF with given mean function m(x) and given covariance

function c(x,x′) on the underlying space (Ω,F ,P). Then, given the set of nodes {xi}Mi=1, the vector
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Z := (Z(x1), . . . , Z(xM ))T is a discrete random field. In fact, Z : Ω→ RM is a multivariate random

variable with mean vector and covariance matrix:

m = (m1, . . . ,mM )ᵀ = E[Z] ∈ RM , C = E[(Z−m)(Z−m)ᵀ] ∈ RM×M (22)

respectively, where:

mi = E[Z(xi)] = m(xi), Cij = c(xi,xj), i, j = 1, . . . ,M (23)

Thus, for a given RF, Z, we can set K = exp(Z) to obtain the desired discrete permeability field

[33]. Furthermore, if Z is chosen to be normally distributed then K is log normal. Note that the log

Gaussian assumption is used to avoid negative (unphysical) values of the permeability.

One possible method to generate different (Gaussian distributed) Z utilises a Cholesky decom-

position of the covariance matrix associated to the covariance function given in (21) [55]. Even for

a few hundred sampling points, however, the round-off error in this method cannot be neglected

due to the fact that the associated covariance matrix is likely to become extremely ill-conditioned

[19]. An alternative method for simulating a Gaussian RF is the circulant embedding algorithm [20]

described, e.g., in [33]. This method provides an exact simulation of a Gaussian RF, although its

implementation is not straightforward. Another technique that has been used extensively to produce

samples of the permeability fields is the KL expansion method (see for instance [32]).

In this paper, we use a highly efficient and accurate KL decomposition [25, 15]. This method

could be inappropriate for problems in which the simulator necessitates an extremely fine discretiza-

tion of the computational domain, but this does not apply to the problem considered in this paper.

Conversely, the advantage of this approach is that it only requires a single eigen-decomposition of

the covariance matrix, the results of which are stored and used to generate new realisations of the

permeability field very cheaply. Moreover, the KL decomposition may be truncated, which leads to

a lower-dimensional input space for our emulator. The main difference between the KL expansion

and KL decomposition methods is that, while KL expansions provide an approximation (due to the

truncation of the infinite series) of the permeability fields at all the points of the continuous domain,

which can be sampled afterwards on any grid, KL decompositions provide the exact decomposition

of the correlation function on a discrete grid. Since the whole eigen-decomposition is considered,

variance preservation is not an issue (the total variance is preserved). We remark that KL decom-

positions may not be useful for models requiring either a very fine discretization of the domain or

several evaluations of the permeability at different sets of grid points.

For modelling the correlation of Z, i.e., expression (21), we use the following exponential covari-

ance function [29, 54, 14, 13]:

c(xi,xj) = σ2 exp

(
−||xi − xj ||2

λ

)
xi,xj ∈ R, (24)
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where λ represents the correlation length and σ2 represents the process variance. In subsurface

flow applications, λ is typically chosen to be significantly smaller than the size of the computational

region and also large enough to be taken into account in the numerical formulation [13]. The values

of σ2 and λ are therefore problem dependent and are discussed separately for each of the models in

Section 4.

We denote by C the positive semi-definite covariance matrix associated to the function c, i.e.,

Cij = c(xi,xj), xi,xj ∈ R. Since this covariance matrix C is real-valued and symmetric, it admits

an eigen-decomposition [55]: C = (ΦΛ
1
2 )(ΦΛ

1
2 )ᵀ, where Λ is the M ×M diagonal matrix of ordered

decreasing eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λM ≥ 0, and Φ is the M × M matrix whose columns

φi, i = 1, . . . ,M , are the eigenvectors of C. Let ξi ∼ N (0, 1), i = 1, . . . ,M , be independent and

identically distributed (i.i.d.) random variables. We can draw samples from Z ∼ N (m,C) using the

KL decomposition of Z using the following [33]:

Z = m + ΦΛ
1
2 (ξ1, . . . , ξM )ᵀ = m +

M∑
i=1

√
λiφiξi. (25)

The discrete random permeability field is therefore given by:

K = exp

(
m +

M∑
i=1

√
λiφiξi

)
. (26)

The terms ξi ∼ N (0, 1) above will be called KL coefficients. With the permeability parameter K

modelled as a log Gaussian random field K = K(x) on R × Ω, or the discrete form K given by

equation (26), equations (9) become a new system of PDEs with random inputs K(x). This system

is solved for the streamfunction Ψ(x) and the concentration C(x), which are also, therefore, random

fields. A realisation of the permeability field K ∈ RM represents possible sets of permeability

values in a slice of porous rock across which we would like to study the dissolution process. Figure

3 gives two examples of the permeability field that are used later in the numerical simulations.

An approximation of K can be obtained by restricting the expansion in (26) to the first, say, D

KL coefficients, i.e., to the subspace spanned by φ1, . . . ,φD. In the emulator construction, this is

exploited to obtain a computationally practical method, as discussed in the next section.

Let us define the random vector ξ ∈ RD, for D ≤ M , distributed according to N (0, I). Note

that although we allow D ≤M , for the simulator runs to generate the training data we strictly set

D = M , i.e., no approximation of the permeability field is made. The numerical code described in

Section 2 can be regarded, respectively, as a mapping from K to S (for a log-normally distributed

random vector K). Alternatively, the representation (26) of the permeability field allows us to

consider the mapping fs : ξ 7→ S for the C-ED simulator, respectively, where ξ ∈ RD is defined as

above. In the next section we will develop an emulator for this mapping.
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Figure 3: Two different input permeability fields generated with the KL decomposition method where the whole set

of 2601 KL coefficients were retained.

3. Gaussian process emulator of the simulator output

A GP can be interpreted as a family of random variables, any finite number of which have a joint

Gaussian distribution. A GP is fully specified by its mean function and covariance function [45]. A

GP emulator is a statistical approximation of the simulator, in which the mapping between the inputs

and outputs is learned using a limited number of simulator runs at carefully selected inputs (design

points). Such an approximation incurs a fraction of the computational cost and can replace the

simulator in an uncertainty analysis, thereby avoiding a large number of costly or even prohibitive

simulator evaluations. In this section, we outline GP emulation and discuss the selection of the

design points. The majority of the studies in the literature fix the covariance function a-priori .

In this study, we will apply cross-validation (CV), as recommended in [45], to select an optimal

covariance function for each of the two simulators.

3.1. GP emulation general framework

Our aim is to develop an emulator for the simulator fs : ξ 7→ S, where ξ ∈ RD, for D ≤ M , is

distributed according to N (0, I). Note that M denotes the number of nodes in the computational

domain of our model problem and is set to M = 2, 601, as discussed further in Section 4. The GP

model involves so-called ‘hyperparameters’ in the covariance function, to be discussed below. In

the covariance structures used, each component of the input is associated with a hyperparameter

and the hyperparameters are inferred from the simulator data by solving an optimisation problem.

Thus, for high-dimensional input spaces (D moderately large), the GP model would be impractical.

We will discuss optimal values of D for building the GP emulator in Section 4.2.

In GP emulation, assumptions about the target function are imposed by specifying a prior

probability distribution over a family of possible functions. This prior distribution is then updated
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in the light of training data (by using Bayes’ rule), which yields a posterior distribution that can be

used for inference. Let us denote by f(·) the GP used to model fs(·). The prior specification involves

setting a mean functionm(ξ) and a covariance function k(ξ, ξ′), which are defined as: m(ξ) = E[f(ξ)]

and k(ξ, ξ′) = Cov(f(ξ), f(ξ′)) = E[(f(ξ)−m(ξ))(f(ξ′)−m(ξ′))], in which in E[f(·)] and Cov(·, ·) are

the expectation and covariance operators on the (common) probability space underlying the family

of random variables f(ξ). The covariance function contains hyperparameters, which are collectively

assigned the symbol θθθ. Typically (as is the case in this paper), these hyperparameters have to be

inferred from the data. We denote the GP prior by:

f(ξ) ∼ GP(m(ξ), k(ξ, ξ′)). (27)

Given the GP above, we can approximate the mapping f(·) using a small number d of simulator

runs at carefully selected design points {ξ̂j}dj=1, where ξ̂j ∈ RD, for some D ≤M . It is not required

that the design points ξ̂ are distributed according to N (0, I). The choice of design points should

be optimal in terms of learning the deterministic mapping f(·) with a limited number of simulator

runs and is discussed in Section 3.2. To avoid numerical instabilities (ill-conditioning of the matrix

system), an i.i.d. random noise εj ∼ N (0, σ2
n), where σ2

n is the variance, is typically introduced into

the model, i.e.:

yj = fs(ξ̂j) + εj , (28)

where yj is the noisy simulator output at the design point ξ̂j . Collectively, {yj}dj=1 are termed the

observed values or targets. We can define the design matrix as X = [ξ̂1, ξ̂2, . . . , ξ̂d] and write the

observed values in vector form y = (y1, . . . , yd)
ᵀ. The training set is defined as the pair D = {X, y}.

A key property of GPs is that their posterior distribution, after taking into account the training

data D, is still a GP; in this case, given a prior as in expression (27) and a training set D, we

obtain a posterior GP process with updated mean and covariance functions. This allows us to make

predictions. The variance-covariance matrix for the distribution over y is given by:

Cov(y) = Σ(X,X) + σ2
nI, (29)

where the (i, j)-th entry of Σ(X,X) ∈ Rd×d is given by k(ξ̂i, ξ̂j). Predictions can be made for new

input ξ∗, i.e., we obtain the distribution of f∗ := f(ξ∗), conditioned on the training data D. From

the joint distribution of y and f∗: y

f∗

 ∼ N
µ

µ∗

 ,
Σ(X,X) + σ2

nI Σ(ξ∗,X)

Σ(ξ∗,X)ᵀ k(ξ∗, ξ∗)

 , (30)

where µ = (m(ξ̂1), . . . ,m(ξ̂d))
ᵀ, µ∗ = m(ξ∗) and Σ(ξ∗,X) = (k(ξ∗, ξ̂1), . . . , k(ξ∗, ξ̂d))

ᵀ, the poste-

rior distribution of f∗ conditioned on D is given by [45]:

f(ξ)|D ∼ GP(mD(ξ), kD(ξ, ξ′)) (31)

15



where

mD(ξ∗) := E [f∗|D, ξ∗] = µ∗ + Σ(ξ∗,X)
[
Σ(X,X) + σ2

nI
]−1

y, (32)

and

kD(ξ∗, ξ∗) = k(ξ∗, ξ∗)− Σ(ξ∗,X)ᵀ
[
Σ(X,X) + σ2

nI
]−1

Σ(ξ∗,X). (33)

Expressions (32) and (33) provide, respectively, a prediction for the simulator output at ξ∗, and the

predictive variance in the output (encoding the uncertainty in the prediction). In this study, the

GP emulation is implemented using the GPML MATLAB toolbox v3.4 [45].

3.2. Generation of the design points and cross validation

To design an emulator, it is desirable to use a limited number of the expensive simulator runs,

with design points that cover the full range of physically reasonable input values. Design points

that are too close together can lead to ill-conditioned covariance matrices. The design points are

generated using sampling, i.e., a random (or psuedo random) distribution of points in a defined

interval according to some distribution or rule. There are several methods of sampling the input

values, the most common of which are Latin Hypercube Sampling (LHS) [35, 43] and Sobol sequence

sampling [52]. In this paper, we use the latter to build our design. Sobol sequences are a family of

quasi-random sequences that are designed to generate samples of multiple parameters in a highly

uniform manner; consideration of the previously sampled points avoids the occurrence of clusters

and gaps [10, 50].

In practical terms, we use a Sobol sequence to generate d points in [0, 1]M . Each of the M

components of these points can be considered as possible values of the cumulative distribution

function of a random variable in R. Each of the d points are pushed component wise through the

inverse cumulative distribution function of M random variables distributed according to N (0, σ2
d),

with σ2
d > 1, to, jointly, form {ξ̂1

j , . . . , ξ̂
M
j }dj=1. We treat the ensembles {ξ̂1

1 , . . . , ξ̂
M
1 } . . . {ξ̂1

d, . . . , ξ̂
M
d }

as sets of KL coefficients, and for each of them compute the corresponding noisy outputs {yj}dj=1.

We then, by retaining the first D terms of each of the d ensembles above, denote the set of design

points by {ξ̂j}dj=1 ⊂ RD, where ξ̂j := (ξ̂1
j , . . . , ξ̂

D
j )ᵀ. These design points are used with the noisy

outputs {yj}dj=1 to form the training set D.

We use σ2
d > 1 to ensure that the design points have a greater spread than the random variables

(KL coefficients) ξ we wish to model, which are N (0, I), i.e., to ensure that the tails of the target

input distribution are covered with the design. During this study, alternative training sets based on

training points generated according to different values of σd where considered, including ξ̂ ∼ N (0, I),

i.e., σ2
d = 1. The best calibrated GP emulator was obtained with a value of σ2

d = 1.44. Henceforth,

in this paper, for both of the models studied in Section 4 we set σ2
d = 1.44 to form the design points
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in the training set.

The properties of the Sobol sequences require a sample size of 2j where j = 1, 2, . . . [10] in order

to exploit the manner in which values are spread in [0, 1]M . Thus, the number of design points for

each training set to be considered throughout this paper will be 28 = 256 points. Once a model has

been tested and selected, this number of design points can be minimised (see Figure 9) in order to

reduce computational cost depending on the desired accuracy in the predictions.

For complex simulators, such as the one discussed in this paper, is often not possible to gain

a high number of simulator outputs with which to test the emulator accuracy. In such cases we

can use CV to estimate the emulator error. We split the training set into two disjoint sets, one of

which is used for training. The performance on the remaining (‘validation’) set is used to estimate

the prediction error, and model testing and selection are carried out using this measure. We use

the leave-one-out cross-validation (LOO-CV), which consists of using all but a single data point for

training, and computing the model prediction error on the omitted point. This process is repeated

until all available d points have been exhausted.

CV can be used with any loss function, although the squared error loss is the most common for

emulation. In this work, we will use the Dawid score (DS) introduced by Dawid and Sebastiani [16]

and the mean squared error (MSE) defined, respectively, as follows [57]:

DS =
1

d

d∑
j=1

(
(yj −mj)

2

s2
j

+ log s2
j

)
, (34)

MSE =
1

d

d∑
j=1

(yj −mj)
2. (35)

where mj is the predicted expected value at a given design point, ξ̂j , given by (32), s2
j its corre-

sponding variance, given by (33), and yj the corresponding observed value at ξ̂j .

In the following section, we will describe how we select appropriate parameters and functions for

the GP emulator.

3.3. Specification of the GP emulation model

The selection of the mean and, in particular, the covariance function is crucial in a GP predictor

[45]. In order for a model to be a practical tool, we need to make decisions about the details of

its specification. Some properties may be easy to specify from the context of the problem, while

we typically have only vague information available in regards to other aspects, e.g., length-scales

or process variances. In this study, we test three different families of covariance functions. For

each function, we test the emulator predictions against the observed values by using the LOO-CV

method. To select the final covariance function for the GP emulator, we use the criterion that the
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predicted data will lie within the 95% CI in 95% of cases [27], i.e., we compute the percentage of

points out of range for each emulator and then choose the model (covariance function) with the

smallest number of cases outside the 95% CI. The 95% CIs are computed as in [45], i.e., by using

the intervals (mj − 2sj ,mj + 2sj) where mj and sj are respectively the predictive mean (32) and

square root (standard deviation) of the variance (33) for a given design point ξ̂j .

The first covariance function (the most commonly used, see e.g., [59]) is the squared exponential

(SE). This function is infinitely differentiable, which means that the associated GP has mean-square

derivatives to all orders. The Matérn class1 [34] is often used as an alternative for cases in which a

strong smoothness assumption is deemed unrealistic [53]. The third covariance function tested was

the rational quadratic (RQ), which is as an alternative to the Matérn class [34]. The two anisotropic

SE and RQ covariance functions used in this study are defined as follows:

kSE(ξ, ξ′) = σ2
f exp

(
−1

2
(ξ − ξ′)>diag(`−2

1 , . . . , `−2
D )(ξ − ξ′)

)
+ σ2

nδij , (36)

kRQ(ξ, ξ′) = σ2
f

(
1 +

1

2α
(ξ − ξ′)>diag(`−2

1 , . . . , `−2
D )(ξ − ξ′)

)−α
+ σ2

nδij , (37)

respectively. The use of different characteristic length scales `̀̀ = (`1, . . . , `D) for each input imple-

ments automatic relevance determination (ARD) [40] since the inverse of the length-scale determines

the relevance of each of the D inputs: If the length-scale has a very large value, the covariance will

become almost independent of that input, effectively removing it from the inference [45]. The hyper-

parameters for each case are θθθSE = (σ2
f , `, σ

2
n) and θθθRQ = (σ2

f , `, α, σ
2
n). To obtain estimates of the

hyperparameters we maximize the negative log marginal likelihood (38) w.r.t. the hyperparameters:

− log p(y|X, θθθ) =
1

2
yᵀ(Σ + σ2

nI)−1y +
1

2
log |Σ + σ2

nI|+ n

2
log 2π. (38)

Once the hyperparameters of the four covariances functions have been inferred from the training

data, we apply the LOO-CV technique described in Section 3.2 to each of the corresponding GP

models for model (covariance function) selection.

4. Numerical results

In this section we present the results obtained after using the GP emulator to perform a full UQ

on the distribution of the surface flux described in Section 2. We restrict ourselves to the domain

R = [0, π/2] × [−1, 1] ⊂ R2 and set L = π/2. The model parameters are chosen to be: Ra = 100,

Da = 0.1, βL = π/2 and βT = βL/10. The permeability fields used as inputs in the simulator were

1There are a whole family of Matérn class functions and in this work we consider only the Matérn3/2 and Matérn5/2.

For explicit expressions of these covariance functions, we refer the reader to [45].
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generated from the correlation function (24) with parameter values λ = 0.5 (value within the range

suggested in [13] for a similar problem) and σ2 = 0.1 (a small variance is imposed to study how

small variations in the permeability affect the quantity of interest). To be consistent with the non

dimensional formulation of the equations in (9) we generate a set of log Gaussian permeability fields

with pointwise mean 1, i.e., E[K(xi)], ∀xi ∈ R. For that purpose we set m = −(σ2/2)I in (25).

Numerical approximations to the solution of (9) were computed with a H1-conforming finite el-

ement method (FEM) [9]. The numerical approximations were evaluated on a shape-regular rectan-

gular partition of R = [0, π/2]× [−1, 1] ⊂ R2 comprising 2,500 elements (i.e., M = 2601), employing

basis functions of polynomial degree 1. All computations were performed using the AptoFEM finite

element toolkit, documented in [3], together with the MUMPS linear solver [1, 2]

Figure 4 shows the three solutions corresponding to each of the three bifurcation branches shown

in Figure 1 for Ra = 60, i.e., the simulated contours of the streamfunction Ψ (right) and the

concentration C (left) for the same permeability field K (the left hand field in Figure 3). The

middle row shows the solutions corresponding to a constant surface flux, while the top and bottom

rows are the solutions corresponding to the two new bifurcation branches with a non-constant flux

appearing after the critical Ra. We consider two types of solutions; what we called trivial solutions,

i.e., solutions of equation (18) that lead to a constant surface flux, S0 = 4.97, and non-trivial

solutions, i.e., solutions leading to a non-constant surface flux, S 6= S0.

Figure 5 shows contour plots of the streamfunction and the concentration (bottom right and

top right respectively) for the solution on one of the stable bifurcation branches at Ra = 100,

corresponding to the heterogeneous permeability field K on the right in Figure 3. The solution on

the left of Figure 5 corresponds to the homogeneous case, K = 1. In both cases, the base unstable

solution is the same (equation (18)), with surface flux S0 = 4.97. The corresponding enhancement

of the dissolution by convection is the difference between the fluxes for the homogeneous (5.42)

and heterogeneous (5.17) cases and the flux for the base solution (4.97), i.e., in the homogeneous

case the enhancement is 5.42 − 4.97 = 0.45 and in the heterogeneous case the enhancement is

5.17 − 4.97 = 0.20. This unexpected result, where heterogeneity reduces enhancement, is analysed

in detail in [15, 47].

UQ of the CDF of S for the C-ED problem

We use GP emulation to perform a full UA on the C-ED problem. In this case, we estimate the

uncertainty distribution of the surface flux arising from the uncertainty distribution in the input

permeability. As a first attempt, we used the standard GP emulation methodology based on GP

emulation discussed in Section 3 to perform a full UA of the CDF of the surface flux. However, the
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Figure 4: Example of three different solutions of problem (9) for a given heterogeneous permeability field (the left

hand field in Figure 3) with parameters: Ra = 60, Da = 0.1, βL = π/2 and βT = βL/10. The upper branch solution

is shown in the top row of figures, the trivial solution is shown in the middle row and lower branch solution is shown

in the bottom row.
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Figure 5: Concentration and streamfunction contours for both a homogeneous permeability field (K = 1) and a

heterogeneous permeability field (the right hand field in Figure 3) for the C-ED problem with parameters: Ra = 100,

Da = 0.1, βL = π/2 and βT = βL/10. The homogeneous case is shown on the left and the heterogeneous case on the

right. The corresponding surface fluxes for the homogeneous and heterogeneous cases, respectively, are 5.42 and 5.17.
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method was not able to accurately predict the CDF around the bifurcation point (see Figure 10).

To overcome this issue, we introduce a precursor to the GP emulation, which we call the classifier.

The classifier will allow us to predict the ‘class’ of the solution given the input. Once the solution

is classified, we can then use the same approach followed in Section 3.1 to estimate the value of the

S using GP emulation. Before showing the UQ results, let us introduce the GP classifier first.

4.1. The GP classifier

We wish to assign an input pattern ξ ∼ N (0, I) to one of two classes: C1 : S = S0 and C2 : S 6= S0.

We will use a GP classifier, in which test predictions take the form of class probabilities. If we use

the labels y = +1 and y = −1 to distinguish the two classes C1 and C2, respectively, we predict,

for instance, π(ξ) = Pr(y = +1|ξ), where π denotes the probability that an input ξ is in the class

y = +1. Since a GP prior over functions does not restrict the output to lie in the interval [0, 1],

we need to “squash” the prior function (in practical terms, what we squash are the samples, drawn

from the prior distribution of f(·)). A common choice for this squashing function is the function

γ(z) = (1 + exp(−z))−1, called the logistic function. The GP prior over f(·) induces a prior over

probabilistic classifications π. We can then apply the methodology described in Section 3 to obtain

the posterior mean for that π(ξ). Thus, we use a Gaussian process in essentially the same way, except

that the Gaussian likelihood function often used for emulation is inappropriate for classification. The

likelihood function considered for our classification model will be the error-function (or cumulative

Gaussian), and does not contain any hyperparameters; the error function of a Gaussian distribution

is defined as Erf(x) = 1√
π

∫ x
−x e

−t2dt.

Since exact inference is only possible for a Gaussian likelihood, we need an alternative approx-

imation inference method. Thus, we will use the Expectation Propagation (EP) algorithm [38]

described in [45]. EP provides an approximations to an intractable factorized probability distribu-

tion p(x) =
∏
i pi(x), using a simpler factored form q(x) =

∏
i qi(x), where each factor qi(x) belongs

to the exponential family. EP is designed to minimize the distance between the two distributions,

measured by the Kullback-Leibler divergence KL(p||q). Exact minimization is not feasible because it

involves an expectation with respect to the original distribution p(x). EP therefore uses an iterative

procedure that at each step minimises the KL divergence between the (new) q(x) and a distribution

defined by the current q(x) with one factor qi(x) replaced by the corresponding factor pi(x). The

factor qi(x) is then easily updated, and the process is repeated (going through all the factors in

turn) until convergence [37].

The mean and covariance functions for the GP classification model are chosen to be a mean-zero

function and the SE covariance function. Let D = {ξ̂j , yj}256
j=1 be the training set used for the

travel time simulator in Section 3.2, and let X = {ξ̂j}256
j=1 be the design matrix and y = {yj}256

j=1
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the vector of noisy observations. If we split the set X into two disjoint sets, X1 and X2, where

X1 = {ξ̂ ∈ X : fs(ξ̂) = S0} and X2 = {ξ̂ ∈ X : fs(ξ̂) 6= S0}, and set D2 = {X2,y2}, where

y2 is the set of simulator outputs fs(·) with inputs in X2, we can consider a GP emulator (as

previously described), labelled GP2, based on the training set D2. Thus, for any given input ξ∗ ∈ RD

distributed according to N (0, I) we run the classifier as a first step and if the classifier labels the

output as a constant S0, we take the emulator output as S0. Conversely, if the output is labelled

as a non-constant S then we use GP2 for making predictions; we will take as the predicted S value,

mD2
(ξ∗) = S, i.e., the mean of the posterior GP built upon the training set D2. The entire procedure

is illustrated in Figure 6.

Run Classifier

Is Pr(π(ξ∗)) 6= S0) > U?

where U ∼ U(0, 1)

ξ∗ Return S0

Apply GP2

mD2
(ξ∗) = S

Return S

no

yes

Figure 6: Algorithm followed for predicting the S for any input given by using a Gaussian process classifier. U ∼ U(0, 1)

is a uniform random variable between 0 and 1 which gives randomness to the classification process.

4.2. GP emulation and classification for UQ of the CDF of S

In this application, we considered the training set D = {ξ̂j , yj}256
j=1 where the points ξ̂j ∼ N (0, 1.44 I)

were generated from an initial Sobol sequence of 256 points over [0, 1]M . After running the simulator

fs for the corresponding 256 cases, we found 64 cases leading to a constant surface flux S0. Thus,

after removing those 64 pairs, {ξ̂j , yj}, form D, the training set, D2, for the GP2 emulator consisted

of d2 = 192 points.

For GP model selection, we applied the LOO-CV analysis discussed in Section 3.2 to the four

covariance functions introduced in Section 3.3, namely, the SE, Matérn3/2, Matérn5/2, and RQ. The

largest percentage (95.94%) of predictions within the bounds, among all the models, with the 95%
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acceptance interval, was given by the model using the RQ covariance function. Thus, throughout this

section, we use a GP emulator with a mean-zero function and the RQ covariance function. Figure 7

shows an illustration of the observed (blue) and predicted values (red), and 95% uncertainty bounds

(black vertical bars) for the LOO-CV method applied to the selected GP emulator. The horizontal

axis shows the first component ξ̂1 of each of the corresponding 192 design points {ξ̂j}dj=1 ⊂ RD.

Figure 7: LOO-CV from the design of GP2 formed by 192 points. 4.06% of the observed values are out of range.

Vertical axis: predicted surface fluxes (red) with 95% bounds (black bars) given by the GP emulator using a mean-zero

function and a RQ covariance function and observed surface fluxes (blue). Horizontal axis: first KL coefficient ξ̂1 of

each of the corresponding 192 design points.

We also investigated a further refinement of the model in terms of the GP emulator input space,

i.e., we studied the effectiveness of the GP emulator for different lower dimensional input spaces

(RD, D ≤ M), by inspecting the MSE (35) and DS (34) scores. From the training set D2 of

d2 = 192 points, we considered an ordered sequence of sets Di, i = 1, 2, . . ., in which the first i KL

coefficients were retained from the original M . For instance, D3 = {(ξ̂1
j , ξ̂

2
j , ξ̂

3
j )ᵀ, yj}dj=1. Applying

LOO-CV to each of the training sets in the sequence Di, i = 1, . . ., we calculated the MSE and

DS. Figure 8 shows the MSE and DS scores against the number of KL coefficients retained (or

D). The plots show that after around 16 KL coefficients the scores do not vary significantly. Thus,

the value of D in the GP model can be set to D = 16. Note that the lower dimensional input space

applies only to the GP emulator f(·) and not to the simulator fs, which is always a mapping from

RM to R.

In addition, we studied the effect of the training point number d2 on the accuracy of the GP em-
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Figure 8: Two scores, DS (left) and the MSE (right), computed by using the LOO-CV method applied to a sequence of

training sets with d = 192 design points. The GP emulator was built with a mean-zero function and a RQ covariance

function. The x-axis represents the number D of KL coefficients used in each of the training sets to calculate the

scores.

ulator predictions. For a sample of 103 different sets of N (0, 1) KL coefficients {ξ∗1,j , . . . , ξ∗M,j}
1,000
j=1 ,

we used as test points the first 16 terms of each of set to form {ξ∗j ∈ R16}1,000
j=1 , which are, there-

fore, distributed according to N (0, I). We then computed the relative error between the corre-

sponding true observed (simulator) surface fluxes, S1, . . . ,S1,000, and the corresponding predictions,

{S∗j = f(ξ∗j )}
1,000
j=1 , using a GP emulator built with d2 = 2n design points, n = 1, . . . , 8. The error

considered for comparisons between two vectors throughout this work will be the L2-norm relative

error unless stated otherwise. For two vector x = (x1, . . . , xn) and y = (y1, . . . , yn), we define the

L2-norm relative error between x and y as:

RE(x,y) =
||x− y||2
||x||2

(39)

where ||x||2 is Euclidean norm. Figure 9 suggests that around 64 the training points are adequate.

The selection of the number of design points to keep will depend on the accuracy desired for each

problem and will depends on whether the user we can afford to run the simulator a large number

of times or not, and therefore retain the entire training set. For the C-ED model discussed in this

paper, a single run can take over 24 hours, in which case the number of design points becomes an

extremely important consideration.

Once the GP emulator specifications have been selected, the accuracy of the GP emulator predic-

tions can be measured by generating an ensemble ξ∗1 , . . . , ξ
∗
M of M realizations of a N (0, 1) random

variable and running the simulator fs to obtain the true observed value S. Then we compare to

the GP emulator prediction S∗ := f(ξ∗) for the test input ξ∗ := (ξ∗1 , . . . , ξ
∗
D)ᵀ formed from the first

D KL coefficients of the original ensemble ξ∗1 , . . . , ξ
∗
M . In this work, we used a sample of 1,000 test

points {ξ∗j ∈ R16}1,000
j=1 distributed according to N (0, I). After running the simulator fs for those
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Figure 9: The relative error curve between the observed and predicted surface fluxes for 192 different designs using

the RQ covariance function. The curve shows a smooth decreasing tendency and after around 160 design points the

decrease in the relative error is negligible.

points, 825 out of the 1,000 led to a non-trivial solution. For those 825 we computed the relative er-

ror between the corresponding observed surface fluxes, {Sj}825
j=1, and the corresponding predictions,

{S∗j := f(ξ∗j )}825
j=1, using the GP2 emulator. The results suggested that around 32 training points are

adequate, and thus we used the training set formed by the first 32 elements of D2 (i.e, we retained

the first 32 design points from the original 192 forming GP2).

4.3. GP emulation for UQ of the CDF of S

We approximate the cumulative distribution of S empirically based on the GP emulator as follows:

F (s) = Pr(S ≤ s) =

∫
RD

I{f(ξ)|D ≤ s}dG(ξ), (40)

where G(·) is the probability density function of a random vector ξ ∈ RD, with D = 16, distributed

according to N (0, I), I denotes the indicator function and f(·)|D ∼ GP(mD, kD) as in (31). We will

use the approach described in [42] to derive the posterior moments of F (·). We need to simulate

draws F(i)(·) from the posterior distribution of F (·), for which we first draw a realisation of the

posterior distribution f(·)|D by drawing a large random sample of inputs ξ∗1, . . . , ξ
∗
N from G(·), for

some integer N . We then form the joint distribution for those inputs as in (31), and draw random

samples (denoted by f(i)) from f(·)|D. The random samples at a given input ξ∗j are generated by

using the following formula [45]:

f(i)(ξ
∗
j ) = mD(ξ∗j ) + (kD(ξ∗j , ξ

∗
j ))

1/2ϑi (41)

where ϑi ∼ N (0, 1), and mD(·) and kD(·, ·) are the predictive mean and predictive variance given,

respectively, by (32) and (33). Finally, we approximate F(i)(·) by using the empirical cumulative
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distribution function:

F(i)(s) =
1

N

N∑
j=1

I{f(i)(ξ
∗
j ) ≤ s}. (42)

If we repeat the process a large number of times (n) we can obtain a large sample of distributions

F(1)(·), . . . , F(n)(·), and from this sample we can obtain any required statistic, for instance the sample

mean F̄ (s), which approximates (40) and is given by:

F̄ (s) =
1

n

n∑
j=1

F(j)(s). (43)

Oakley and O’Hagan [42] remark that since F (s) is constrained to take values between zero and

one, the distribution of F (s) may be skewed for low and high values of s. Hence the mean of this

distribution may be a poor location summary; it may overestimate F (s) at low values of s and

underestimate F (s) at high values of s. Consequently, the sample median might be preferred as

a location summary. Now to find our uncertainty bounds we consider the corresponding quantile

function. If we let pα be the 100α percentile, such that F (pα) = α, the distribution of pα is given

by:

Pr(pα ≤ t) = Pr{F (t) ≥ α}, (44)

where Pr{F (t) ≥ α} can be estimated using the method just described (Pr here denotes ’probabil-

ity’). We can estimate pα by its sample mean, by finding p(i)α, the 100α percentile for realisation

i, i = 1, . . . , n. To compute the ECDF of the surface flux with the GP emulator, we follow the

procedure above and compute the mean (43), and the lower, upper and median quantiles from this

distribution of ECDFs as an approximation of the true CDF of the surface flux S.

Finally, we show the results achieved after performing a full UA for the CDF of the S by using

the GP emulation/classification emulator. Firstly, Figure 10 demonstrates that the GP emulation

methodology alone led to failure (top). Figure 10, on the other hand, shows how the posterior samples

are able to predict the bifurcation around S0 = 4.9707 when using the combined GP emulation and

classification (bottom). Figure 11 shows the 2.5th and 97.5th percentiles (dashed), the median of

the predicted distribution (red) computed according with the method given in Section 4.3. For

comparison purposes, an approximation of the Monte Carlo ECDF (black line) was computed from

a sample of 1,000 S values as follows: (i) generate a large number N = 1, 000 of different ensembles

{ξ∗1,j , . . . , ξ∗M,j}Nj=1 of KL coefficients (M = 2, 601), where each ξ∗i,j is distributed according to

N (0, 1); (ii) use the simulator to compute the corresponding true Sj for each of the ensembles;

(iii) compute the ECDF, F̂ , of the set of values {Sj}Nj=1 according to:

F̂ (s) =
1

N

N∑
j=1

I{Sj≤s}, (45)
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where I is the indicator function:

I{τj≤s} =

 1 if Sj ≤ s,

0 if Sj > s.

Figure 10: Predicted ECDFs (green) and 1,000 samples based MC approximation of the true S ECDF (black) with

(bottom) and without (top) using GP classification. The number of design points were 32 and the number of KL

coefficients were 16. The parameters for the E-CD problem were: Ra = 100, Da = 0.1, βL = π/2 and βT = βL/10.

Prior mean-zero and SE covariance functions, an Erf likelihood function and the Expectation Propagation (EP)

method were chosen for the GP classifier. Prior mean-zero and RQ covariance functions were chosen for GP emulation

model.
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Figure 11: Full uncertainty analysis of the predicted CDF of S using GP classification/emulation: predicted ECDF

(red), the 2.5th and 97.5th percentiles (dashed magenta). The number of design points was 32 and the number of KL

coefficients was 16. The parameters for the E-CD problem were Ra = 100, Da = 0.1, βL = π/2 and βT = βL/10. A

prior mean-zero, a SE covariance, an Erf likelihood function and the EP method were used for the GP classifier. A

prior mean-zero and a RQ covariance were used for the GP emulation. An approximation of the true ECDF with the

MC method (black) based on 1,000 samples is also showed for reference.

5. Conclusions and further work

In this paper we developed a methodology for quantifying the uncertainty distribution of ground-

water flow simulator outputs, where the uncertainty arises from the input permeability. In a C-ED

model that admits multiple solutions, the standard emulation methodology was combined with a

classification step in order to predict the simulator outputs around a bifurcation point. The GP

classification/emulation methodology proposed in this paper could be used as a bifurcation predic-

tor and applied to models where the user is interested in finding possible model bifurcations. We

also showed that it is possible to use a much lower dimensional input space for the GP emulator,

leading to a highly efficient emulation.
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