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Abstract: Running complex computer models can be expensive in computer time, while learning

about the relationships between input and output variables can be difficult. An emulator is a fast

approximation to a computationally expensive model that can be used as a surrogate for the model,

to quantify uncertainty or to improve process understanding. Here, we examine emulators based on

singular value decompositions and use them to emulate global climate and vegetation fields, examining

how these fields are affected by changes in the Earth’s orbit. The vegetation field may be emulated

directly from the orbital variables, but an appealing alternative is to relate it to emulations of the climate

fields, which involves high-dimensional input and output. The singular value decompositions radically

reduce the dimensionality of the input and output spaces and are shown to clarify the relationships

between them. The method could potentially be useful for any complex process with correlated, high-

dimensional inputs and/or outputs
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1 Introduction

Holden and Edwards [6] demonstrated a methodology for emulating high-dimensional climate outputs

as a function of scalar model inputs. Their approach was to decompose the output of a perturbed

parameter ensemble of climate model simulations using singular value decomposition and to regress the

dimensionally reduced output onto the model input parameters. The methodology was developed for

coupling climate models to climate change impact models in the case where the coupling variable from

impact to climate model is low dimensional. The method has since been applied to a range of coupling

applications [10,12,13]. Here we extend the approach of dimensionally reduced emulation to the case

of high dimensional inputs, decomposing both input and output fields and emulating the relationship

between the decomposed fields.

There are many classes of problems that would benefit from a statistical model that relates high-

dimensional input to high-dimensional simulator output. Such a model may be useful when a simulator

is too slow for a particular application or when the dynamics of the connecting process are not known a

priori. In either case the technique could be applied either for the purposes of dynamical understanding

or prediction. Some illustrative examples follow, with a specific focus here on predictive applications in

climate science (although we note that potential applications are likely far more general).

1. In most climate coupling problems the two coupled models are required to exchange high-dimensional

data in both directions. In the case when one of the models is significantly more expensive than

the other, a statistical model (or emulator) of the expensive model would enable couplings that

may otherwise be computationally prohibitive.

2. Climate forcing fields are often characterised by complex spatial patterns. Examples include

aerosols (which modify both incoming solar radiation and outgoing planetary long wave radiation)

and human land use change (which modifies energy and moisture transfer exchange between surface

and atmosphere). High-dimensional forcing fields are particularly problematic for climate impact

projections [17].

3. Integrated Assessment Models are tools that integrate environmental science and economic models

to inform policy making. They are intrinsically defined by high-dimensional (regionally defined)

inputs and outputs and so cannot be readily emulated by conventional techniques.
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4. Hierarchical emulation techniques attempt to predict the outputs of a high complexity simulator

from the outputs (“emergent properties”) of a lower complexity simulator. An approach with high-

dimensional inputs may be a useful alternative to existing approaches that perform the hierarchy

from scalar emergent properties.

5. In the case where high-dimensional simulation data (e.g. climate) is related to high-dimensional

observational data that cannot be robustly simulated (e.g. vegetation), the approach may allow

improved predictions of future change in the latter.

Here we construct emulators and consider a sixth application: determining statistical relationships

between inputs and high-dimensional outputs in order to understand model behaviour and hence gain

insight into real world behaviour. In the problem motivating the work reported here, changes in climate

impact on some other quantity and changes in that quantity, in turn, impact on the climate. Specifically,

we suppose that the latter quantity is the distribution of vegetation over Earth, modelled by a land

surface vegetation model, and there is also a climate model. Appropriate climate variables (temperature

and precipitation) are passed as fields to the vegetation model. Vegetation-dependent outputs (surface

albedos, soil moisture storage capacity and surface roughness) are passed as fields back to the climate

model. Climate and local vegetation are thus inextricably linked: vegetation is determined by climate

and climate is strongly dependent upon the characteristics of the local vegetation.

Various factors have a marked influence on climate and vegetation, and we here examine the effects

of changes in the Earth’s orbit. These play an important role in driving climate change on time scales

of 10,000 to 100,000 years. They are accepted to be the fundamental drivers of the cyclical “glacial-

interglacial” climate observed over the last few million years [2]. A coupled climate-vegetation model

was run for a number of simulations for different choices of Earth’s orbit. A focus of this paper is on

ways to interpret the output from the simulations. Three relationships are of interest: (i) orbit-climate,

(ii) orbit-vegetation, and (iii) climate-vegetation. The approach we adopt is to emulate the coupled

model using principal components and then examine relationships based on the principal components.

In Section 2 we describe the orbital parameters, the models and the simulation study. In Section

3 we emulate the orbit-climate and orbit-vegetation relationships and explore these relationships. In

Section 4 we emulate and examine the climate-vegetation relationships. Sections 3 and 4 yield two

means of emulating vegetation, which we shall refer to as one-step and two-step procedures. In the

3



one-step procedure (Section 3) the vegetation field is related directly to the orbital parameters while

in the two-step procedure (Section 4) the climate fields are emulated from the orbital variables during

the first step, and in the second step the vegetation field is emulated from the climate fields. Thus

the second step involves both high-dimensional input fields and high-dimensional output fields. This

second emulation approach, which addresses the case of high-dimensional input, has not previously

been reported in the statistical literature. We compare the relationships used in the two procedures

in Section 5 and also examine performance of the emulators through cross-validation. In Section 6 we

briefly consider the use of Gaussian process models for performing parts of the emulation. An overview

and concluding comments are given in Section 7.

2 Models and simulations

The climate model that was used in the simulations is the PLASIM-ENTS model [8]. It comprises

the Planet Simulator [4] coupled to the terrestrial carbon model ENTS [19]. The 3D atmospheric

dynamics are based on underlying primitive equations (Newton’s laws of motion), run here at grid cell

(64× 32) resolution with ten levels in the vertical dimension. From here we focus on the 2048 grid cells

that cover the Earth’s surface. Physical processes being modelled include the Sun’s radiation and the

Earth’s thermal radiation, driving 3D motion, the formation of clouds, and convective and large-scale

precipitation. The ocean and sea ice are modelled as flux-corrected slabs with no explicit dynamics.

Interpolated monthly-averaged ocean heat and sea-ice flux corrections, diagnosed from a simulation

with modern-day orbit, are applied. This approximates to fixing the large-scale ocean circulation, but

the atmosphere and ocean slab are coupled, so that local orbital-change induced atmosphere-ocean

interactions are captured.

In the ENTS model, all vegetation is grouped together as a single quantity. A double-peaked

temperature response function is used to capture the different responses of vegetation at low (tropical)

latitudes and at high latitudes (towards the poles). Photosynthesis is a function of temperature, soil

moisture availability, atmospheric CO2 concentration and fractional vegetation cover. The simulated

vegetation values affect the land surface characteristics (albedo, surface roughness length and moisture

bucket capacity) that are needed to determine the climate.

Three variables together describe the configuration of the Earth’s orbit around the sun: eccentric-

ity, obliquity and the longitude of the perihelion (the angular position of the Earth in its orbit around
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the Sun) at the vernal equinox. They are given a fixed set of values in each simulation and treated as

parameters in the climate model. Over the ensemble of simulations, their ranges of values approximately

span the values that these orbital variables have taken over the last million years [1].

• Obliquity (X1) describes the tilt of the Earth with respect to the plane of its orbit. It is this tilt

that leads to the seasons: during the period of the year when the northern hemisphere is pointing

towards the sun, more incoming solar radiation is received and the days are longer, so the Northern

Hemisphere experiences summer. Increased obliquity leads to more pronounced seasonal contrast,

especially at high latitudes where the seasons are in general more pronounced. Obliquity was

varied between 22◦ and 25◦ in the ensemble.

• Eccentricity (X2) describes the shape of the orbital path. An eccentricity of 0 describes a perfectly

circular orbit. Eccentricity was varied between 0 and 0.05 in the ensemble.

• Longitude of the perihelion at the vernal equinox, hereafter referred to as precession X3, defines

one of the two points in the orbit (in spring) when the tilt of the Earth is inclined neither towards

nor away from the Sun. Precession was varied across all “solar longitudes” (the angular position

of the Earth in its orbit around the Sun). Precession controls where in the orbit the seasons

occur and, in conjunction with eccentricity, changes the relative insolation received by the two

hemispheres. For instance, if northern summer coincides with the part of the orbit when the Earth

is closest to the Sun, northern summers will be warmer than southern summers (when the Earth

is most distant from the Sun).

In climate modelling, one common practice when designing an ensemble of simulations is to use

a maximin Latin hypercube design in which the variables of interest are varied uniformly over their

ranges. This maximizes the minimum distance between design points and ensures the design fills the

input space. In the present case there are only three variables of interest (X1, X2 and X3), so the

design reduces to a Latin square. An ensemble of 50 simulations was formed by partitioning the range

of each variable into 50 intervals of equal length. Taking a point at random from each interval gave 50

‘treatment levels’ for each variable; a 50× 50 Latin square with a 50-level factor was constructed using

the maximinLHS function of the lhs package in R [14].

A PLASIM-ENTS configuration is determined by the settings of many 100’s of model parameters.

These include switches (which determine the precise numerical schemes applied), physical constants

5



that are approximately known but vary spatially in the real world (such as the reflectivity of ice) and

parameterisations of “sub-gridscale” processes such as cloud formation, which have “tuned” values that

are known to result in reasonable model behaviour. All model parameters were set at their defaults

(PLASIM Version 6 Revision 4, ENTS parameters [19]). The threshold fractional soil moisture for

photosynthesis [8] was set at 0.1.

Each simulation modelled a period of 100 years, starting from a ‘dead’ planet with no vegetation

or rain. Vegetation and climate were coupled at every 45 minute time step, when spatial fields of surface

air temperature, precipitation and evaporation were passed from the climate model to the vegetation

model, and spatial fields of surface roughness, soil moisture content and albedo were passed from the

vegetation model to the climate model.

3 Interpretation of the climate fields and vegetation field

There are several quantities of interest whose relationships we wish to investigate. The independent

astronomical forcing variables, denoted x, drive the variation in the other quantities. The outputs of

the simulator are three spatial fields resolved onto a grid of 64× 32 points on the Earth’s surface. They

are the annual average surface air temperature, denoted y1, the annual average precipitation, y2, and

the annual average vegetation carbon density, y3. We assume that y1, y2 and y3 are functions of x, and

additionally that y3 is a function of y1 and y2. Our aim is to build an emulator of the simulator. This

is a cheap statistical model approximating the three mappings above.

For each of the 50 simulations there are 2048 data points describing the spatial distributions of

the output for each climate field, and for the vegetation field there are 471 data points (only grid cells

over ice-free land give data points). Each climate field was used to form a 2048× 50 matrix, which we

denote by Y1 for the annual average surface air temperature, and Y2 for annual averaged precipitation.

The 471 × 50 data matrix for the annual average vegetation carbon density is denoted Y3. The high

dimensionality of these fields makes modelling difficult. However, we can exploit the correlation structure

in the spatial fields to produce reduced-rank approximations. We use the singular value decomposition

(SVD) of the output matrices, keeping only the most important terms in the decomposition, to reduce

the dimension of the problem from 2048 dimensions to fewer than 10 dimensions. We use the SVD as

this gives the best low-rank approximation as measured by the Frobenius norm. For i = 1, 2, 3, let Ỹi
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denote the row-centred matrices, so that each row of Ỹi has an average of zero. The SVD of Ỹi is

Ỹi = LiDiR
′
i (1)

where Li is the matrix of left singular vectors of Ỹi, Di is the 50×50 diagonal matrix of singular values

of Ỹi and Ri is the 50× 50 matrix of right singular vectors. L1 and L2 are 2048× 50 matrices and L3

is 471× 50. We assume the singular values have been ordered so that di1 ≥ di2 · · · ≥ di50, where dij is

the jth diagonal element of Di (i=1,2,3).

3.1 One-step emulator

We will be modelling from the orbital variables to columns of Ri. Let lij and rij denote the jth columns

of Li and Ri (i = 1, 2, 3; j = 1, . . . , 50), respectively. Then lij and rij are the jth eigenvectors of ỸiỸ
′
i

and Ỹ′iỸi, respectively. Also, d2ij is the jth eigenvalue of both ỸiỸ
′
i and Ỹ′iỸi. We shall refer to the

lij (i = 1, 2, 3; j = 1, . . . , 50) as principal components; then rij is commonly referred to as the score

vector of lij . To reduce dimensionality in order to make modelling easier, it is natural to ignore small

eigenvalues. Suppose all but the first k eigenvalues and eigenvectors are ignored. Put Li∗ = (li1, . . . , lik),

Ri∗ = (ri1, . . . , rik) and let Di∗ be the k × k diagonal matrix with di1, . . . , dik as its diagonal elements.

Then Ỹi ' Li∗Di∗R
′
i∗.

To simplify explanation, suppose the temperature field is to be emulated, so i = 1. If R′1∗ =

(t1, . . . , t50), then L1∗D1∗t1 approximately equals the (centred) temperature values in the 2048 grid

cells for the first simulation, L1∗D1∗t2 those for the second simulation, L1∗D1∗t3 those for the third

simulation, and so on. (If k were set equal to 50, so that no eigenvectors were ignored, then L∗D∗tj would

exactly equal the centred temperature values for the jth simulation.) The key to the one-step emulator

is to determine a relationship between an arbitrary score vector ρρρ and the orbital variables X1, X2, X3,

where ρρρ takes, in the case of temperature, the values t1, . . . t50 in the 50 simulations. Then given a

new set of values for these variables, the corresponding value of ρρρ can be estimated and L1∗D1∗ρρρ is the

emulated 2048× 1 vector of (centred) temperatures. This drastically reduces the dimensionality of the

estimation problem, only the k-dimensional vector ρρρ must be estimated as L1∗ and D1∗ are unchanged.

Also, understanding the relationship between the orbital variables and the dominant elements of ρρρ

captures the relationship between these variables and the temperature field.

Let ρρρ1, ρρρ2 and ρρρ3 denote the vector ρρρ for the temperature, precipitation and vegetation fields,
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respectively, and let ρij denote the jth component of ρρρi. The values taken by ρij in the 50 simulations

are the elements of rij . Least squares regression is used to obtain an equation for estimating ρij from the

three orbital variables. To aid subsequent interpretation, we first normalise each of these variable onto

the range -1 to +1. Let X̃1, X̃2, and X̃3 denote the normalised eccentricity, obliquity and longitude

variables, respectively, and let x = (x̃1, x̃2, x̃3). To build accurate regression models it is useful to

introduce the idea of a feature map. The features of x denoted φ(x), are transformations of x that

help us to build accurate emulators. For example, because x3 is periodic, we find that including sinx3

and cosx3 in the set of features leads to large improvements in predictive accuracy of the emulators.

Following [7], we also include the linear, quadratic and cross-product terms as explanatory variables in

the set of features, φ1 = x1, φ2 = x2, φ3 = sinx3, φ4 = cosx3. i.e. :

E[ρij | (Φ̃1, Φ̃2, Φ̃3, Φ̃4) = (φ̃1, φ̃2, φ̃3, φ̃4)]

= µ(ij) +
4∑

p=1

α(ij)pφ̃p +
4∑

p=1

β(ij)pφ̃
2
p +

4∑
q=p+1

3∑
p=1

γ(ij)pqφ̃pφ̃q, (2)

for i = 1, . . . , 3; j = 1, . . . , k. Features of x are then progressively added and dropped using stepwise

selection (using the stepAIC function in R [14]), in order to maximise the Akaike Information Crite-

rion. The resulting regression models are then pruned to satisfy the more stringent Bayes Information

Criterion. This procedure of first growing the model beyond the BIC constraint and then pruning is

an attempt to help avoid local maxima in the stepwise search. Alternative term selection strategies of

Lasso [18] and elastic net [20] were not found to offer any improvement over stepwise selection.

In section 6 we discuss using Gaussian process models rather than linear regression. There the

selection of features of x is automatic, but at the cost of losing interpretability of the models.

3.2 The main principal components

In this subsection we examine the principal components for the temperature, precipitation and vege-

tation fields and in Section 3.3 we examine their score vectors. As noted earlier, d2i1, . . . , d
2
i50 are the

ordered eigenvalues of both ỸiỸ
′
i and Ỹ′iỸi. Examining these eigenvalues shows that 99% of the vari-

ation in temperature (across both grid cells and simulations) is explained by the first ten eigenvectors.

The corresponding proportions for precipitation and vegetation carbon are 88% and 96%, respectively.

In constructing the emulators, for each field we consider the score vectors of just the first 10 principal

components (i.e. we set k = 10 for each field). The model is pruned (k = 6) in Section 5 where we
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evaluate the performance of the emulator as components are progressively added.

The top row of Figure 1 plots the first three principal components of the temperature field (l11,

l12 and l13) against geographic location. The top-left plot (l11) shows that the first principal component

of temperature varies mostly with latitude, with particularly large (absolute) values in high northern

latitudes. The second row of Figure 1 plots the first three principal components of the precipitation

field (l21, l22 and l23), and the third row gives those for the vegetation field (l31, l32 and l33). The first

component of precipitation is associated with largest values at low latitudes (in contrast to temperature).

The first component of vegetation, assumed driven by changes in temperature and precipitation, exhibits

significant variability at all latitudes. There are similarities across the three fields – for example, the

three fields all show a difference between the northern and southern parts of South America. However,

the extent of the similarities is quite limited.

3.3 The main score vectors

For each climate field and the vegetation field, we focus on the score vectors of the first three principal

components and examine the regression equations (of the form given by equation (2)) that predict their

values from the orbital variables.

To examine the output from a regression, Homma and Saltelli (1996) introduce a main effect

index. This provides a measure of the variation in ρij that is associated with the individual explanatory

terms. We describe this index in Appendix 1 and plot the main effect indices for each regression in

Figure 2.

The top diagram in Figure 2 relates to temperature. The first principal component of temperature,

which explains 86% of the variance in temperature across the ensemble of simulations, has a score that is

dominated by (and inversely correlated with) obliquity. Obliquity exerts a strong control on the degree

of seasonality, especially at high latitudes, and this response is consistent with the spatial distribution

of that component (Figure 1).

The second principal component of temperature, which explains 11% of the ensemble variance,

exhibits a more complex relationship, with a score that has dependencies upon all three orbital param-

eters. However, the strongest predictor of its scores is precession, with significant interactions between

precession and the other two orbital parameters. As discussed in Section 2, the interaction between ec-

centricity and precession exerts a control on the relative strength of seasonality in the two hemispheres.

9



The phasing of this effect changes over time (the “precession of the equinoxes”). Eccentricity controls

the strength of this effect while precession controls the phasing. This dependence on precession and

eccentricity, combined with the inter-hemispheric contrast that is apparent in the spatial distribution

of the component, suggests that the second principal component is dominantly an expression of this

effect. We do not attempt to explain the third principal component, which describes less than 1% of

the ensemble variance.

The middle diagram in Figure 2 relates to precipitation. The first principal component explains

35% of the variance in precipitation across the ensemble of simulations. The estimation of scores for the

first principal component is, as with temperature, mainly controlled by obliquity, suggesting that this

principal component is also dominantly an expression of the strength of obliquity-driven seasonality.

This largely results from a strengthening of the SE Asian and West African monsoon systems as obliquity

increases. The second principal component of precipitation explains 26% of the ensemble variance and is

driven mainly by obliquity and precession. The third principal component explains 13% of the ensemble

variance and is driven by precession and the interaction between precession and eccentricity.

The bottom diagram in Figure 2 relates to vegetation. In Section 4 the vegetation field is emulated

from the temperature and precipitation fields. Hence, we are also interested in the relationship between

the primary vegetation principal components and those of temperature and precipitation, as well as

between the vegetation principal components and the orbital variables.

The first principal component of vegetation explains 65% of the ensemble variance. The emulation

of this component is dominated by obliquity. The correlation of the 471 data points that comprise the

first principal component scores for vegetation with the corresponding data points (those on ice-free

land) that comprise the first principal component scores for temperature (+0.63) and precipitation(-

0.68), suggests that both climate variables are comparably important in driving the obliquity-driven

variability in vegetation. The spatial patterns of the components (Figure 1) suggests that obliquity-

driven temperature changes mainly drive high latitude vegetation change whereas obliquity-driven pre-

cipitation is, for instance, responsible for vegetation change in South East Asia and eastern USA. The

second principal component of vegetation explains 14% of the ensemble variance and is driven by preces-

sion and its interaction with eccentricity, suggesting that it is related to the third principal component

of precipitation. The similarities in the spatial patterns of these components (Figure 1) reinforces this

interpretation. The third principal component of vegetation explains 7% of the ensemble variance and,
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like the second component, is also driven by precession and its interaction with eccentricity. Although

the main effect indices are similar for the second and third components the functional forms are quite

different. The second component is controlled by the sine of precession, whereas the third component

is controlled by its cosine.

4 Emulating vegetation from climate input fields

4.1 Two-step emulator

The effect of the orbital variables on vegetation carbon is largely through their effect on temperature

and precipitation. Here we first consider emulation of the vegetation field from these climate fields. This

involves input and output fields that are both high-dimensional. To reduce dimensionality, we perform

the same singular value decompositions as in Section 3, putting Ỹi = LiDiR
′
i for i = 1, 2, 3. To further

reduce dimensionality, we then discard score vectors that correspond to small eigenvalues retaining, as

in Section 3, only score vectors of the ten largest eigenvalues.

We then relate the matrix score vectors for vegetation (R3) to those for temperature and precipita-

tion (R1 and R2). Specifically, a linear regression is formed for each of the variables ρ3j (j = 1, . . . , 10):

E(ρ3j) = a(j) +

10∑
p=1

b(j)pρ1p +

10∑
p=1

c(j)pρ2p. (3)

The regression model containing all 21 terms is then pruned to satisfy the Bayes Information Criterion.

As noted earlier, the values taken by ρij in the 50 simulations are the elements of the score vector rij

(i = 1, 2, 3; j = 1, . . . , 10). In subsection 4.2 we examine the coefficients of these equations to learn

about the relationships between the vegetation carbon field and the climate fields.

The equations are also used in a two-step emulator to relate the orbital parameters to the veg-

etation field. Given a new set of values for the orbital parameters, X1, X2 and X3, the first step uses

the regressions given by equation (2) to estimate the values taken by ρ1p and ρ2p (p = 1, . . . , 10). The

second step puts these values into the equations given by (3), which yields an estimate of ρρρ3 for the

given setting of the orbital parameters. The emulation of the vegetation field is then L3∗D3∗ρρρ3, where

L3∗ and D3∗ are 471× 10 and 10× 10 matrices.
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4.2 Relationships between vegetation and climate fields

Each of the regression models given in equation (3), which comprise from 6 to 10 regression terms,

capture a very high proportion of the variation in the dependent variable, especially for the first five

score vectors, for each of which R2 exceeded 90%. These five vectors together explain 92% of the

ensemble variance.

The regression coefficients are plotted in Figure 3. (Consideration of main effects indices is unnec-

essary because no quadratic terms are contained in these emulators, unlike the situation in Section 3).

The emulator of the first component of vegetation is dominated by the first component coefficients of

temperature and precipitation, consistent with previous inferences. An initially surprising result is that

the second element of ρρρ3 is dominantly a function of the first score vectors of temperature and precipi-

tation. This is unexpected because we know, from Section 3.3, that these score vectors are both strong

functions of obliquity, whereas the second score vector for vegetation is a function of eccentricity and

precession. The explanation is that the score vectors for temperature exhibit some strong correlations

with those for precipitation. (The correlation between the first score vectors is 0.79). It is revealing that

if we exclude the first score vectors for temperature and precipitation from the emulator of ρ32 (equation

(3)), quite different emulator coefficients are apparent although the model fit R2 (97%) remains very

high. The largest terms in the revised emulator of ρ32 are ρ23 (0.75), ρ12 (0.30) and ρ13 (-0.30), now

consistent with the inferences of Section 3.3, being that the second component of vegetation variability

is dominantly controlled by the third component of precipitation variability. Interpretation of these

emulators can be less straightforward than was the case when the orbital variables were the explanatory

variables (Section 3) because the orbital variables are uncorrelated through the design of the simulation

study.

5 Emulator comparison and performance

The one-step and two-step emulators provide two routes to emulate the vegetation output field from

orbital variables:

1. Estimate the ρρρ-vector for vegetation (ρρρ3) directly from the orbital variables and take L3∗D3∗ρρρ3

as the emulated vegetation field (one-step emulator).

2. Estimate the ρρρ-vector for temperature (ρρρ1) and ρρρ-vector for precipitation (ρρρ2) from the orbital
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variables. Then estimate ρρρ3 from ρρρ1 and ρρρ2, again taking L3∗D3∗ρρρ3 as the emulated vegetation

field (two-step emulator).

The two methods give very similar emulations of the vegetation field. Moreover, the methods give very

similar estimators of individual elements of ρρρ3, especially with those elements that correspond to the

larger eigenvalues.

To illustrate this latter point, Figure 4 plots the coefficients of the regression equations that

estimate the first element of ρρρ3 (which corresponds to the largest eigenvalue) from the orbital variables.

The left-hand (yellow/lighter) bar of each pair correspond to the coefficients given by the one-step

emulator (from equation (2)) and the right-hand (red/darker) bars correspond to those given by the

two-step emulator. Coefficients for the two-step emulator are obtained by combining the equations that

give ρρρ3 from ρρρ1 and ρρρ2 with the equations that give ρρρ1 and ρρρ2 from the orbital variables. It can be seen

the left-hand and right-hand bars in each pair are very similar.

Figure 5 examines the closeness between the two emulators for each of the 10 elements of ρρρ3. For

each element the emulators gave 50 values and the highest (blue) line in Figure 5 plots the correlations

between them. The correlation is above 0.94 for each of the first five elements. The gaps in the data for

components 7 and 10 are because no 1-step vegetation emulator terms were found to satisfy the BIC

requirement, suggesting the vegetation emulator should not include components k > 6. However, the

high correlations for all components with k = 6 results in close agreement between the one-step and

two-step emulators in their estimates of ρρρ3.

The other lines in Figure 5 show the correlations between emulated values and the simulation

values given by the full climate-vegetation model. (The jth score vector, r3j , holds the simulation

values for the jth element of ρρρ3.) The correlations are high for the components corresponding to the

four largest eigenvalues, but correlations corresponding to most of the smaller eigenvalues are distinctly

poorer. This is true of both emulators, though for small eigenvalues the one step emulator (red/middle

line) gives slightly highly correlations with the simulated values than the two-step emulator (green/lower

line).

Leave-one-out cross validation was used to evaluate the performance of emulators more critically

and in slightly greater breadth. Four emulations were examined: the three one-step emulations –

from orbital variables to temperature, precipitation and temperature – and the two-step emulation of

vegetation. Each of the 50 simulations was omitted in turn and the four emulators built from the
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remaining 49 simulations, using the methods described in Sections 3 and 4. The emulators were used to

estimate the climate and vegetation fields in the simulation that had been omitted, using the setting of

the orbital variables in that simulation. Two such cross-validations given by the two-step emulator with

k = 6 are illustrated in Figure 6, randomly selected as being the first and last members of the Latin

Hypercube ensemble. The upper diagrams map the vegetation levels to be estimated, and the lower

diagrams map the estimates given by the two-step emulator in cross-validation. The main features in

the upper maps are captured by the emulator.

The sum of squared errors was used to form a quantitative measure of cross-validated model

performance. For temperature, for example, Ỹ1 is the 2048×50 matrix of values given by the PLASIM-

ENTS model after centring each row to have a mean of zero. Let ỹ(1)jk denote an element of this matrix

and let ŷ(1)jk denote its estimated value when the kth simulation was omitted in building the emulator.

Then the sum of squared errors for the emulator is

2048∑
j=1

50∑
k=1

(
ỹ(1)jk − ŷ(1)jk

)2
while

∑2048
j=1

∑50
k=1(ỹ(1)jk)2 is the corrected total sum of squares for Ỹ1 and measures the variablity in

each grid cell over the 50 simulations. Hence, the proportion of variation explained by the emulator is2048∑
j=1

50∑
k=1

(ỹ(1)jk)2 −
2048∑
j=1

50∑
k=1

(
ỹ(1)jk − ŷ(1)jk

)2/ 2048∑
j=1

50∑
k=1

(ỹ(1)jk)2 . (4)

Figure 7 (top panel) illustrates the cross-validated performances as components are progressively added

to the models. This data reinforces the choice to include only components with k = 6. Although

improvements are modest beyond k = 4 they are apparent in all models. For the temperature field,

the proportion of variation explained by the one-step emulator was 85.6%. Corresponding figures for

precipitation and vegetation were 70.2% and 81.2%. The two-step emulator explained 80.3% of the

variation in the vegetation field, very similar to the one-step emulator. Hence, each emulator is a good

approximation to the simulator.

We note that the performance of the two-step emulator improved to 81.1% when the second step

emulator was also allowed to use x, comparable to the one-step emulator performance of 81.2%. It is

unsurprising that the one-step emulator is the better model as the combination of two linear functions

(in the two-step emulator) is still linear but with the statistical cost of estimating more parameters.

This observation contrasts with the non-linear GP emulators considered in the following Section 6.
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The similar performances of the one-step and two-step vegetation emulators suggest that the sec-

ond step may not be contributing significantly to emulator error. This was tested by projecting the

left-out simulated fields of temperature and precipitation onto the relevant principal components and

applying the resulting scores to equation (3), enabling us to quantify the proportion of simulated vari-

ance explained by the second-step emulator. This is different because the emulated vegetation fields

for simulated climate input may be closer to the vegetation simulations than those corresponding to

emulated climate input. The result was 87.3%, as compared with 80.3% for the two-step emulation

from the orbital variables. Physically, a likely explanation for the difference in accuracy between the

two emulation steps is that the climate model contains a representation of chaotic atmospheric dynam-

ics which are intrinsically challenging to predict, while the vegetation model used here has no such

explicitly unstable or stochastic elements that might limit its predictability in terms of its climate in-

puts. Thus although the second step involves high-dimensional inputs and outputs, while the first step

involves only high-dimensional output, for this particular combination of models the first step is more

challenging to emulate accurately. It should be noted that our vegetation and climate outputs come

from a coupled modelling system in which both sets of fields are always present. The second step emu-

lator is therefore primarily a tool for understanding rather than prediction in this particular modelling

context. Nevertheless, the results show the viability of using principal component emulation to relate

high-dimensional input and output fields of a given process (in this case a climate model). Furthermore,

as an approximation to the true relationship between equilibrium climate and vegetation fields in the

real world, the second-step emulator could be applied as a predictive tool for future or past situations

where only climate projections were available.

Another variation was also considered for the second step of the two-step model. For that step, the

explanatory variables are ten temperature score vectors and ten precipitation score vectors. While the

ten vectors within each set are orthogonal, the score vectors for temperature are correlated with those

for precipitation. This made it a little more difficult to interpret their relationship with vegetation,

as noted in Section 4.2. To avoid correlations between the explanatory variables, a possibility that

was examined was to combine the temperature and precipitation fields and construct a single set of

orthogonal score vectors from the combined field. Performance was very similar when judged by cross-

validation. The proportion of variance explained by the 2-step emulation was 79.9%, although more

significant degradation was noted when the 2nd step was considered in isolation, reducing from 87.4% to
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85.7%. The possibility of over-fitting as a result of the correlations was also considered. To explore this,

four alternative models were built, omitting either the temperature (ρ11) or precipitation (ρ21) terms

from each of the regression equations for vegetation (ρ31 and ρ32). In each case though, performance

became marginally poorer.

6 Gaussian process emulation

An alternative to using linear regression is to model the relationship between x and ρ using Gaussian

processes (GPs) [15]. GPs are non-parametric models that are commonly used in the computer ex-

periment literature to build emulators of computer simulators [11,16]. In linear regression the key to

predictive accuracy is the selection of the features φ(x). In GP regression, this choice is less important,

and instead, it is the choice of covariance function (or kernel) κ that determines performance. For

a given covariance function, a Gaussian process can be interpreted as doing (penalised) linear regres-

sion in an infinite dimensional Hilbert space of features. The particular choice of covariance function

determines what that basis will be.

The main advantage of using GPs is that less thought needs to be given to choosing a good

set of features of x. So for example, using just x as the input, we can achieve a predictive accuracy

of R2 = 82.4% for a one-stage emulator (mapping from x directly to the vegetation field y3). This

compares with an accuracy of 81.2% for the linear regression model found using stepwise regression (on

the features of x). The GP did not need to be told that x3 should be transformed into sinx3 or cosx3,

or that we should include cross terms and quadratic terms. We note that a linear regression model

without the trig transformation achieved an accuracy of only 63.6%. It is this ‘automatic’ selection of

features that makes GP regression so popular. However, the use of GPs comes at a cost. The models

obtained are no longer interpretable (it is unclear which features of x are important), they are much

more computationally expensive to use (O(n3) where n is the number of observations, compared to

O(p3) for linear regression where p is the number of parameters), and choosing the covariance function

k presents significant difficulties (both the functional form of κ and the hyper-parameters in k are

important, and can be difficult to optimise). Because the gain in predictive accuracy from using GPs

compared to linear regression is not large, here we prefer to use linear regression to investigate the

simulator behaviour as the resulting analysis is easier to understand and interpret.

For comparison, note that the two-step Gaussian process emulator of the vegetation field achieves
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an accuracy of 83.1% if the second step emulator uses just the temperature and precipitation fields, and

an accuracy of 83.7% if the second step emulator is allowed to also use x. This compares to an accuracy

of 80.3% for the two-step linear regression emulator. We note that the two-step GP emulation is more

accurate than the one-step GP emulation, showing the potential benefits in predictive performance from

our two-step approach. The idea of breaking down the emulation into several stages is comparable to

the idea of deep learning [3], which is used in machine learning algorithms to achieve more accurate

performance.

Finally, note that it is common practice to combine Gaussian processes with linear regression by

using a parametric mean function in the GP, with the aim of benefiting from the strengths of both

approaches. Namely, the rigid parametric response captured by the mean function describes the larger

scale trend in the simulator output, helping with accuracy when extrapolating outside the range of the

data. Whereas the more flexible nonparametric GP describes the departure of the simulator response

from the simpler linear regression surface, improving predictive accuracy in regions for which we have

data. We tried a variety of parametric mean functions for the GP model. A mean function linear in

the three inputs, used in the results presented here, gave slightly improved performance over using a

constant or quadratic mean function.

7 Overview and concluding comments

This paper has focused on a specific application but its general approach is potentially useful in many

situations where correlated, high-dimensional data are to be emulated. For the one-step emulation

procedure, only the output is high-dimensional while the explanatory variables are of low dimension

and only weakly correlated. For the two-step procedure, the explanatory variables for the second stage

are also high-dimensional. In our example the input and the output variables for the second stage both

took values in the same space, namely a grid of spatial locations, but this need not necessarily be the

case, the method could be applied to relate high-dimensional inputs and outputs of a wide range of

complex models or processes. The second step of the two-step emulation is thus a new and potentially

powerful approach, enabling the emulation of very high-dimensional outputs from very high-dimensional

inputs. It has many potential applications in climate science, and likely more generally. The method

is potentially useful and relevant for predicting or interpreting the input-output response of a process

where principal inputs and outputs are both high-dimensional and the connecting process is complex
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and potentially nonlinear. This could be either a model that is known in principal but too complex to

fully calculate, or some other process that is at least partly deterministic but unknown.

The approach can be summarised as follows, suppose there are two high-dimensional variables

Ỹi, for i = 1, 2 (the extension to three or more, as in our example, is straightforward) and in the

second stage we wish to relate Ỹ2 to Ỹ1. For the ith high-dimensional variable, the row-centred

data matrix Ỹi is expressed as Ỹi = LiDiR
′
i by using singular-valued decomposition. Singular value

decomposition provides a simple method of separating the variation that arises from the explanatory

variables (captured by Ri) from the remaining, correlated variation across the dataset, in our example

arising from differences in locations (captured by Li). Each Di is a diagonal matrix of eigenvalues. A

critical requirement of the emulators is that the Di must each contain some eigenvalues of negligible

size.

The emulators should prove useful when each Di contains only a modest number of non-negligible

eigenvalues (our application used ten or fewer). The matrices Li∗, Di∗ and Ri∗ are obtained from Li,

Di and Ri by discarding small eigenvalues and their associated eigenvectors. Then Ỹi ' Li∗Di∗R
′
i∗

and the only way the explanatory variables influence Yi is through their influence on Ri∗. With the

one-step procedure, building an emulator reduces to the task of modelling the relationship between the

explanatory variables and rows of Ri∗. With the two-step procedure, building an emulator reduces to

relating the rows of R2∗ to the rows of R1∗. Condensing the relevant information into the Ri∗s has

the potential to improve emulation, as spurious information has less scope to be influential. A further

advantage is that this simplification can aid interpretation of the relationship between input and output

fields.

In more detail, for the one step emulator a least-squares regression equation is determined for

each score vector (column of Ri) in turn. Each regression equation relates one of these score vectors to

the explanatory variables and functions of these variables, such as quadratic and cross-product terms.

Some form of variable selection is needed to form a parsimonious model and we favour constructing

an overly-large model using AIC and then discarding terms using BIC. To learn more about the main

relationships between the input and out terms, we suggest calculating main effect indices (Homma and

Saltelli, 1996) for the regression equations of those score vectors that correspond to the largest two or

three eigenvalues. A plot of the main effect indices, similar to those given in Figure 2, will generally

illuminate which relationships are important.
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For the two-step emulator, if Yj is the output to be predicted, then each score vector in Rj∗ is

regressed in turn on all the score vectors in the other Ri∗, or, in our more general case with multiple

high-dimensional input fields, on all the score vectors in all the other Ri∗s, using variable selection (such

as AIC and BIC) to form parsimonious models. Plotting the regression coefficients of the equations for

the score vectors in Rj∗ that correspond to, say, the three largest eigenvalues in Dj∗ will identify the

most important relationships between Yj and the other Yis (c.f. Figure 3.).

As discussed in Section 6, the relationships between inputs and outputs can also be derived using

Gaussian Process regression, if the problem size permits and the linear approach proves inadequate,

without otherwise altering the structure of the approach.
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Appendix 1: Sensitivity analysis

Consider a linear regression model of the form given by equation (2)

E(Y ) = a+
d∑

i=1

biXi +
d∑

i=1

d∑
j>i

cijXiXj +
d∑

i=1

diX
2
i , (5)

which we fit to the simulator output. In our problem, Y is one of the scores ρ from the singular value

decomposition of the temperature, precipitation or vegetation fields, and X = (Φ1,Φ2,Φ3,Φ4)
′ is the

vector of parameter features describing the Earth’s orbit.

The aim of variance based sensitivity analysis is to apportion the variance in the output, Y , to

the variance in the inputs, X. This will tell us which of the orbital parameters has the largest effect on

each of the scores. In order to do this, we need to specify the distribution followed by the Xi, which we

set as Xi ∼ U [−1, 1] (after rescaling the parameters onto the interval [−1, 1]).

There are two primary measures of the sensitivity of Y to the inputs, namely the main effects

indices and the total effect indices. The total effect of the uncertainty due to input Xi [9] is defined to

be

VTi = V ar(Y )− V ar(E(Y |X[−i]))

where X[−i] is the vector X with the element Xi removed. The total effect is thus the expected variance

remaining about the value of Y after we have learnt all the variables except Xi. It measures the
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contribution of Xi to the variance of Y , including variance arising from interaction between Xi and

other elements of X. For the model defined by equation (5),

V ar(Y ) =
1

3

d∑
i=1

b2i +
1

9

d∑
i=1

d∑
j>i

c2ij +
4

45

d∑
i=1

d2i

where we have used the fact that if Z ∼ U [−1, 1], then V ar(Z) = 1/3, V ar(Z2) = 4/45 and if Z ′ is

another independent U [−1, 1] random variable, then V ar(ZZ ′) = 1/9. We can see that

E(Y |X[−i]) = a+
∑
j 6=i

bjXj +
∑

j,k 6=i,j<k

cjkXjXk +
∑
j 6=i

djX
2
j

and thus

V ar(E(Y |X[−i])) =
1

3

∑
j 6=i

b2j +
1

9

∑
j,k 6=i,j<k

c2jk +
4

45

∑
j 6=i

d2j .

We usually convert the total effect into the total effect index by dividing by the total variance:

STi = VTi/V ar(V ).

Note that
∑
STi ≥ 1, as interaction effects are counted multiple times.

The second primary measure of sensitivity is based on the main effects. Following Oakley and

O’Hagan (2004), let

zi(Xi) = E(Y |Xi)− E(Y )

zi,j(Xi,j) = E(Y |Xi,j)− zi(Xi)− zj(Xj)− E(Y )

and so on, where zi(Xi) is the main effect of Xi, and zi,j(Xi,j) is the first-order interaction effect between

Xi and Xj , etc. (Xi,j denotes the vector (Xi, Xj)). The main effects variances are then

Wp = V ar(zp(Xp))

where p can be a vector of indices. For a single index

Wi = V ar(E(Y |Xi)),

which is the expected amount by which the uncertainty in Y is reduced if we learn the true value of Xi.

We can interpret Wi,j as the additional reduction in the variance of Y if we learn Xi and Xj compared
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to the sum of the reduction we see when we learn either Xi or Xj alone. For models of the form given

by Equation (5),

Wi =
1

3
b2i +

4

45
d2i

Wi,j =
1

9
c2ij

Wp = 0 if dim(p) > 2

i.e., third order interaction effects and higher are zero. We again usually convert the main effects

variances to the main effects indices by dividing by the total variance:

Sp =
Wp

V ar(Y )

Unlike the total effects, the main effects do add to 1 and provide a decomposition of the total variance

of Y .

References

1. A. Berger, Long term variations of caloric insolation resulting from the Earth’s orbital elements,

Quaternary Research, 9 (1995), pp. 139–167.

2. W.H. Berger, On the Milankovitch sensitivity of the Quaternary deep sea record, Climate of the

Past, 9 (2013), pp. 2003–2011.

3. A.C. Damianou and N.D. Lawrence, Deep gaussian processes, appearing in Proceedings of the

16th International Conference of Artifical Intelligence and Statistics (AISTATS), preprint (2013),

available at

http://jmlr.org/proceedings/papers/v31/damianou13a.pdf

4. K. Fraedrich, H. Jansen, E. Kirk, U. Luksch and F. Lunkeit, The Planet Simulator: Towards a

user friendly model, Meteorologische Zeitschrift, 14 (2005), pp. 299–304.

5. W.D. Gosling and P.B. Holden, Precessional forcing of tropical vegetation carbon storage, Journal

of Quaternary Science, 26 (2011), pp. 463–467.

6. P.B. Holden and N.R. Edwards, Dimensionally reduced emulation of an AOGCM for application

to integrated assessment modelling, Geophysical Research Letters, 37 (2010), L21707

21



7. P.B. Holden, N.R. Edwards, S.A. Müller, K.I.C. Oliver, R.M. Death and A. Ridgwell, Controls

on the spatial distribution of δ13CDIC , Biogeosciences, 10 (2013), pp. 1815–1833.

8. P.B. Holden, N.R. Edwards, P.H. Garthwaite, F. Fraedrich, F. Lunkeit, E. Kirk, M. Labriet, A.

Kanudia and F. Babonneau, PLASIM-ENTSem v1.0: a spatio-temporal emulator of future climate

change for impacts assessment, Geoscientific Model Development, 7 (2014), pp. 433–451.

9. T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of model output,

Reliability Engineering and System Safety, 52 (1996), pp. 1–17.

10. S.R. Joshi, M. Vielle, F. Babonneau, N.R. Edwards and P.B. Holden, Physical and economic

impacts of sea-level rise: A coupled GIS and CGE analysis under uncertainties, preprint (2014),

submitted to Mitigation and Adaptation Strategies for Global Change.

11. M.C. Kennedy and A. O’Hagan, Bayesian calibration of computer models, Journal of the Royal

Statistical Society B, 63 (2001), pp. 425–464

12. M. Labriet, S.R. Joshi, F. Babonneau, N.R. Edwards, P.B. Holden, A. Kanudia, R. Loulou and M.

Vielle, Worldwide impacts of climate change on energy for heating and cooling, preprint (2014),

to appear in Mitigation and Adaptation Strategies for Global Change. Available at

http://link.springer.com/article/10.1007/s11027-013-9522-7

13. J.-F. Mercure, P. Salas, A. Foley, U. Chewpreecha, P.B. Holden and N.R. Edwards, The dynamics

of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the

global electricity sector, Energy Policy, 73, (2014) pp 686-700

14. R Development Core Team, R: A language and environment for statistical computing. R founda-

tion for statistical computing: Vienna, 2013. Available for download at

http://www.r-project.org/

15. C.A. Rasmussen, Gaussian processes for machine learning, Citeseer, 2006.

16. T.J. Santner, B.J. Williams and W.I. Notz, The design and analysis of computer experiments,

Springer, 2003.

17. C. Tebaldi and J.M. Arblaster, Pattern scaling: Its strengths and limitations, and an update on

the latest model simulations, Climatic Change, 122 (2014), pp.459–471.

22



18. R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical

Society B, 58 (1996), pp. 267–288.

19. M.S. Williamson, T.M. Lenton, J.G. Shepherd and N.R. Edwards, An efficient numerical terres-

trial scheme (ENTS) for Earth system modelling, Ecological modelling, 198 (2006), pp. 362–374

20. H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the

Royal Statistical Society B, (2005), pp. 301–320

23



Figure 1: The first three components of orbitally-driven change in surface air temperature (top), annual

precipitation (centre) and vegetation carbon density (bottom).
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Figure 2: Main effect indices for the first three score emulators of surface air temperature (top), annual

precipitation (centre) and vegetation carbon density (bottom).
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Figure 3: Coefficients of the 2nd-step emulators of the first three vegetation scores (Equation 3).
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Figure 4: Comparison between the coefficients of the 1-step emulator of the the first vegetation score

with the effective coefficients in the 2-step emulator (see Section 5 for explanation).
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Figure 5: Correlations between actual scores (i.e. decompositions of the simulation data) and emulated

scores using the two emulation approaches. Absent data points occur when no terms were found to

satisfy the BIC constraint, suggesting that components k > 6 are difficult to emulate and should be

neglected.
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Figure 6: Comparisons between the simulated vegetation field (top) with the 2-step emulated field

(bottom). Simulations were arbitrarily chosen as the first (left) and last (right) members of the Latin

Square design.
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Figure 7: Cross-validated performance of the emulators as additional components are added.
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