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This document contains supplementary material accompanying the paper

‘Quantifying simulator discrepancy in discrete-time dynamical simulators’.

Section 1 contains details of the implementation of the particle filter used

in the inferential algorithm. Section 2 contains an additional case study

demonstrating the methodology developed in the main paper.
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1 The Particle Filter

To sequentially generate observations from π(x1:t | y1:t) we use the bootstrap

particle filter (Doucet et al., 2001). This is a sequential importance resam-

pling algorithm, which approximates the filtering distributions π(x1:t|y1:t) by

a weighted sample of N particles {(x(j)
1:t , w

(j)
t )}N

j=1 with
∑N

j=1 w
(j)
t = 1, so that

any expectation can be approximated by a weighted sum:

E(h(x0:t)|y0:t) =

∫
h(x0:t)π(x0:t|y0:t)dx0:t ≈

N∑
j=1

w
(j)
t h(x

(j)
0:t).

Bootstrap particle filter

t = 1 (i) Initialize: For i = 1, . . . , N

x
(i)
1 ∼ π(x1)

w
(i)
1 = π1(y1 | x(i)

1 )

(ii) Normalise: set W
(i)
1 =

w
(i)
1PN

j=1 w
(j)
1

, to obtain a weighted sample

{W (i)
1 , x

(i)
1 } approximating π(x1 | y1).

(iii) Resample: if ESS< T , resample the particles and set W
(i)
1 = 1/N

for all i. Set t = 2.

t ≥ 2 (i) Simulate: For i = 1, . . . , N

x
(i)
t ∼ π(xt | x(i)

t−1)

w
(i)
t = W

(i)
t−1π(yt | xt)
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(ii) Normalise: set W
(i)
t =

w
(i)
tPN

j=1 w
(j)
t

, to obtain a weighted sample

{W (i)
t , x

(i)
1;t} approximating π(x1:t | y1:t).

(iii) Resample: if ESS< T , resample and set W
(i)
t = 1/N for all i. Set

t = t + 1.

All distributions are conditional on θ. The effective sample size (ESS) of the

weighted sample is
(∑N

i=1(W
(i)
t )2

)−1

, and T denotes the threshold we use to

decide when to resample (typically we take T = N/2). We used a systematic

resampling scheme (Kitagawa, 1996) throughout. To get a smoothed trajec-

tory from π(x1:t | y1:T ) we pick a single trajectory from {x(i)
1:T} according to

the weights {W (i)
T }.

To avoid the problem of degeneracy we can either use a particle smoother,

such as that suggested by Godsill et al. (2004), or instead run the filter mul-

tiple times. We have tried both methods, but found it to be easier to simply

run multiple independent particle filters allowing for easier parallelization.

2 Case study 2: Free fall

We consider an idealised example where we assume we know the true be-

haviour of the system and use an incorrect model as a simulator, and then

infer the simulator discrepancy using noisy observations. For the true model,

consider an object in free fall near the surface of the earth. This is a two-

dimensional system described by a displacement velocity state-vector (x, v).

Assuming the object has constant acceleration g and is subject to Stokes’

drag with coefficient k, the differential equations determining the true sys-
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tem behaviour are

dv

dt
= g − kv,

dx

dt
= v. (1)

We assume x is observed at regular points in time (t = 0, ∆t, 2∆t, . . .) with

zero mean Gaussian measurement error. We let xn and vn denote the position

and velocity when the nth observation, yn, is made

yn ∼ N (xn, σ
2
obs).

Equations (1) imply that the one-step-ahead dynamic updates for the system

are

xn+1 = xn +
1

k
(
g

k
− vn)(e−k∆t − 1) +

g∆t

k
,

vn+1 = (vn −
g

k
)e−k∆t +

g

k
. (2)

For the (incorrect) simulator, we suppose that the modellers neglected to

include air resistance (k = 0 in Equation (1)), so that the simulator has

one-step-ahead dynamics

xn+1 = xn + vn∆t +
1

2
g(∆t)2

vn+1 = vn + g∆t. (3)

The discrepancy function δ(x, v) for the difference between the system

dynamics and the simulator dynamics can be calculated explicitly in this
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case, giving

δ(x, v) =
g

k

 1
k
(e−k∆t − 1) + ∆t− 1

2
k(∆t)2

1− k∆t− e−k∆t

−v

 1
k
(e−k∆t − 1) + ∆t

1− e−k∆t

 ,

(4)

which is a linear function in v, with no dependence on x. The discrepancy

illustrates the difficulty faced. Equation (4) depends solely on the velocity,

not the displacement, yet we only observe the displacement. Hence, learning

δ relies upon our ability to infer the velocity trajectory, which can then be

used to train the discrepancy model.

The discrepancy δ is a map from R2 to R2, which we denote as

δ(x, v) =

 δx(x, v)

δv(x, v)

 .

Note that although the true discrepancy is deterministic, we need to use a

stochastic model for δ, because measurement error and the finite number of

observations make the estimate of δ uncertain. A statistical model is used

in order to describe this uncertainty. In more complex situations, we may

not expect a deterministic discrepancy function to exist (for example the

state vector may not contain enough information to fully model the system

dynamics, or if the system is stochastic), and so a statistical model will be

vital.

Expert opinion can be useful when deciding which family of parametric

models we should use for δ. In this case, universality allows us to argue that

the discrepancy will not depend on x so long as we are near the surface of the
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earth. So in this case, we could have proposed a model for δ that depended

only on v. Furthermore, someone experienced with both the system and the

simulator may be able to make rudimentary comments about the shape of δ,

although expert elicitation of simulator error can be challenging (Goldstein

and Rougier, 2009; Vernon et al., 2010).

We begin by fitting a model of the correct parametric form, namely

δ(x, v) =

 ax + bxv

av + bvv

 +

 ex

ev

 (5)

where ex ∼ N (0, τx) and ev ∼ N (0, τv), and estimate the six unknown pa-

rameters (ax, bx, τx, av, bv, τv). We used a time series of 100 noisy observations

of the true system generated with air-resistance fixed at k = 0.1 and a time

step between observations of ∆t = 0.5. We allowed measurement error to

vary to show the effect on our ability to accurately estimate δ. We used 1000

filtering particles and five smoothed trajectories in the inference scheme. The

stopping rule used to decide when to terminate the iterations in the EM al-

gorithm, was to look at the last five estimates for a particular parameter and

to test whether all five estimates are within 0.001 of each other. We stopped

the EM algorithm when this condition was met simultaneously for all six

parameters.

The results are shown in Table 1. The first thing to note is that the

estimated coefficient of v in the δv discrepancy, bv, always matches the true

value to two significant figures. The other parameter estimates in δx and δv

are of the right magnitude and sign, but are further from the true values.
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σobs #iters. δx estimate δv estimate τx τv

0.01 17 −0.019− 0.0062v −0.18− 0.049v 3.5× 10−5 2.0× 10−5

0.1 30 −0.014− 0.0062v −0.18− 0.049v 2.7× 10−4 9.9× 10−5

0.5 173 −0.019− 0.0062v −0.18− 0.049v 1.6× 10−4 9.5× 10−6

1 215 −0.066− 0.0056v −0.17− 0.049v 2.9× 10−4 7.3× 10−6

5 267 −0.037− 0.0058v −0.15− 0.049v 1.3× 10−4 1.3× 10−4

10 519 −0.050− 0.0059v −0.19− 0.049v 8.7× 10−6 2.2× 10−4

Table 1: Parameter estimates found using Equation (5) as the discrepancy
function. σobs is the standard deviation of the Gaussian measurement error
used, #iters. is the number of iterations required by the EM algorithm in
order to reach convergence, and τx and τv are the estimates of the variances
of the Gaussian white noise part of the discrepancies for x and v. All values
are reported to two significant figures. The true values of the two discrepancy
functions are δx(x, v) = −0.020− 0.012v and δv(x, v) = −0.12− 0.049v, with
τx = τv = 0 in both cases.

We believe parameter bv is well estimated because it is the key determining

factor for the simulator discrepancy and if we estimate v incorrectly at stage

n, the subsequent estimate of x will be wrong at time n+1. The parameters

estimates for bx and av appear to be biased, but this appears to be a quirk of

the time-period and number of observations used. The two variance param-

eters, τx and τv, are unable to reach zero, because the other parameters are

not accurately estimated and so the variance is inflated to account for this.

More precise estimates of the parameters could be found by replacing the

crude stopping rule used to terminate the EM algorithm, and using a larger

number of filtering and smoothing particles. However the aim of this paper is

to show the improvement that can be made to the forecasting system, and the

estimates above are more than sufficient to do this. If we take these discrep-

ancy estimates and use them in a forecasting system, the improvements in

predictive power immediately become clear. Table 2 shows the performance
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Forecasting framework MSE NS (%) CRPSS (%)
Simulator only 9.57× 106 -585.2 -124.86
Simulator only, corrected 1708 99.9 1.94
Simulator plus white noise 11900 99.1 95.03
Sim. + discrep. (line 2 Table 1) 0.0296 100.0 99.99

Table 2: Predictive performance of various different forecasting systems, as
measured by the mean-square-error (MSE), the Nash-Sutcliffe statistic (NS),
and the continuously ranked probability skill score (CRPSS). Low values of
MSE indicate good predictive performance, as do NS and CRPSS values close
to 100%. The reference forecast used for the NS statistic and the CRPSS
was a Gaussian distribution with mean and variance estimated from the ob-
servations. Values of NS and CRPSS greater than 0 indicate the predictions
are superior to the reference forecast.

of various different forecasting systems. The test data used was a sequence

of 100 new observations (with measurement error σ2
obs = 0.1) generated from

different starting values of x and v to those used in the training data (we

used an object fired upwards which then decelerates before falling back to the

ground). The first row of the table contains the forecast error from simply

running the deterministic simulator from the initial conditions and adding

measurement error. The second row was found by using the true value of

the state vector with the deterministic simulator to predict the next obser-

vation (note this would not be possible in a real situation). The third row

is the result of using the simulator plus a white noise simulator discrepancy,

with variances estimated from the data to be τx = 3084 and τv = 27.4. The

fourth row is the simulator plus the discrepancy estimated in Table 1 when

σobs = 0.1 (row 2). The results show the vast improvement in predictive

power that can be achieved in this case by training a discrepancy term.

These results also highlight the danger of relying on a single diagnostic
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measure to judge predictive performance. The Nash-Sutcliffe statistic indi-

cates very similar (and excellent) performance for the simulator plus white

noise, and the simulator plus discrepancy frameworks because it only judges

the mean prediction of the simulator. The CRPSS also takes into account

the uncertainty quantification of the forecasts, and show that superior pre-

dictions are made by the full simulator plus discrepancy framework.

Figure 1 shows the forecast errors yt+1 − E(yrep
t+1|y1:t) plotted against the

fitted values E(yrep
t+1|y1:t), where yrep

t+1 denotes theoretical repetitions of the

t+1th observation assuming the model is true. These plots are the analogue

of the residual plots used as diagnostic tools in linear regression. If the

framework is correct, we should see the residuals form an uncorrelated band

distributed symmetrically about y = 0. Only the residual plot for the full

discrepancy model looks like this. The tail near 2000 appears because these

observations are made at low velocities where the discrepancy correction is

less effective. The other plots all show a high degree of correlation between

the errors, indicating problems with the forecasting system.

This case-study has shown the ability of a discrepancy function to im-

prove forecast accuracy and we have demonstrated that the methodology

works in this case. Although this was a simple example, it has demonstrated

the difficulty involved in making such inferences. Here we successfully in-

ferred the structure of a discrepancy which depends on a variable (v) that is

never observed. Finally, note that the dynamics and observation process are

linear and Gaussian, and so in this case the Kalman smoother could be used

rather than the particle filter. This would be much more efficient and would

significantly decrease the computation time.
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Figure 1: A residual plot showing the one-step-ahead forecast errors versus
the fitted values. The four plots correspond to the first four cases described
in Table 2.
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