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This thesis is concerned with how to estimate species divergence times using only the fossil

record. Although the methods used are applicable to any taxonomic grouping of species,

the focus here is solely on the primates.

The work is motivated by the wide discrepancy between the molecular and palaeonto-

logical estimates of divergence times (for primates, molecular estimates of the divergence

time are generally about 80-90 million years (My) ago, whereas palaeontological estimates

are about 60-65 My ago). While it is known that a direct reading of the fossil record

can only ever be a lower bound on the age of a group, there is little theory to suggest

what size temporal gap is expected between the oldest fossil, and the divergence time.

The work in this thesis estimates the posterior distribution of this temporal gap under

a Markovian branching process model of evolution. Several variations on the model are

explored, including a model of the mass extinction event that killed the dinosaurs 65 My

ago.

One of the main developments is a methodology to estimate the joint distribution of

two split points. This allows the structure of the data to be fully utilised, and thus more

information can be extracted from the limited data available. The conclusions of the work

are that molecular estimates of the divergence time are consistent with the fossil record.

There are two main methodological developments contained in this thesis. The first

concerns Approximate Bayesian Computation (ABC), which is a likelihood-free Monte

Carlo method that only requires the ability to simulate sample data sets from the model.

The basic rejection algorithm approach is inefficient due to repeatedly sampling from

the prior distribution. I have developed an ABC-MCMC hybrid algorithm that is more

accurate and efficient for the models in which it can be applied.

The second development concerns conditioned branching processes. A fully Bayesian

method of inference requires that we simulate Galton-Watson trees conditioned on having

a branching event at a given time. I prove a result showing that these conditioned trees

are size-biased Galton-Watson trees and I describe their fish-bone like structure.
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Chapter 1

Introduction

Ever since Darwin published his theory of evolution in The Origin of Species scientists

have been studying the relationships between humans and other species. His remarkable

ideas led to a paradigm shift in human thought, with mankind appreciating its transient

role in a continuous cycle of evolution and extinction. Since then a huge amount of time

has been spent analysing the primates, and while the picture is clearer, it is still far from

complete; for example, debate still rages about when primates first evolved. The prevailing

view from palaeontology is that primates diverged from other mammals in the Paleocene

after the decline of the dinosaurs 65 million years ago. Recent advances in genetic dating

methods, however, estimate the divergence time to be way back in the Cretaceous some

90 million years ago.

The standard approach to inferring divergence times amongst palaeontologists was en-

capsulated by Simpson [110] when he wrote that the first appearance of a group of species

in the fossil record is “... accepted as more nearly objective and basic than opinions as

to the time when the group really originated”. The motivation behind this thesis is that

this principle is misleading and leads to the wrong conclusions.

The primate fossil record has been estimated to be less than 10% complete [77], meaning

that of all the species that have ever existed, less than 10% of them have been preserved

and then discovered as fossils. While it is intuitively obvious and long been recognised
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1 Introduction

that the age of the oldest fossil can only be a lower bound on the age of the group, few

have studied the expected temporal gap between divergence and first appearance in the

fossil record. It is this calculation that is the main focus of this thesis.

While the majority of the thesis is devoted to the principle aim stated above, several

theoretical developments are made along the way. The mathematical model I use is

unable to be explicitly solved and so a simulation-based Monte Carlo technique known

as Approximate Bayesian Compuation (ABC) is used to perform inference. ABC is a

relatively new methodology that is still in its infancy and there are consequently many

unknowns about how best to apply it. I look at a few points of contention and give a

development that can increase the speed of the algorithms in certain models. Another

theoretical development is contained in the penultimate chapter. I give the structure of

Markovian branching processes conditioned to have a death followed by a birth at a given

point in time. This allows us to model the divergence of primate suborders such as the

anthropoids.

1.1 Estimating Divergence Times Using the Fossil Record

Finding the shape of the tree of life is one of the most fundamental and important problems

in the biological sciences. Darwin’s idea that all living things can be related to one another

via a vast family tree is one of the most vivid and romantic scientific ideas of the last two

centuries and has had a profound effect on human beings’ understanding of their place

in the world. The tree of life (or phylogeny) can be considered as two parts: the shape

or topology and the length of each lineage. The shape shows the relationships between

each taxon and can be determined by either morphology or molecular methods; the time

information, shown through the length of each lineage, gives the time of origin of each

taxa. It is this second part that I concentrate on in this thesis.

The primary aim is to develop a methodology for the inference of divergence times using

the information contained in the fossil record. The divergence time of a clade is the point

in time at which the last common ancestor (LCA) of that clade diverged into distinct

species. A clade is a monophyletic group of species, which means that it is a taxonomic

group of organisms that consists of a single common ancestor and all of its descendants.

Throughout the thesis I focus solely on the primates, although the methodology could in

theory be applied to any monophyletic group. The primates are of particular interest, not

only because they provide the zoological context for human evolution, but also because

the primate fossil record is relatively poor compared to many other modern orders [121],

making a careful analysis vital.

Dating mammalian divergence times is currently a controversial subject. There are two

main approaches, one based on a direct reading of the fossil record, and the other on a

2



1.1 Estimating Divergence Times Using the Fossil Record

molecular DNA-based approach. Benton [14] characterised the debate between the pro-

ponents of the two methods as molecules versus morphology. The argument is caused by

the large disparity between the estimates given when dating mammalian and avian diver-

gence times, with molecular estimates often twice as large as palaeontological estimates

[15, 16]. For example, modern orders of placental (eutherian) mammals are dated to have

originated in the Paleocene and Eocene 50-65 My(1) ago by palaeontological data [13], and

much earlier in the mid-to-late Cretaceous 80-100 My ago by molecular estimates [41, 58].

The proponents of both approaches have spent much time criticising the other group’s

methods, with neither side seemingly willing to admit defeat.

Argument about primate divergence times is based around whether they diverged from

other placental mammals in the Cretaceous or the Cenozoic(2), and therefore whether they

coexisted with the dinosaurs (which went extinct 65 My ago). Palaeontological estimates

for the primate divergence time are based on the oldest primate fossil, which is from

the Early Eocene some 55 My ago. The mainstream palaeontology consensus is that the

primates originated not long before the earliest known fossil [66], with the 95% confidence

interval of 55-63 My ago given by Gingerich and Uhen [51] being fairly typical. This date

is supported by the belief that the downfall of the dinosaurs 65 My ago opened up an

evolutionary niche that was quickly filled by the primates and other mammals [2].

Molecular dates for the primate divergence time, however, tend to be well back into

the Cretaceous, meaning that primates and dinosaurs coexisted. Hedges et al. [58] and

Kumar et al. [70] give a date of at least 90 My ago, Arnason et al. [5, 4] suggest the

divergence was at least 80 My ago, and Bininda-Emonds et al. [19] specifically examine

the effect of the end-Cretaceous mass extinction event and calculate a primate divergence

time of 87.7 ± 2.7 My. I will now examine some of the main criticisms of each method.

Molecular estimates of divergence times arise from comparing the genomes of different

taxa. Although DNA does not contain direct information about time, by comparing the

distance between two sequences and assuming clock-like behaviour of genetic mutations,

estimates can be given for how far back in the past any two species shared a common

ancestor. Critics of molecular methods [15] claim that the molecular clock assumption is

violated during periods of explosive radiation, such as at the Cretaceous-Cenozoic bound-

ary 65 My ago. During these periods it is claimed that the molecular clock runs at an

accelerated rate and that organisms evolve more quickly than at other times.

An important point to note is that molecular methods require calibration of the molec-

ular clock and that this is done by using a divergence time from another part of the tree.

Because DNA does not directly contain any time information, at some point a divergence

(1)Throughout this thesis time will be measured in units of millions of years (My).
(2)Palaeontologists have divided time into eons, eras, periods and epochs with each representing a finer

division of time than the proceeding term. The Cretaceous period ended 65 My ago coinciding with the
start of the Cenozoic era. A complete list of currently used terminology and a full explanation can be
found in Gradstein et al. [54].

3



1 Introduction

time must be estimated using fossil evidence. And so even if we prefer to use molecular

estimates of divergence times, we must at some point make an inference using the fossil

record. The fossil date used should ideally be the divergence time of a well sampled taxon

so that all parties can agree on its validity. But this, as Graur et al. [55] showed, is not al-

ways the case. They documented numerous examples of molecular divergence times being

estimated to a supposedly high-degree of precision using fossil calibration points without

any acknowledgement of the possible error in these dates. A particularly startling example

was a paper where the arthropod-nemotode divergence was dated to 1167 My ago with a

95% confidence interval 350 My wide. When the uncertainty in the fossil calibration point

was taken into account the 95% confidence interval grew to a considerable 14.2 billion

years.

Palaeontological estimates of divergence times are obtained from the fossil record and

are based on the age of the oldest fossil representative of the group. It is common practice

to date the divergence time of a group from just before the first known fossil representative

[78]. Notice that there will always be a time gap between the origination of the family

and the preservation of the first discovered fossil. For this reason, it is recognised that

the fossil record can only give a lower bound on the age of a taxon [78]. It is this range

extension (or temporal gap) between the age of a clade and the age of the oldest fossil

representative that is the cause of much of the debate. The idea of a temporal gap is

demonstrated in Figure 1.1.

The sampling rate, by which I mean the proportion of species that are preserved in the

fossil record, has a large effect on the accuracy of the palaeontological estimates. For well

sampled clades, which have a large number of fossil representatives, we expect the range

extension to be smaller than that observed for a clade which has a low sampling rate. So

for example many marine invertebrates, which live in areas of net deposition and have

hard bodies, are believed to be well sampled as there are many fossils and so we expect

only a small range extension. Primates, which are soft bodied, live in areas of net erosion,

and prefer tropical environments not conducive to fossil preservation, have a poor fossil

record and so we expect a larger range extension.

It is possible that there is a simple explanation for why molecular and fossil based

estimates disagree. Each fossil that is discovered is assigned to a group on the basis of

its morphology. This is a difficult and often subjective task, with palaeontologists looking

for some defining character, such as some aspect of the skull shape (cf. Figure 1.2) or

dentition(3). While molecular estimates date the time at which genetic intermixing ceased,

the fossil dates, at best, record the time at which diagnostic characters are obtained [32].

(3)The difficult and often controversial nature of this task can be seen in the recent hominoid fossil
found on the Indonesian island Flores. Brown et al. [25] claim this small bodied creature represents a
new hominin (the tribe containing humans and chimpanzees) Homo floresiensis which survived until at
least 18000 years ago. On the other hand, Martin et al. [82] claim it is a microcephalic modern human.
Identifying a species from a single skull fragment, as in this case, is not uncommon.
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1.1 Estimating Divergence Times Using the Fossil Record

The first lineage to diverge is likely to have looked nothing like modern species and may not

have the defining characters required to be recognised. This simple explanation, cannot

however, explain away the disagreement over primate divergence times. There are two

suborders of primates, known as the haplorhini and the strepsirrhini suborders, which

Arnason et al. [4] dated as diverging 80 My ago. The defining primate morphological

characters, such as opposable thumbs, five fingers with fingernails, a generalised dental-

pattern and forward facing binocular vision, are seen in both suborders. As it is much more

likely that these characters evolved in a common ancestor, rather than through convergent

evolution in the two suborders, we cannot dismiss the difference in the divergence time

estimates by saying that character states were slow to evolve.

In this thesis I give an alternative explanation for the discrepancy between molecular

and palaeontological estimates. Namely, that current methods of estimating divergence

times from fossil evidence massively underestimate the size of the temporal gap that is

expected between the divergence time and the oldest fossil. This is especially true for

taxa with low sampling rates, such as the primates. Following the novel approach of

Tavaré et al. [118], I use a model for species diversification from the literature, apply a

model for fossil preservation, and then ask what size temporal gap is observed on average

between divergence and the first fossil. Figure 1.1 gives an illustration of the basic idea.

An important aspect of this approach is that the sampling rate is taken into account,

unlike in the method of Gingerich et al. [51, 52], which gives the same estimate regardless

of the completeness of the fossil record. My approach builds on that of Tavaré et al.

using a different inference technique, and by removing several of the assumptions needed

previously, such as the need to have the sampling fractions fixed into a constant ratio

[113]. I also give a more realistic sampling model and investigate the effect of the mass

extinction event that wiped out the dinosaurs.

Throughout the thesis I focus on extracting the maximum amount of information pos-

sible from the primate fossil record. By taking into account the modern primate diversity

(number of extant species) and the structure of the primate phylogeny suggested by the

anthropoid subtree, it is possible to get a more accurate picture than would otherwise

be the case. Even within the palaeontology community, there is disagreement about the

quality of the fossil record and about how much can be learnt from it. Advocates of the

fossil record point to the strong correlation between the order in which taxa originate in

the molecular and the fossil-based estimates as evidence of the success of the fossil record.

Critics, however, highlight the correlation between the number of rock formations and the

fossil record [92, 93] and question whether the appearance of mass extinctions and explo-

sive radiations are really an artefact of the fluctuation in the rock record [109]. While there

is both a biotic and an abiotic signal in the fossil record, most palaeontologists believe and

hope that the biotic signal is strong enough for us to accurately estimate divergence dates.
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Figure 1.1: A sample evolutionary tree showing relationships between species. Red dots indicate
that the species has been preserved as a fossil. The horizontal line is the information we get from
the fossil record and consists of the fossil finds from the tree projected onto the time axis. Parameter
τ represents the temporal gap between the divergence time of the LCA and the oldest discovered
fossil.

At several points during this thesis we find that extensions to the model have introduced

too many degrees of freedom, and that we are at the limit of what is possible with the

data set. Knowing this limitation is important, as otherwise false conclusions can easily

be drawn.

Giving a careful analysis of the primate fossil record is particularly important. Firstly,

the primate fossil record is known to be particularly poor compared to many other orders

[121]. It is far from complete and contains several major holes. For example, the Malagasy

lemurs, a primate infraorder, represent more than 20% of modern primate genera and

about 16% of modern species; there are at least 85 modern lemur species [86]. Yet to date

no lemur fossils have been discovered. The presence of the loris sister group, documented
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1.1 Estimating Divergence Times Using the Fossil Record

to be at least 37 My old, shows that the lemur ghost lineage must be at least 37 My in

length [83], proving that long temporal gaps do occur. The completeness of the primate

fossil record has been estimated to be as low as 7% [118]. This is partially due to the

fact that primates are soft bodied, arboreal and tend to live in warm wet places that are

not conducive to fossil preservation. Indeed, the fact that nearly all modern primates live

in tropical or subtropical climates [77] may provide another explanation as to why their

fossil record is so poor. A direct reading of the record suggests that primates originated

in the Northern Hemisphere and spread to the southern continents(4). However, the first

appearance of fossil primates coincides with a worldwide temperature increase of 5-10°C

during the Eocene (55 - 37 My ago) [85]. It is believed that the southern continental

regions show lower fossil preservation rates compared to the northern continents [78] and

we know that Europe and North America are much better sampled by palaeontologists

than Africa and Asia. This suggests the alternative theory that primates originated in

the southern continents and spread northwards during warmer climatic conditions in the

Eocene [20].

Secondly, it is important to accurately date the primate divergence time because of the

consequences of either an early or late divergence time on the plausibility of various evolu-

tionary scenarios. For example, primate evolution may be linked to the great angiosperm

(flowering plants) radiation that is thought to have occurred in the Mid-Cretaceous about

100 My ago [35, 71]. Conroy [31] suggests that the appearance of large fruit as a food

source led to the evolution of the primates from other mammals species. This theory is

less plausible, however, if the primates did not evolve until the Cenozoic. Another example

of its importance is that the timing of the divergence affects the potential relevance of

continental drift. If it is true that these radiations (evolutionary splits) took place only

in the Cenozoic, then continental drift is only of limited relevance to primate evolution.

Alternatively, however, if mammalian groups were present in the Cretaceous then conti-

nental drift may have had a large effect. There is also interest in the placement of the

divergence times relative to the Cretaceous-Tertiary (K-T) boundary 65 My ago, which

marked the extinction of the dinosaurs. The traditional view is that the Cretaceous era

(144 to 65 My ago) is the age of dinosaurs whereas the following Cenozoic era is the age

of mammals and that the rapid evolutionary diversification of the mammals was made

possible by the ecological vacuum created by the extinction of the dinosaurs [2].

Finally, a great deal of time and money has been spent collating primate fossils and

classifying them into the database shown below. It seems like an act of folly to date the

divergence time solely from the age of the oldest fossil. The expense of the data justifies

a considerable amount of time and effort being spent on its analysis, with care taken to

extract all the information possible. This thesis forms part of that effort.

(4)Over 40% of all known fossil primates from the period 55 My ago to 30 My ago come from Wyoming
or France [125].
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Data

The primate fossil database I use throughout this thesis is described below in Table 1.1.

This was compiled by our palaeontologist collaborators Christophe Soligo from University

College London and Robert Martin from the Field Museum in Chicago. Each known

fossil species has been categorised by the epoch in which it was preserved, by the sub

and infraorder to which it belongs, and whether it is a crown or stem species. There is

uncertainty in most aspects of these data.

Fossils are only preserved in sedimentary rock, which is formed when soil is compressed

over a long period of time. As sedimentary rock cannot easily be dated, palaeontologists

rely on nearby igneous rock and the principle of geological superposition (younger rock

generally lies above older rock) to date fossils. Consequently, there is often some uncer-

tainty about the age of any given fossil. There is also uncertainty over the number of

extant species in each family with several large changes over the previous few years. The

known primate diversity has increased from 235 in 2001 to 376 in 2005 [56]. This is due to

both the discovery of new species and the division of taxa previously thought to represent

a single species into a number of distinct species.

All primates belong to either the strepsirrhine (wet nosed primates) or the haplorhine

(dry nosed primates) suborder. The haplorhini are further divided into the tarsiidae

(tarsiers) and anthropoidea (monkeys and apes) infraorders. The anthropoids are then

divided into platyrrhine (new world monkeys) and catarrhine (old world monkeys) species.

Again, there is often uncertainty about the classification of fossils, with some species

known from samples containing only a few teeth. Figure 1.2, by Christophe Soligo, shows

skulls from each primate family and suggests a possible phylogeny. The oldest known

fossil primate is at most 54.8 My old, and the range extension from the oldest fossil to

the primate divergence time is based on inferences made in Tavaré et al. [118]. The

evolutionary relationships shown in the phylogeny are far from certain, with some authors

suggesting that the adapiforms and omomyiforms are not necessarily stem strepsirrhine

and haplorhine groups respectively. See Chapter 6 for more information.

The concept of crown and stem groups was suggested by Willi Hennig as a way to classify

living organisms relative to extinct ones. The concepts are not necessarily universally

accepted [39], as they do not obey the systematics of living organisms. A crown group

of species is a living monophyletic clade. It contains all living species, their last common

ancestor (LCA), and all of its descendants. Stem groups lie basally to the LCA of the

crown group (i.e., further down the tree of life) and do not contain any living species. The

species in the stem group always lack one or more of the diagnostic characters present in

the crown group.

As an example, look at the crown and stem strepsirrhine fossil counts in Table 1.1 and the

strepsirrhine side of the tree in Figure 1.2. The crown strepsirrhini consist of the lemurs,

8



Fossil data as supplied June 2006

Strepsirrhini Haplorhini

Time at Stem Crown Stem Crown

Epoch k the base of Tarsiidae Anthropoidea

interval k, Stem & Crown Stem Crown

Tk (My) Platyrrhini Catarrhini

Stem Crown Stem Crown

Extant 0 0 - 88 - 7 - - 128 - 153

Late-Pleistocene 1 0.15 - - - - - - 2 - 20
Middle-Pleistocene 2 0.9 - - - - - - - 28
Early-Pleistocene 3 1.8 - - - - - - - - 30
Late-Pliocene 4 3.6 - 3 - - - - - - 40
Early-Pliocene 5 5.3 - 1 - - - - - - 11
Late-Miocene 6 11.2 3 1 - - - - - 5 29
Middle-Miocene 7 16.4 1 1 - 1 - - 17 10 16
Early-Miocene 8 23.8 - 6 - - - - 3 22 3
Late-Oligocene 9 28.5 - - 1 - - 1 - 1 -
Early-Oligocene 10 33.7 3 1 1 1 10 - - 6 -
Late-Eocene 11 37.0 14 - 7 - 7 - - 2 -
Middle-Eocene 12 49.0 47 2 59 2 9 - - - -
Early-Eocene 13 54.8 26 - 37 - 2 - - - -
Pre-Eocene 14 - - - - - - - - -

Table 1.1: Data showing the number of primate species discovered in each geological epoch, broken down into sub and infraorder, and into crown
and stem species. This database was kindly provided by Christophe Soligo and Robert Martin. The number of extant species comes from Groves
[56].
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1 Introduction

Figure 1.2: A possible primate phylogeny by Christophe Soligo. The placing of the primate
divergence time in the Late Cretaceous is based on inferences made in Tavaré et al. [118]. Notice
that the most complete fossil omomyiform consists of only a lower jaw.

lorises and bushbabies and all their ancestors back to the LCA in the Mid-Palaeocene.

The stem strepsirrhine in Figure 1.2 are the adapiformes. This helps to make clear the

difference between the crown and stem divergence time. According to this diagram, the

strepsirrhine crown divergence time was about 60 My ago, whereas the strepsirrhine stem

divergence time was approximately 75 My ago.

The notion of crown and stem groups allows us to be more specific about which diver-

gence time we shall be dating in this thesis. Throughout, the main focus is on the primate

crown divergence time. The primate crown group consists of both the stem and crown

strepsirrhine and haplorhine species. The primate stem group would include the plesi-

adapiformes and is not studied here. I shall also look at the crown anthropoid divergence

time. The crown anthropoids are the new and old world monkeys and the apes.

Finally, before discussing the statistical approach used, I want to reiterate the impor-

tance of a careful analysis. The data in Table 1.1 was expensive to collect and analyse,

both in terms of time and money, and it deserves great care and attention to make sure
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1.2 Statistical Inference

that a correct and coherent picture of primate evolution is being drawn from it.

1.2 Statistical Inference

The job of a modeller is usually to provide a mathematical description of reality, which

says that given a set of conditions, this is the type of data or behaviour we expect to

observe. In other words, they provide a forward model. While there are several key model

developments in this thesis, model development is not the main aim. Instead, the focus

is largely on how to do inference for models previously used in the literature. Where the

modeller gives forwards models, the statistician looks at the inverse problem. Namely,

given a data set and a model, what can we learn about the state of reality or set of

conditions necessary in the model. While many forward models of evolution exist, only a

few people have examined the inverse problem of what the fossil record can teach us given

a choice of model. This is the main aim of my thesis.

There are two schools of thought on the correct approach to inference, usually known

as Bayesian and frequentist statistics. I subscribe to the Bayesian viewpoint set out by

de Finetti [37, 38] in which probability is a measure of uncertainty and where a priori

knowledge is taken into account in all inferences. If we consider statistics to be the study

of uncertainty [72] (an apt description of our task), then I believe the Bayesian viewpoint

is best equipped to deal with this. The frequentist approach, on the other hand, assumes

we can embed the process into a sequence of repeated processes, and is a poor setting for

the unique evolutionary process studied here.

The Bayesian approach to inference can be described as follows. Suppose that the

model is parameterised by θ and that there is uncertainty surrounding its value. This

uncertainty is expressed by a prior probability distribution π(θ). Suppose further that we

are in possession of data D which it is assumed come from our model. Our aim is to find

the posterior distribution of the parameters given the data:

π(θ|D) =
P(D|θ)π(θ)

P(D)
, (1.1)

where P(D|θ) represents the probability of the data given that the parameter takes value

θ. The normalising constant is chosen so that the posterior distribution, π(θ|D), integrates

to one, i.e., P(D) =
∫

P(D|θ)π(θ)dθ. This notation is used throughout the thesis.

The past few decades have seen a growth in the use of Bayesian ideas in many areas

of science [62, 96]. This is largely due to the increased availability and lower cost of

computer power. This increased power has allowed for the development of a large variety of

computationally intensive Monte Carlo techniques which are able to numerically integrate

the terms in Equation (1.1). Traditional frequentist maximum-likelihood calculations

often limited the number of parameters one could use in any given model [10], whereas
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1 Introduction

techniques such as Markov Chain Monte Carlo (MCMC) [119] allow models of greater

complexity to be analysed.

Software packages which simplify the use of MCMC methods, such as the BUGS project

[115], have proven very popular in the scientific community. For while MCMC is increas-

ingly being used it is not necessarily easy to master; there are numerous time consuming

obstacles to overcome such as making sure the chain mixes well and that it converges to

equilibrium. Another problem is that MCMC methods require knowledge of the likelihood

function, P(D|θ). For complex models, which are increasingly being studied, this quantity

is often not known. This is the case for the model considered in this thesis.

Before introducing an alternative to MCMC, I shall discuss why the problem of inferring

divergence times is difficult. The main reason inference is difficult is due to the sheer

amount of missing information. We are essentially interested in inferring the depth of an

evolutionary tree such as that shown in Figure 1.1. However, we only see a one dimensional

snapshot of this tree via the fossil evidence that has been deposited in the rock record.

Our task is to infer the depth of a complex tree structure using only the one dimensional

information contained in the frequency pattern of fossil discoveries. In fact the situation

is harder still as the age of a fossil cannot be clearly resolved. The best that can be done

is the placement of each fossil in the appropriate epoch.

The second reason inference is difficult is due to the role that conditioning plays. We

know that modern primates exist, and so any calculation must be conditional on this

fact. At various points throughout the thesis conditioning will play a part, building to the

final two chapters where the evolution of the anthropoid suborder is conditioned upon.

Notice that the paucity of the primate fossil data does not in itself add any difficulty. It

does, however, make the inferences less accurate and increases the need for a rigourous

approach.

Hidden tree structures, such as the hidden primate phylogeny, often occur in models used

in fields such as population genetics and ecology. They often lead to highly dependent

data structures which are difficult to deal with using standard statistical methods. This

led to the development of Monte Carlo techniques that can deal with problems where the

likelihood function is unknown. This collection of likelihood-free techniques are usually

known as Approximate Bayesian Computation (ABC) methods, and they only require

that we can simulate data sets from the model [11, 98, 117]. The secondary aim of this

thesis is to add to the catalogue of ABC methods, to investigate their use, and to shed

light on their advantages and disadvantages.

While ABC methods are only approximate, as their name suggests, they do have poten-

tial advantages over MCMC techniques. Firstly, they are almost trivial to use once you

are able to simulate from the model as they do not require the fine tuning that is often

needed to ensure convergence in MCMC. Secondly, changes to the model or data structure
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can easily be incorporated without any changes to the inference mechanism, whereas in

MCMC adding a different type of data may render inference impossible. Thirdly, a nat-

ural measure of model fit comes out of the ABC approach giving an approximate model

selection technique. Finally, if the likelihood function is unknown, then MCMC methods

can not be used. This final point is the main reason to use and develop ABC methods.

1.3 Structure of the Thesis

Chapter 2 contains details of the model that will be used throughout the thesis. I carefully

highlight the assumptions that have been made and indicate the more problematic ones.

I give calculations of some basic probabilities and show what effect conditioning on non-

extinction has on the evolutionary process.

In Chapter 3 I introduce the concept of Approximate Bayesian Computation and give

a few examples, before moving on to apply the inference algorithms to the model from

Chapter 2. Chapter 4 looks at ways to exploit all of the information contained in the

data set, such as the number of extant species. I also give an optimal subtree selection

algorithm which allows us to find the joint distribution of two divergence times, and use

this to find the distribution of the primate and anthropoid divergences. The final two parts

of Chapter 4 discuss an improvement to the basic ABC algorithm, given by Beaumont et

al. [11], and assess its accuracy with a simulation study.

In Chapter 5 I develop the ABC methodology to produce an ABC-MCMC hybrid al-

gorithm. This allows exact inference to be done on aspects of the model that we can

compute and approximate inference on the parts that we cannot. This new algorithm

speeds up the inference approach and allows us to improve the model by removing one of

the more controversial assumptions made by Tavaré et al. [118].

Chapter 6 contains several improvements to the basic model, including a more realistic

fossil find model in which the duration a species lives for is taken into account, and a

model of the K-T crash that killed the dinosaurs 65 My ago. I also outline a potential

model selection approach that is made possible by our ABC algorithm and use it to justify

using a logistic growth curve to model primate diversity.

Chapter 7 is an entirely theoretical chapter in which I give the structure of branching

processes conditioned to have a birth at a given point in time. These trees have a simple

and pleasing fish-bone structure. This then leads to a discussion of size-biased trees and

a long proof based on the Palm distribution of random measures. This theory is then

used in Chapter 8 to give a fully Bayesian approach to inferring the joint distribution

of two divergence times. By simulating speciation trees conditioned to have a birth at

a given time, I can choose both the primate and anthropoid divergence times from prior

distributions and thus find the joint posterior distribution of both divergence times.
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1 Introduction

Finally, Chapter 9 contains a short conclusion of my findings followed by a bibliography.
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Chapter 2

Modelling Approach

All models are wrong but some are useful. G. E. P. Box

The aim of this thesis is to develop a method for the inference of species divergence

times. In this chapter, I take a modelling approach from the literature, which I then

build upon throughout the remainder of the chapter and at various other points in the

thesis. Occam’s razor suggests that a model should give an economical account of the

phenomena under consideration that is both simple and evocative; over-elaboration and

over-parameterisation complicates inference. For example, although it is possible to con-

ceive of models in which we keep track of fluctuations in the population size of each species,

the interactions between them, and many other factors scientists claim to know something

about, it would not be possible to do so without the introduction of assumptions open to

criticism by others. For this reason, I aim to keep the model as flexible as possible, and

will try to let the data provide the information. A proviso to this is that for sparse data

sets, strong modelling assumptions are often required. I will explore what is and is not

possible with the available data throughout the thesis.

Following Tavaré et al. [118], I break the modelling problem into two parts. In Section

2.1 I give a model for primate evolution, and this is followed in Section 2.2 with a model

for fossil finds. Section 2.3 gives the inference approach one might take in an ideal world
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2 Modelling Approach

and the reason why this is not possible. Along the way, I give a few calculations that will

be required later in the thesis.

2.1 Speciation Model

In this section I give a model that can be used to generate speciation trees. These trees, of-

ten called phylogenetic trees, show the evolutionary relationships between different species.

We consider a branching structure in which species diverge into distinct and different

species at random times (see Figure 2.1 for an example). Each branch (or lineage) repre-

sents a single species and its length represents the amount of time for which that species

existed.

A

B

T6 T5 T4 T3 T2 T1

Time

τ

Figure 2.1: An example evolutionary tree. Side A might represent the haplorhine species and
side B the strepsirrhine species. Parameter τ represents the temporal gap between the oldest fossil
and the primate divergence time. Time is divided into geological epochs, shown here by the vertical
lines.

The study of branching processes has a long history. In 1873 Francis Galton posed a

question in the Educational Times about the extinction of aristocratic family names. This

led to Galton and Watson’s seminal paper [123] in which they described the branching

process which now takes their name(1). The discrete time Galton-Watson process assumes

(1)I. J. Bienaymé had previously introduced this concept [59] and so some authors refer to the process
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2.1 Speciation Model

that in each generation, each individual gives birth to an independent and identically

distributed number of offspring. In the next generation these then go onto give birth to

an independent, identically distributed number of offspring, and so on. And so in essence,

the study of Galton-Watson processes is the study of sums of independent, identically

distributed random variables.

Since 1875, the theory of branching processes has been generalised and developed, and

there is now a large and diverse literature on the general theory. Athreya and Vidyashankar

[9] give a survey of some of the different areas in the field, and Athreya and Ney [8] give

the introductory theory. A more abstract treatment can be found in Asmussen and Hering

[6]. Here we follow in the tradition of Raup, Gould, Foote and others (see [102] and [87]),

by using branching processes to model speciation.

More specifically, I use a continuous-time, non-homogeneous, binary Galton-Watson

process, also known as a generalised birth-death process. We assume that each species

lives for an exponential period, with mean 1/λ million years (My), independently of other

species. If a species dies at time t it branches into either zero or two new species, with

branching probabilities p0(t) and p2(t) respectively (p0(t) + p2(t) = 1 for all t). A method

for determining values of p0(t) and p2(t) is given in Section 2.1.1.

We want to estimate the primate divergence time, which is how far back in time we must

go down the evolutionary tree until we reach the last common ancestor of the primates.

To model this we assume that this ancestor diverged into two new species at time 0, so

that Z(0) = 2, where Z(t) is the diversity (number of species) at time t(2). Z(t) will be

referred to as the size-process of the tree. The branching property allows us to consider

Z(t) = X1(t) + X2(t), where X1 and X2 are independent copies of the branching process

started from one individual at time 0.

An alternative model I could have used is splitting (or budding) trees [45] where each

species produces offspring at the jump times of a Poisson process. Geiger and Kersting

[47] show that under a parameter transformation splitting trees are equivalent to Galton-

Watson processes. However, when fossil finds are considered the two models are no longer

equivalent and may lead to different results. In this thesis I consider only Galton-Watson

processes.

Before giving some basic results about the Galton-Watson process, I want to highlight

some of the assumptions that have been made in the above approach. Firstly, we are

assuming that each species lives for an exponentially distributed period of time. This is

necessary so that we can use the memoryless property of the exponential distribution,

as the Bienaymé-Galton-Watson process. I will follow the majority and refer to the process as the Galton-
Watson process.

(2)Care needs to be taken so as not to be confused by time scales. When referring to the real world,
the present is time 0 and we measure time back into the past in units of millions of years (My). So for
example, the Cretaceous era ended 65 My ago, i.e., at time -65 My. However, in our model I use a different
time scale in order to simplify the algebra, where the primate divergence is at time 0.
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which ensures that the size process, Z(t), is Markovian. Without this assumption, the

past and future of Z(t) would not be independent given the present, which would make

the mathematics more difficult. A potential drawback of the memoryless property is that

species do not age (see Jagers [60]). However, I consider this a reasonable assumption to

make as there are no clear reasons to expect that because a species has already existed

for 10 million years it shouldn’t continue to exist for another 10 million. A theory of

age-dependent branching processes has been developed, see [12], but will not be used

here.

Secondly, we assumed that when a species dies, it gives birth to either zero or two

new species, i.e., a binary tree structure. As speciation events are rare phenomena, we

can assume that the probability of a species diverging into three or more new species

‘simultaneously’ is zero. We assume p1(t) = 0 as these events do not change the shape of

the tree, which can be seen by considering a parameter transformation. See Athreya and

Ney [8] (p118) for details.

The important thing to remember here is that all models are wrong. As scientists, we

must be aware of what is importantly wrong. Or as Box [21] says, ‘It is inappropriate to

be concerned about mice when there are tigers abroad’.

While I feel that the two assumptions stated above are reasonable, there are potentially

more serious drawbacks to the branching process approach. The first, highlighted by

Jagers [60], is that in the limit, Z(t) → 0 or ∞ with probability one. There does not exist

a stable branching process that settles down to some positive finite value (for a proof see

page 18 in Asmussen et al. [6]). The second problem is that species do not interact. In

any given ecosystem, there is an upper bound on the number of related species (those

that compete for similar resources) that can maintain a population. This is not taken into

account in our model. However, we hope that the key elements of the model are sound

and that something useful can be learnt.

2.1.1 Basic Calculations

I now outline the basic calculations needed to find the transition probabilities of the size

process Z(t). These were first given by Kendall [67] in a simpler setting, and hence I only

give a brief outline here. In general, explicit calculation of the transition functions is not

possible for the Galton-Watson process. It is only possible here because we are using the

simpler birth-death process. The solution is found via the moment generating function of

the process. Let

Pik(s, t) = P(Z(t) = k|Z(s) = i)

Fj(u, s, t) = E(uZ(t)|Z(s) = j).
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The values Pik(s, t) form a stochastic semigroup due to the assumption of exponential

lifetime distributions. This ensures that the size-process Z(t) is a Markov process. We

denote the generator of the Markov process by the matrix AAA(t), where

Aij(t) = lim
δ↓0

1

δ
(Pij(t, t + δ) − Iij) =





iλp2(t) if j = i + 1

iλp0(t) if j = i − 1

−iλ if j = i

0 otherwise,

and where III represents the identity matrix. We can then use Kolmogorov’s forward

equations (see for example [104])

∂PPP

∂t
(s, t) = PPP (s, t)AAA(t)

to write down a system of differential-difference equations for the transition probabilities:

∂

∂t
P10(s, t) = λp0(t)P1,1(s, t) (2.1)

∂

∂t
P1n(s, t) = (n + 1)λp0(t)P1,n+1(s, t) + (n − 1)λp2(t)P1,n−1(s, t) − nλP1,n(s, t), n ≥ 1.

(2.2)

Multiplying by un and summing gives a partial differential equation for the probability

generating function:

∂F1

∂t
(u, s, t) = λ(u − 1)(up2(t) − p0(t))

∂F1

∂u
(u, s, t). (2.3)

Kendall gives the solution for the moment generating function as

F1(u, s, t) =
ξ + (1 − ξ − η)u

1 − ηu
(2.4)

and upon expansion we find that

P1n(s, t) =

{
ξ if n = 0

(1 − ξ)(1 − η)ηn−1 if n > 0,
(2.5)

where ξ ≡ ξ(s, t) and η ≡ η(s, t) are functions of s and t. The values of ξ and η are found

by substituting back into (2.1) and are equal to

ξ(s, t) = 1 − e−ω(s,t)

W (s, t)
, η(s, t) = 1 − 1

W (s, t)
. (2.6)
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Functions ω and W are defined by

ω(s, t) = λ

∫ t

s
(p0(τ) − p2(τ)) dτ, (2.7)

W (s, t) = e−ω(s,t)

(
1 + λ

∫ t

s
eω(s,u)p0(u)du

)
. (2.8)

It then follows from Equation (2.5) that the expected diversity at time t, when starting

with one species at time s, is

E(Z(t) | Z(s) = 1) =
1 − ξ

1 − η
= exp

(
λ

∫ t

s
(m(u) − 1)du

)
, (2.9)

where m(u) is the mean number of offspring produced when a species dies at time u.

Determining the Branching Probabilities

Equation (2.9) shows that the expected growth of the branching process is determined

by the mean of the lifetime distribution, 1/λ, and the mean of the offspring distribution,

m(u). As we are using a binary process, we can use knowledge of m(u) to determine

the branching probabilities, as m(u) = 2p2(u). To determine m(u), we assume some

parametric form for the expected diversity, EZ(t). In Section 6.4 I try several different

forms for EZ(t), including linear and exponential forms, and then develop a model selection

technique to choose between them. For the majority of this thesis, however, I use a logistic

growth form, which was advocated by Raup et al. [102] as the most biologically realistic

model. The logistic model is also in agreement with the predictions made by competition

models used in ecology, such as the Lotka-Voltera model [16, 75]. For constants ρ ≥ 0 and

0 ≤ γ ≤ 1, I assume that

EZ(t) =
2

γ + (1 − γ)e−ρt
. (2.10)

Equating Equations (2.9) and (2.10), substituting m(u) = 2p2(u), and differentiating, we

find that

p2(t) =
ρ
2λ(1 − γ)

(1 − γ) + γeρt
+

1

2
(2.11)

p0(t) = 1 − p2(t). (2.12)

Notice that as t tends to infinity, p0(t) and p2(t) both tend to 1
2 , and so in the limit as

t → ∞ the process behaves like a critical binary Galton-Watson process. Using Equations
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(2.7) and (2.8), we can observe that

ω(s, t) = log

(
γ + (1 − γ)e−ρt

γ + (1 − γ)e−ρs

)

W (s, t) =
1

γ + (1 − γ)e−ρt

[
(γ+(1−γ)e−ρs)+

λ

2

(
γ(t−s) + (

1

λ
− 1

ρ
)(1 − γ)(e−ρt − e−ρs)

)]
.

Substituting these values into Equation (2.6) we find that

η(s, t) = 1 − γ + (1 − γ)e−ρt

(γ + (1 − γ)e−ρs) + λ
2

(
γ(t − s) + ( 1

λ − 1
ρ)(1 − γ)(e−ρt − e−ρs)

) (2.13)

ξ(s, t) = 1 − γ + (1 − γ)e−ρs

(γ + (1 − γ)e−ρs) + λ
2

(
γ(t − s) + ( 1

λ − 1
ρ)(1 − γ)(e−ρt − e−ρs)

) . (2.14)

Notice that when s ≤ t, γ ≤ 1 and ρ ≤ λ, the values of η and ξ are bounded between 0

and 1. This ensures that Equation (2.5) is a proper probability distribution, and is a type

of modified geometric distribution.

2.2 Fossil Finds Model

In the previous section I gave a speciation model which allows us to construct sample

phylogenetic trees. I now give a model for fossil preservation, enabling us to generate

sample data sets of the form given in Chapter 1.

There are many factors that determine whether any given species is found in the fossil

record. It must firstly be preserved as a fossil, and secondly, it must be discovered. Many

factors affect preservation: hard bodied species are more likely to be preserved than soft;

large individuals more likely than small; common species more likely than rare; and marine

species more likely than terrestrial.

Since I am dealing with primate species only, the factors above, with the exception of

the abundance of each species, are roughly the same for all species. No information is

available on species abundance, and so I make the assumption that all species are equally

likely to be preserved as a fossil in a given time period.

Many authors have linked fossil discovery rates to the rock record [92, 93]. The age

distribution of the exposed rock on the Earth’s surface is not uniform, with some epochs

having a large number of formations in a variety of locations, whereas others have very few.

It is also known that primates are most prevalent in the tropics, and so if the location

of the rock formations from a given epoch are not in these regions, the probability of

finding primate fossils from this epoch is low. For these reasons, I assume the probability

of preservation can change over time, as done by Foote [43].

Initially, I focus on a simple model in which each species is equally likely to be preserved
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2 Modelling Approach

in any interval in which it lived. Splitting time into the geological epochs specified in

Chapter 1, let Di represent the number of fossil species discovered in interval i, Ni the

total number of species that lived during interval i, and αi the sampling fraction for

interval i (the proportion of species preserved as fossils). This leads to a simple binomial

structure:

P(Dj = dj |Nj = nj, αj) =

(
nj

dj

)
α

dj

j (1 − αj)
nj−dj . (2.15)

I shall refer to this model as the binomial fossil finds model.

The elephant in the room is the species lifetime Li. It can be argued that the fossil

record is biased in favour of long-lived species; intuitively, a species that existed for 10 My

is more likely to be preserved than one that lived for only 1 My. In Chapter 6 I develop

a Poisson model for fossil finds which takes the species lifetime into account. Until then,

however, the binomial model will be used.

The most important parameter throughout this thesis is the temporal gap τ . This is the

time between the oldest primate fossil and the primate divergence time. The age of any

given fossil cannot be determined with any great precision. The best that can be done is

assigning each fossil to the epoch in which it was formed. The age of the oldest primate

fossil is 54.8 My, which corresponds to the start of the Early-Eocene epoch. Figure 2.1

illustrates the temporal gap τ , and a sample evolutionary tree with epochs overlaid.

2.3 Inference in an Ideal World

In the previous sections I specified a forward model for the phenomena we wish to inves-

tigate. By forward model, I mean that given values for the temporal gap τ , the speciation

model parameters λ, ρ and γ, and the sampling fraction α, we can simulate sample data

sets. It is the inverse of this procedure, however, that is of interest. We have a set of fossil

counts D, and we wish to make inferences about the underlying process by specifying

likely values for the parameters.

Previous research has been done on inference in branching processes, and Guttorp [57]

is a useful starting point for exploring previously published work. However, most of

the effort has been on questions of how to infer birth and death rates, and offspring

distributions. There is no literature dealing with inference in the partially observed tree

processes specified here.

Inference is usually done, whether in a frequentist or a Bayesian analysis, via the like-

lihood function, P(D|θ), where θ = (λ = (λ, γ, ρ, τ),α) is the multidimensional model

parameter. To calculate the likelihood, we can write

P(D|θ) =
∑

N

P(D|N ,α)P(N|λ), (2.16)
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2.3 Inference in an Ideal World

where N = (N1, . . . , N14) are the counts of the total number of primate species in each

interval. Equation (2.15) leads to the first term in the sum, and the second term is dealt

with in Section 2.3.2.

Equation (2.5) gives the transition probabilities for the diversity jumping from Z(s) = 1

to Z(t) = n, and it will be useful later to have the transition probabilities for jumps starting

from general diversity values. Let {Xi(t)}i≥1,t≥s be independent, identically distributed

copies of the branching process begun at time s, with Xi(s) = 1 for all i. The branching

property states that if Z(s) = k, then

Z(t) =

k∑

i=1

Xi(t).

To calculate the transition probability from k to n, we must calculate the k-fold convolution

of k independent branching processes. To simplify the notation, I write Z(t) = X1 + · · ·+
Xk, where Xi ∼ X(t) independently of other Xj, and I write ξ for ξ(s, t) and η for η(s, t).

Then, note that

P(Z(t) = n | Z(s) = k) = P(X1 + · · · + Xk = n)

=

k∧n∑

r=1

P(X1 + · · · + Xk = n,R = r) for n ≥ 1,

where R =

k∑

i=1

IXi 6=0

=
k∧n∑

r=1

∑

j1, . . . , jk :P
jk = n, R = r

P(X1 = j1, . . . ,Xk = jk, R = r)

=

k∧n∑

r=1

∑

j1, . . . , jk :P
jk = n, R = r

ξk−r(1 − ξ)r(1 − η)rηn−r

P(Z(t) = n | Z(s) = k) =





∑k∧n
r=1 ξk−r(1 − ξ)r(1 − η)rηn−r

(
k

r

)(
n − 1

r − 1

)
, n > 0

ξk, n = 0.

(2.17)

The two combinatorial terms above are the number of ways of putting n balls into k boxes

in such a way that there are exactly r non-empty boxes. We also wish to be able to

calculate the joint distribution of the size process at times s ≤ t1 ≤ . . . ≤ tk, which we
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2 Modelling Approach

can find by observing that the Markov property implies that

P(Z(t1) = n1, . . . , Z(tk) = nk) = P(Z(t1) = n1)

k−1∏

i=1

P(Z(ti+1) = ni+1 | Z(ti) = ni).

2.3.1 Conditioning on Non-Extinction

A mistake commonly made by previous authors [87] is failing to condition calculations

on the non-extinction of the process. We observe that there are extant primates, and

therefore all analyses should be conditional on this fact. In this section I give calculations

for the transition probabilities of the conditioned process. Firstly, consider a branching

process started from one species at time s:

P(X(t) = j | X(t) > 0) =
P(X(t) = j,X(t) > 0)

P(X(t) > 0)

= (1 − η)ηn−1,

where η ≡ η(s, t). Thus, X | X > 0 is a standard geometric random variable with

parameter 1 − η, and thus E(X(t) | X(t) > 0) = 1/(1 − η).

The process we are interested in starts with two lineages and survives to the present.

We also require that both sides of the tree survive, i.e., both lineages present at time

t = 0 have extant descendants. Otherwise the first lineage does not represent the LCA

of the primates, but an ancestor on the primate stem. Our modelling assumption is

that one side of the tree represents the haplorhini, the other the strepsirrhini, both of

which have extant representatives. Mathematically, the process we are interested in is

Z̃(t) =
(
X1(t) + X2(t)

)
IX1(t),X2(t)≥1. It takes the value 0 if either side of the tree dies

out, and equals Z(t) if both sides survive.

P(Z̃(t) = j) =

j−1∑

k=1

P(X1(t) = k)P(X2(t) = j − k) for j ≥ 1

= (1 − ξ)2(1 − η)2ηj−2(j − 1) for j ≥ 1

P(Z̃(t) = 0) = P({X1(t) = 0} ∪ {X2(t) = 0})
= 2ξ − ξ2

Thus, conditioning this process on non-extinction, we find that

P(Z̃(t) = j|Z̃(t) > 0) = (j − 1)(1 − η)2ηj−2 for j > 0 (2.18)

E(Z̃(t)|Z̃(t) > 0) =
2

1 − η
. (2.19)
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2.3 Inference in an Ideal World

We are now able to calculate the transition probabilities, if desired.

P(Z̃(t) = n | Z̃(s) = k) =
n−1∑

r=1

P(X1(t) = r, X2(t) = n − r | Z̃(s) = k)

=
k−1∑

m=1

n−1∑

r=1

P(X1(t) = r, X2(t) = n − r, X1(s) = m, X2(s) = k − m | Z̃(s) = k)

=
k−1∑

m=1

n−1∑

r=1

P(X1(t) = r | X1(s) = m)P(X2(t) = n − r | X2(s) = k − m)

× P(X1(s) = m, X2(s) = k − m | Z̃(s) = k).

All three terms in the above equation are known. A result of interest is the following:

P(X1(t) = m, X2(t) = k − m | Z̃(t) = k) =
P(X1(t) = m, X2(t) = k − m)

P(Z̃(t) = k)

=
P(X1(t) = m) P(X2(t) = k − m)

P(Z̃(t) = k)

=
1

k − 1
.

In other words, given the value of Z̃(t), the diversity is split uniformly across the two sides

of the tree, i.e., X1|Z̃(t) > 0 ∼ U{1, . . . , Z̃(t)}.

An oversight was made in previous publications [94, 118] when the parameters γ and ρ,

used in the logistic growth equation, were fixed at incorrect values. We can see from

Equation (2.10) that as t → ∞, the expected population size tends to 2/γ. As the

known diversity at the time of publication was thought to be 235 species, the authors set

γ = 2/235 = 0.0085. The value of ρ was fixed at ρ = 0.2995 by assuming that 90% of

modern diversity had been reached by the Middle Eocene, 49 My ago. While it is true

that the expected final population size will be 235 when using these values, it should be

noted that this is not the case if you then condition on non-extinction. The problem arises

due to the difference between Equations (2.9) and (2.19).

There are essentially two different ways to condition the process on non-extinction. The

classical approach is to look at the population size at time t, conditional on the tree

surviving to time t. In this case, the population size no longer tends to a limiting value:

E(Z̃(t) | Z̃(t) > 0) =
2

1 − η

=
λ(γt + ( 1

λ − 1
ρ)(1 − γ)(e−ρt − 1))

γ + (1 − γ)e−ρt
(2.20)
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where I have substituted Equations (2.13) and (2.14) for ξ and η. As t → ∞,

E

(
Z(t)

t
| Z(t) > 0

)
→ λ

2
.

Under this conditioning scheme we find that E(Z̃(t)|Z̃(t) > 0) → ∞ as t goes to infinity.

This result was noted by Foote and Raup [44] in the case of constant origination and ex-

tinction rates(3), and Asmussen and Hering [6] proved that conditional on non-extinction,

the discrete-time Galton-Watson process tends to infinity almost surely. Note that the

long-term expected behaviour of Z̃(t) now depends on the average species lifetime, 1/λ,

whereas λ does not appear in the logisitic equation (2.10).

The other way to condition on non-extinction is to look at the population size at time t

conditional on the tree surviving to some future time T . This is the form we are interested

in as we know the process survives to the present. Calculating this expectation we find

that

E(Z(t) | Z(T ) > 0) =
(1 − ξ(0, t))(1 − ξ(t, T ))(1 − η2(0, t)ξ(t, T ))

(1 − ξ(0, T ))(1 − η(0, t))(1 − η(0, t)ξ(t, T ))2
for t < T (2.21)

which is different to Equation (2.10) and Equation (2.20). I have made explicit the de-

pendance of ξ and η on time as the values vary with both t and T . Figure 2.2 shows all

three expected growth curves for γ = 0.0085, ρ = 0.2995 and λ = 0.4, which are the values

used in Tavaré et al. [118]. Notice how much faster and larger the population grows when

we condition on non-extinction. In Tavaré et al. the parameter values were chosen so as

to make the expected diversity equal to the observed diversity of 235. However, Equation

(2.10) was used for the calculations, rather than one of the two conditional forms, so the

parameter choice would not have had the desired effect. Our simulations assume that

extinction does not take place, and therefore we should use Equation (2.21) to determine

the parameter values. In fact, we do not take this approach, as we wish to allow the

parameters (including 1/λ) to vary and to see if there is any signal from the data about

their true value.

A note on the simulations

The way we described the model makes clear how to simulate X(t) and hence Z(t). To

simulate Z̃(t)|Z̃(T ) > 0, we simulate realisations of Z(t), and discard trees in which either

side of the tree dies out. This is an inefficient approach, however, as a large proportion

of the simulation time is wasted on simulating trees which go extinct. It is not currently

known how to efficiently simulate Galton-Watson trees conditioned on non-extinction.

(3)We are using heterogeneous rates p0(t) and p2(t).
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Figure 2.2: Plots of the expected diversity curves for (i) E(Z(t)) (dotted/bottom line); (ii)

E(Z̃(t) | Z̃(t) > 0) (dashed/middle line); and (iii) E(Z̃(t) | Z̃(T ) > 0) (solid/upper line) when
γ = 0.0085, ρ = 0.2995, λ = 0.4.

2.3.2 The Cumulative Process

In Equation (2.16), the likelihood function is decomposed into two parts. The first is part

of the model definition, whereas the second, P(N = (N1, . . . , Nk)|λ), we must calculate.

In an attempt to calculate this probability, let N(t) be the cumulative process, that is, the

number of species that have existed by time t. Note that N(t) is not Markovian. To see

this consider two trees, one with N(t) = Z(t) = n and the other with N(t) = n,Z(t) = 0.

In the former, N(t) will increase with positive probability, whereas in the latter case the

population is extinct and so N(s) = 0 for all s > t.

The two-dimensional process (N(t), Z(t)) is, however, a Markov Chain. The chain can

make the following transitions:

(n, z) → (n, z − 1) at rate zλp0(t) (a death)

(n, z) → (n + 2, z + 1) at rate zλp2(t) (a birth)

(n, z) → (n, z) at rate 1 − zλ (no change).
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2 Modelling Approach

Substituting these rates into the Kolmogorov forward equation gives

∂P(n,z)

∂t
(t) =

∑

(k,l)∈Z2

P(k,l)(t)A(k,l)(n,z)(t)

= (z + 1)λp0(t)P(n,z+1)(t) + (z − 1)λp2(t)P(n−2,z−1)(t) − zλP(n,z)(t).

Multiplying by uzwn, summing over z and n, and letting G(u,w, t) = E(uZ(t)wN(t)) gives

the partial differential equation

∂G

∂t
=
(
λp2(t)u

2w2 − λu + λp0(t)
) ∂G

∂u
, (2.22)

with boundary condition G(u,w, 0) = uw. This is a Riccati equation. No solution is listed

in the Handbook of First Order Partial Differential Equations by Polyanin et al. [97], and

Riccati equations do not in general have known solutions. I believe this is the case here.

Kendall [67] approaches the problem by considering the birth count B(t). This leads, in

a similar way to above, to an insoluble partial differential equation. He is able, however, to

give the asymptotic distribution of the cumulative process for the homogeneous subcritical

binary Galton-Watson process (i.e., where p0(t) ≡ p0 > p2 ≡ p2(t)). Puri [99] and Dwass

[40] derive related distributions, also, however, in the limit as t → ∞.

The insolubility of Equation (2.22) means that we are unable to find an expression

for the likelihood function, P(D|θ). As the likelihood is the medium through which we

would usually do inference, we shall need to consider a non-standard approach to inference.

Fortunately, all is not lost. For although the likelihood is unknown, we are able to simulate

data sets from the model. In the next chapter I show that this is sufficient to enable us

to do inference.
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Chapter 3

Approximate Bayesian Computation

The past few decades have seen a revolution in the approach mathematicians and scientists

take to modelling. The increased availability of cheap computer power has meant that a

modeller is now able to solve on his desktop machine equations for which he would have

needed an expensive supercomputer as little as a decade or two ago. This has led to the

consideration of models of greater complexity than was previously possible. Models with

tens or hundreds of parameters are now commonplace, and, as is to be expected, these

models are often mathematically intractable.

The main inference methods used for complex models are a collection of algorithms

known as Monte Carlo methods, and these are now commonplace in many fields of research.

However, most of these methods depend upon knowledge of the likelihood function, and

as in the previous chapter this is not always known. The likelihood function, P(D|θ), is

of fundamental importance to both the frequentist and the Bayesian schools of statistical

inference. The frequentist approach is based on maximum likelihood estimation in which

we aim to find θ̂ = arg maxθ P(D|θ), whereas the Bayesian approach is based around

finding the posterior distribution π(θ|D) ∝ P(D|θ)π(θ). If the likelihood is unknown,

both of these approaches may be impossible, and we will need to perform likelihood-free

inference.
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There are a large number of models for which the likelihood function is unknown, but

for which it is possible to simulate sample data sets from the model, P(·|θ). Likelihood-

free inference techniques that can be applied in this situation have been developed over

the previous decade and are often known as Approximate Bayesian Computation (ABC)

methods. The first use of ABC ideas was in the field of genetics, as developed by Tavaré

et al. [117] and Pritchard et al. [98]. ABC methods have since proved useful in a variety

of scientific application areas, including epidemiology, ecology, and genetics (see [111]).

The basic algorithm is based upon the rejection method, but has since been extended

in various ways. Marjoram et al. [76] suggested an approximate MCMC algorithm (cf.

Chapter 5), Sisson et al. [112] a sequential importance sampling approach, and Beaumont,

Zhang and Balding [11] improved the accuracy by performing local-linear regression on

the output (see Chapter 4 for more information). I give an extension in Chapter 5 by

combining MCMC with ABC to produce a hybrid sampler.

ABC methods are, as their name suggests, approximate. Little, however, is known

about their accuracy. In this chapter I outline the basic algorithm and illustrate the

approach with a few simple examples. I draw special attention to some of the problems

and challenges still to be solved, many of which are vital if these methods are to become

part of the statisticians tool-kit. In Sections 3.1.4 and 3.1.5 I give some of the advantages

and disadvantages of ABC compared with MCMC. Finally, in Section 3.2 I apply these

methods to the primate divergence time problem given in Chapter 2.

3.1 A Short Introduction to Approximate Bayesian Computation

Suppose that we have discrete data D which we assume is from model M, parameterised

by parameter θ (possibly multidimensional), and that θ has the prior distribution π(θ).

Our principal aim throughout this chapter is to find the posterior distribution of the

parameter given the data:

π(θ|D) =
P(D|θ)π(θ)

P(D)
.

Here, P(D) =
∫

P(D|θ)π(θ)dθ is a normalising constant often referred to as the evidence for

model M, or the marginal likelihood. For most models an analytic expression for π(θ|D)

can not be found, usually because the marginal likelihood can not be computed. The usual

alternative to analytic computation is to use one of the numerous Monte Carlo techniques

that have been developed. Our problem goes deeper than an inability to calculate the

marginal likelihood, we cannot calculate the likelihood term P(D|θ) either. However we

can simulate data sets D from the model and so all is not lost.
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3.1.1 Basic Algorithm

The simplest approximate Bayesian computation algorithm [98] is based upon the rejection

algorithm. This was first given by von Neumann [120] in 1951 and is as follows:

Algorithm A: Rejection Algorithm 1

A1 Draw θ from π(·),

A2 Accept θ with probability r = P(D|θ).

This algorithm, as it stands, is of no help. For the class of models we are interested in, the

likelihood P(D|θ) is unknown. However, there is an alternative version of this algorithm

which does not depend on explicit knowledge of the likelihood, but only requires that we

can simulate from the model:

Algorithm B: Rejection Algorithm 2

B1 Draw θ from π(·),

B2 Simulate data D′ from P(·|θ),

B3 Accept θ if D = D′.

Algorithm B can be thought of as a mechanical version of Bayes Theorem. To see that

these two algorithms do indeed give a sample from the posterior distribution, set I =

Iθ is accepted to be the indicator of whether θ is accepted. Then

P(I = 1) =

∫
P(I = 1|θ)π(θ)dθ =

∫
P(D|θ)π(θ)dθ = P(D),

which gives that

P(θ|I = 1) =
P(I = 1|θ)π(θ)

P(I = 1)
= π(θ|D)

as is required.

The acceptance rate of both algorithms is the normalising constant, P(I = 1) = P(D).

Thus, to get a sample of size n we have to wait a period of time that has a negative

binomial distribution, with parameters n and P(D). The mean number of data sets we

shall need to simulate is n(1 − P(D))/P(D), which is large when P(D) is small(1). This

presents us with a problem: for complex problems the probability that a simulated data

set, D′, exactly matches the observed data, D, will be tiny, and hence Algorithm B will

run extremely slowly.

(1)Note that the acceptance rate gives a natural way to estimate the usually tricky to calculate normal-
ising constant P(D). In Chapter 6 I look at using the acceptance rate to do model selection via the Bayes
factor.
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A solution to this problem is to relax the requirement of equality in step B3, and to

accept θ values when the simulated data is ‘close’ to the real data. To define ‘close’ we

require a metric ρ on the state space X , with ρ(·, ·) : X ×X → R+, and a tolerance ǫ. The

algorithm, our first approximate Bayesian computation algorithm, is then as follows:

Algorithm C: ABC 1

C1 Draw θ from π(·),

C2 Simulate data D′ from P(·|θ),

C3 Accept θ if ρ(D,D′) ≤ ǫ.

Unlike algorithms A and B, Algorithm C is not exact. Accepted θ values do not form a

sample from the posterior distribution, but from some distribution that is an approxima-

tion to it. The accuracy of the algorithm (measured by some suitable distance measure)

depends on ǫ in a non-trivial manner (cf. Section 3.1.2). Let πǫ(θ) denote the distribution

of accepted θ values when using tolerance ǫ. The distribution πǫ(θ) also depends on the

choice of metric, but this is not made explicit in the notation. If ǫ = 0, then we only

accept θ values when the simulated data precisely matches the observed data. In this

case Algorithm C is equivalent to Algorithm B and gives a sample from the posterior

distribution, i.e., π0(θ) = π(θ|D) and the algorithm is exact(2). If ǫ = ∞, all θ values are

accepted regardless of the simulated data. In this case we will be left with a sample from

the prior distribution, i.e., π∞(θ) = π(θ).

Note that the approximation in step C3 means that the algorithm can also be used for

continuous models. I will continue to use P(D|θ) to denote the model likelihood, even

though it may now represent a density function rather than a probability. This abuse of

notation should hopefully not cause any confusion. The acceptance rate is

P(I = 1) =

∫

Θ
P(ρ(D,D′) ≤ ǫ|θ)π(θ)dθ

=

∫

Θ

∫

D′:ρ(D,D′)≤ǫ
Pθ(D′|θ)π(θ)dD′dθ

which is an increasing function of ǫ, as is expected (Θ denotes the parameter space). If

the data are discrete, the integrals over the data can be replaced by sums over the same

range.

The tolerance ǫ represents a trade-off between computability and accuracy; large ǫ values

will mean more acceptances in step C3 above and will enable us to generate samples

(2)Note that I am assuming that ρ(·, ·) is a metric, so that ρ(D,D′) = 0 implies D = D′. In general this
will not be true, as it will be necessary to summarise the data if it is high dimensional. In this case ρ will
be a distance function, but not a metric. See Section 3.1.3 for more details.
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more quickly. However, the distribution obtained, πǫ(θ), may be a poor approximation

to π(θ|D). Small ǫ values will mean that our approximation is more accurate, but the

acceptance rate in step C3 will be lower and so we will require more computer time

to generate a sample of a given size. To choose a value of ǫ, we must decide upon a

compromise between the amount of time and computer power available, and the desired

accuracy. If we have a large cluster of computers available for use, we will be able to use a

smaller value of ǫ than if we only have a single desktop machine. Knowledge of acceptance

rates for different values of ǫ is at present a matter of experience. In general we find that

πǫ(θ) =

∫
D′:ρ(D,D′)≤ǫ P(D′|θ)π(θ)dD′

∫
Θ

∫
D′:ρ(D,D′)≤ǫ P(D′|θ)π(θ)dD′dθ

=
P(ρ(D,D′) ≤ ǫ|θ)π(θ)

P(ρ(D,D′) ≤ ǫ)
.

Output from Algorithm C satisfies

E(θ|ρ(D,D′) ≤ ǫ) =

∫
A E(θ|D′)P(D′)dD′

P(ρ(D,D′) ≤ ǫ)

where A = {D′ : ρ(D,D′) ≤ ǫ} and

E(θ2|ρ(D,D′) ≤ ǫ) =

∫
A E(θ2|D)P(D)dD
P(ρ(D,D′) ≤ ǫ)

=

∫
A[Var(θ|D) + E(θ|D)2]P(D)dD

P(ρ(D,D′) ≤ ǫ)
.

These results follow from an application of Fubini’s Theorem:

E(θ|ρ(D,D′) ≤ ǫ) =

∫

Θ
θπǫ(θ)dθ

=

∫

Θ

θP(ρ(D,D′) ≤ ǫ|θ)π(θ)dθ

P(ρ(D,D′) ≤ ǫ)

=

∫
Θ θπ(θ)

∫
A P(D|θ)dDdθ

P(ρ(D,D′) ≤ ǫ)

=

∫
A

∫
Θ θπ(θ)P(D|θ)dθdD
P(ρ(D,D′) ≤ ǫ)

by Fubini’s Theorem

=

∫
A E(θ|D)P(D)dD
P(ρ(D,D′) ≤ ǫ)

A similar calculation works for the second moment. Experience suggests that under suit-

able conditions on the choice of metric, the variance of the approximation πǫ(µ) is always

greater than the true posterior variance. If this is true, the approximation would always

be over-dispersed compared with the true distribution and thus the approximation is a

conservative one. That is, predicted posterior credibility intervals will be larger than the

true posterior credibility interval.

33



3 Approximate Bayesian Computation

3.1.2 An Illustrative example

I now illustrate the basic idea with a simple normal example for which we can compute

everything analytically. This will allow us to examine more closely the effects of the

ABC algorithm. Suppose X1, . . . ,Xn ∼ N(µ, σ2) are an independent sample from the

normal distribution with known variance σ2. For simplicity suppose that the mean µ has

a uniform prior on [a, b]. The posterior distribution of µ, given the data, can be found as

follows:

π(µ|D) ∝ Ia≤µ≤b exp (−
∑

(xi − µ)2

2σ2
)

∝ Ia≤µ≤b exp (− n

2σ2
(µ − x̄)2).

So the posterior distribution of µ is a truncated normal distribution (truncated outside

of [a, b]) with mean x̄ and variance σ2/n. If the prior distribution for µ is the unin-

formative improper prior π(µ) ∝ 1, µ ∈ R, then the posterior distribution becomes

µ|D ∼ Normal(x̄, σ2

n ).

The mean of the data is sufficient for µ (cf. Section 3.1.3 for details of summarising

data) and so we can compare data sets by comparing their means. I shall assume without

loss of generality that the data has a mean value of 0. Using the absolute distance metric

ρ(x,x′) = |x̄− x̄′| gives the following algorithm:

• Pick µ from the prior distribution,

• Simulate X ′
1, . . . ,X

′
n from N(µ, σ2),

• Accept µ if |x̄′ − 0| ≤ ǫ.

Figure 3.1 shows plots of the sample distribution obtained from this algorithm, along with

the true posterior distributions for various different values of ǫ. The dashed lines are the

densities obtained from using kernel estimates on 1000 successful draws from the above

algorithm. Notice that for small ǫ the approximation is excellent, but for larger ǫ we have

an over dispersed approximation, as expected.

For the normal distribution with uniform priors, calculation of πǫ(θ) is possible. We can

write down the approximate density in a semi-explicit form:

πǫ(µ) =

∫ ǫ
−ǫ

√
n

2σ2 e−
n

2σ2 (y−µ)2dy
∫∞
−∞

∫ ǫ
−ǫ

√
n

2σ2 e−
n

2σ2 (y−µ)2dydµ

=

Φ

(
ǫ−µ√
σ2/n

)
− Φ

(
−ǫ−µ√

σ2/n

)

2ǫ
. (3.1)
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Figure 3.1: Plots of the true posterior distribution for µ (solid line), and the ABC estimate using
1000 samples (dashed line). A value of σ2 = 1 was used for all four plots.

where Φ is the standard normal distribution function. In a similar way to above, we can

calculate the first two moments of the approximate distribution:

E(µ||x̄| ≤ ǫ) =

∫ ∞

−∞

µP(|x̄| ≤ ǫ|µ)π(µ)

P(|x̄| ≤ ǫ)
dµ

=

∫∞
−∞ µ

∫ ǫ
−ǫ

√
n

2πσ2 e−
n

2σ2 (y−µ)2dydµ
∫∞
−∞

∫ ǫ
−ǫ

√
n

2πσ2 e−
n

2σ2 (y−µ)2dydµ

=

∫ ǫ
−ǫ

∫∞
−∞ µ

√
n

2πσ2 e−
n

2σ2 (y−µ)2dµdy
∫ ǫ
−ǫ

∫∞
−∞

√
n

2πσ2 e−
n

2σ2 (y−µ)2dµdy
by Fubini’s Theorem

= 0

Var(µ|ρ(D,D′) ≤ ǫ) =

∫∞
−∞ µ2

∫ ǫ
−ǫ

√
n

2πσ2 e−
n

2σ2 (y−µ)2dydµ
∫∞
−∞

∫ ǫ
−ǫ

√
n

2πσ2 e−
n

2σ2 (y−µ)2dydµ
=

σ2

n
+

1

3
ǫ2.
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3 Approximate Bayesian Computation

This shows that the estimate of the posterior mean is unbiased in this case. We can also

see that the approximate posterior variance increases quadratically in ǫ. This is a precise

mathematical description of the over-dispersion of πǫ(µ) observed above.

We can examine the error between the approximation and the true posterior distribution

by performing a Taylor expansion on Equation (3.1). Letting x = −µ/
√

σ2/n and h =

ǫ/
√

σ2/n and Taylor expanding the Gaussian distribution function about x for small h

gives:

Φ

(
ǫ − µ√
σ2/n

)
= Φ(x + h) = Φ(x) + hΦ′(x) +

h2Φ′′(x)

2!
+

h3Φ′′′(x)

3!
+ o(h3)

so that

πǫ(µ) =
Φ(x + h) − Φ(x − h)

2ǫ

=
1

ǫ

(
hΦ′(x) +

h3

6
Φ′′′(x)

)
+ o(h2)

Because Φ′(x) = φ(x), i.e., the standard Gaussian probability density function, we can

see that to first order the approximation is exact:

πǫ(µ) = π(µ|D) + o(ǫ).

To second order we find that

πǫ(µ) =

(
1 − nǫ2

σ2
+

n2ǫ2µ2

σ4

)
1√

2πσ2/n
exp

(
− µ2n

2σ2

)
+ o(ǫ2).

The total variation distance between the posterior distribution and the approximation is

defined to be

dTV (πǫ(µ), π(µ|D)) =
1

2

∫
|π(µ|D) − πǫ(µ)| dµ.

We can calculate this as follows:

dTV (πǫ(µ), π(µ|D)) =
1

2

∫ ∞

−∞

∣∣∣∣
n2ǫ2µ2

σ4
− nǫ2

σ2

∣∣∣∣ .
exp(−µ2n

2σ2 )
√

2πσ2/n
dµ

=
nǫ2

2σ2

∫ ∞

−∞
|x2 − 1|exp(−x2/2)√

2π
dx

=
nǫ2

2σ2

(∫ 1

−1
(1 − x2)

exp(−x2/2)√
2π

dx + 2

∫ ∞

1
(x2 − 1)

exp(−x2/2)√
2π

dx

)

=

√
2

π
exp(−1/2)

ǫ2

σ2/n
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3.1 A Short Introduction to Approximate Bayesian Computation

Hence, the total variation distance between the two distributions is approximately

cnǫ2

σ2
+ o(ǫ2)

where c =
√

2/π exp(−1/2) ≈ 1/2. Thus, for a given size of error, the tolerance value we

are required to use depends on the size of the posterior variance σ2/n. For small posterior

variances we shall need to use a smaller value of ǫ, whereas for large variances we can use

a larger values of ǫ.

Another simple example involves data X ∼ Poisson(θ), with a conjugate Gamma(α, β)

prior distribution for θ. The posterior distribution of θ is then a Gamma(x + α, 1 + β)

distribution. Using the metric ρ(x, x′) = |x − x′|, where x is the observed data, we find

that the approximate posterior distribution can be computed exactly. By writing

P(ρ(X,x) ≤ ǫ|θ) =

y=x+ǫ∑

y=x−ǫ

e−θθy

y!

we find that for general ǫ, the approximate posterior distribution is

πǫ(θ) =
θα+x+ǫ−1e−θ(1+β)

Z

(
2ǫ∑

n=0

θn(x − ǫ)!

(x − ǫ + n)!

)

where the normalising constant Z, is

Z =
1

(1 + β)α+x−ǫ

2ǫ∑

n=0

(x − ǫ)!

(x − ǫ + n)!

Γ(x − ǫ + α + n)

(1 + β)n
.

The left-hand plot of Figure 3.2 shows how πǫ(θ) changes as ǫ takes values from 0 to 4.

The red curve with the highest peak (and smallest variance) is the true posterior (ǫ = 0),

and as ǫ decreases we can see that the dispersion increases. The green curve furthest to

the right is the prior and we can see this is close to π4(θ). The right hand plot shows how

the total variation distance between the two distributions changes as ǫ increases for given

parameter values.

3.1.3 Data Summaries

For problems with large amounts of high-dimensional data, Algorithm C will be imprac-

tical, as the simulated data will never closely match the observed data. The standard

approach to reducing the number of dimensions is to use a (possibly multidimensional)

summary statistic, S(D) say, which should summarise the important parts of the data.

We then adapt Algorithm C so that parameter values are accepted if the summary of the

simulated data is ‘close’ to the summary of the real data.
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Figure 3.2: The plot on the left shows πǫ(θ) as ǫ varies from 0 (red left hand curve) to 4. The
green curve furthest to the right is the prior density. The right hand plot shows how variation
distance between the approximation and the posterior changes with ǫ. The following values were
used: α = 1.5, β = 1, x = 10.

Algorithm D: ABC 2

D1 Draw θ from π(·),

D2 Simulate data D′ from P(·|θ),

D3 Accept θ if ρ(S(D), S(D′)) ≤ ǫ.

The statistic S(D) is called a sufficient statistic for θ if and only if π(θ|D) = π(θ|S(D)), i.e.,

if the conditional distribution of θ given the summary equals the posterior distribution(3).

The idea is that if S(D) is known, then the full data set, D, can not provide any extra

information about θ.

If a sufficient statistic is available, then Algorithm D is essentially the same as Algorithm

C (in the normal distribution example given above, we really used Algorithm D). How-

ever, for problems where both the posterior distribution and the likelihood function are

unknown, it will not in general be possible to determine whether a statistic is sufficient.

Instead, it is left to the intuition and experience of the practitioner to find a summary

statistic that works well and captures the key aspects of the data. For difficult problems

this may be a case of trial and error, rather than following a particular strategy.

(3)This is the Bayesian definition of sufficiency. An equivalent definition is that S is sufficient if and
only if the conditional distribution of D given S(D) does not depend upon θ.
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3.1 A Short Introduction to Approximate Bayesian Computation

3.1.4 Advantages of ABC

The approximate Bayesian computation techniques listed here and elsewhere have poten-

tial advantages over many other Monte Carlo techniques. In this section I list some of

these advantages. However, it should be noted that these are all subject to the provisos

of the following section.

The first thing to note, is that if the likelihood function is unavailable or prohibitively

expensive to compute we will be unable to use traditional Monte Carlo approaches. How-

ever, even if the likelihood function is known, ABC methods can be useful as a potential

first-pass inference technique.

Many Monte Carlo techniques can be difficult to code and suffer from tuning problems

that can take the statistician much time to solve. Markov chain Monte Carlo (MCMC)

algorithms, for example, have several associated difficulties: the Markov chains may not

converge to equilibrium, there may be many parameters to fine-tune to control the mixing,

and the output received is dependent and so the output may need to be thinned. The

need to ‘tune’ so many parameters means that using MCMC is often time consuming

as each time the model is changed, the mixing parameters must be retuned in order to

get satisfactory results. On the other hand, ABC methods need no readjustment upon

changes to the model, which means they could be used in the development stage when the

model is likely to undergo several iterations(4). Another advantage of ABC over MCMC,

is that ABC can be run in parallel on different machines.

ABC methods also allow different types of data to be used, even those with a complex

dependency structure. In many fields such as epidemiology, population genetics and evo-

lutionary biology, there is often an underlying unobserved tree structure, which leads to

complex dependencies in the data. In Section 4.2, I show that combining different data

types is simple when using ABC and is done by changing the metric that is used.

The acceptance rate of these algorithms may provide a natural measure of model fit

that can be used to estimate Bayes factors. These can then be used in model selection.

This idea is briefly explored in Chapter 6.

Finally, there is a large appetite in the scientific community for any method that allows

for easier use of Bayesian methods. For example, the BUGS project [115] provides free

and easy to use software that simplifies the setting up of Bayesian hierarchical models and

then helps to find the posterior distributions using Gibbs sampling. ABC, unlike MCMC,

is almost trivial to code once you are able to simulate observations from the model.

(4)The ABC algorithms do require some tuning as we must choose a metric and a value for ǫ. However,
this can be done after the simulations have been run. If we save all the output from our simulations, we
can then post-process this data by trying various different values for ǫ and ρ. This allows us to choose
optimal values with a minimal amount of computation.
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3 Approximate Bayesian Computation

3.1.5 Disadvantages and Problems

ABC methods are still in their infancy. There are many technical questions which remain

to be answered, and until this time it is likely that these techniques will be used as a

method of last resort only. For example, currently it is not known how accurate the

approximation πǫ(θ) is, or how the accuracy depends on the choice of metric and ǫ. It is

shown in Section 4.5 that the choice of metric does matter.

Another problem is that if data summaries need to be used, the intuition of the prac-

titioner is relied upon when choosing a good summary statistic. Ideally, some notion of

approximate sufficiency is needed (cf. Le Cam [26]) along with a methodical way of finding

summaries which are nearly sufficient and which therefore capture the pertinent parts of

the data.

However, even if these two technical issues are addressed satisfactorily, some disadvan-

tages of ABC will remain. The most serious of these, as pointed out by Sisson [111], is that

due to sampling from the prior distribution each time, these algorithms often run slowly

when compared to MCMC techniques, especially as the number of parameters increases.

Marjoram et al. [76] tried to address this with an approximate MCMC algorithm, and

in Chapter 5, I give a method that allows exact MCMC and ABC to be combined for

problems in which some computation is possible.

The remainder of the chapter contains the details of how to apply these methods to the

problem outlined in Chapter 2.

3.2 Inference of a Single Divergence Time

We are now able to perform the first inferences for the primate evolution model discussed

in Chapter 2. In this chapter I focus only on estimating the primate crown-divergence

time. This problem been tackled previously in Tavaré et al. [118] using the same model,

but a different non-Bayesian inference technique based on minimising the sum of square

differences between observed and expected data sets. This problem was also addressed

in Plagnol et al. [94] using a similar approach to ours, but with a couple of important

differences. Since these publications, the data set has changed due to the discovery of new

fossils, and the reclassification of some others, and so for this reason, and to introduce a

couple of changes and developments from [94, 118], I give another analysis of the data here.

This analysis will also be important in order to have an understanding of the developments

that follow. The data set used is given below in Table 3.1 and is obtained from Table 1.1

by finding the row totals. Note that the strepsirrhine-haplorhine stem-divergence time is

the same as the primate crown-divergence time, as the strepsirrhini and haplorhini are

the only two extant suborders of the primates.

Before implementing the inference algorithms discussed in the previous section, we must
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3.2 Inference of a Single Divergence Time

Table 3.1: The strepsirrhine and haplorhine stem fossil counts

Epoch Tk (My) No. of Primate
Fossils

Extant 0 376

Late-Pleistocene 0.15 22
Middle-Pleistocene 0.9 28
Early-Pleistocene 1.8 30
Late-Pliocene 3.6 43
Early-Pliocene 5.3 12
Late-Miocene 11.2 38
Middle-Miocene 16.4 46
Early-Miocene 23.8 34
Late-Oligocene 28.5 3
Early-Oligocene 33.7 22
Late-Eocene 37.0 30
Middle-Eocene 49.0 119
Early-Eocene 54.8 65
Pre-Eocene 0

decide on a set of prior distributions to use. This is done in the next section.

3.2.1 Prior Distributions

There is a large and diverse literature concerning the selection of prior distributions. Argu-

ment rages about whether one should take an objective Bayesian viewpoint, as promoted in

Berger [17], or a subjective viewpoint, as argued in Goldstein [53]. An objective Bayesian

approach involves choosing prior distributions according to some rule or convention (see

Kass et al. [65]) in the hope that this apparent objectivity will silence the critics of the

Bayesian paradigm. The subjective approach is to say that the very notion of randomness

is inherently subjective, as is the scientific method, and that it only makes sense to have

personal prior distributions. While this is the viewpoint to which I subscribe, it needs to

be born in mind that scientists often turn to statistics for an objective validation of their

work. It should also be remembered that in the majority of cases the choice of model has

a far greater effect on the outcome of any analysis than the choice of prior distribution.

Our approach here is a compromise between the two schools of thought. Due to the

complex nature of our problem, the calculation and simulation of reference priors, such

as a Jeffreys’s prior [61] or a Bernardo’s reference prior [18], is infeasible or impossible.

However, flat prior distributions are usually seen as more objective than other distributions

and so we shall use uniform prior distributions on all of the parameters. The ranges are
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decided upon after taking the advice of our scientific collaborators, although we shall vary

them throughout the thesis, depending on the model we are examining.

It is important when choosing prior distributions to relate theory to practice. In other

words, when choosing the prior distributions for the logistic growth parameters we keep

in mind that ρ represents the speed at which diversity reaches its maximum, and 2/γ

determines the expected long-term population size, etc. In later chapters, special attention

will be given to the sampling fractions α = (α1, . . . , α14), but for this chapter and the

next, I follow Tavaré et al. and make the parsimonious assumption that the αk have fixed

ratios. We write

αk = αpk, for k = 1, 2, . . . , 14,

where ppp = (p1, . . . , p14) is a constant vector, and α ∈ R
+ is allowed to vary. The main

reason for making this assumption is that the ABC algorithm runs slowly when there

are many parameters. I shall use the same fixed ratio as used in [118], with the values

reproduced in Table 3.2. This approach is essentially a subjective Bayesian approach; the

authors are saying that this is their considered opinion, here are the conclusions it leads

to. Others are free to try their own values as they please. In Chapter 5 I question the

validity of this assumption and introduce new methodology which allows us to replace it

with independent priors for each αk.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pk 1.0 1.0 1.0 1.0 0.5 0.5 1.0 0.5 0.1 0.5 1.0 1.0 1.0 0.1

Table 3.2: Sampling ratios pk, taken from [118].

Initially, I use the following set of prior distributions:

τ ∼ U [0, 100] (temporal gap)

α ∼ U [0, 0.3] (sampling fraction)

γ ∼ U [0.005, 0.015] (growth parameter)

ρ ∼ U [0, 0.5] (growth parameter)

1/λ ∼ U [2, 3]. (mean lifetime)

(3.2)

3.2.2 Choice of metric

One crucial aspect of approximate Bayesian computation is the choice of ρ in algorithm

D. As already mentioned, there is no theory to help guide our choice, or to help assess

the quality of any given choice. I use several different metrics throughout this thesis, with

the choice depending on what aspect of the data I wish to concentrate on. However, the

metric used most of the time, suggested in [94], is what I will refer to as the standard
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3.2 Inference of a Single Divergence Time

metric and label ρs. Let D+ represent the total number of fossils found,

D+ = D1 + · · · + D14

and let QQQ be a vector of proportions

QQQ = (Q1, . . . , Q14) :=

(
D1

D+
, . . . ,

D14

D+

)
.

Measure the distance between the real data D, and a simulated data set D′, by

ρs(D,D′) =

∣∣∣∣
D′

+

D+
− 1

∣∣∣∣+
1

2

14∑

j=1

|Qj − Q′
j|. (3.3)

The first term on the right measures the difference in the total number of fossils found

in the simulated and real data sets, while the second term is the total variation distance

between the two vectors of proportions.

Another metric, which is perhaps more intuitive, is the sum of squares, or Euclidean

metric

ρe(D,D′) =

14∑

i=1

(Di − D′
i)

2. (3.4)

Figure 3.3 shows scatter plots of ρe and ρs values for different simulated data sets. Plot A

shows that from a distance both metrics give similar rankings to the data sets. However,

when we zoom in and look more closely in Plot B, we can see that the metrics do rank

data sets differently and so using different metrics will lead to different results. In Section

4.5 I give details from a simulation study comparing the effects of the two metrics.

0 5 10 15 20

0
50

0
15

00
25

00

0.10 0.15 0.20 0.25 0.30 0.35 0.40

40
80

12
0

16
0

Plot A Plot B

ρs(D,D′)ρs(D,D′)

ρ
e
(D

,D
′ )

ρ
e
(D

,D
′ )

Figure 3.3: Scatter plots of values of ρp and ρe on a variety of simulated data sets.
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3.2.3 Inference Algorithm

We are now in a position to write down our simulation approach. Firstly, I describe how

to simulate continuous-time Galton-Watson trees as described in Chapter 2:

1. Begin with two species at time t = −54.8 − τ My(5) and let Z keep track of the

number of extant species at time t. Initially Z = 2.

2. Simulate a realisation of L ∼ Exp(λZ) (i.e., the time to the minimum of Z indepen-

dent Exp(λ) random variables) and set the new time to be t = t + L.

3. Randomly select one of the Z extant species and set its death time to be t. With

probability p2(t) give the terminated species two offspring with birth time t and set

Z = Z + 1. Otherwise set Z = Z − 1. Return to step 2.

Beginning the simulations with two species allows us to control the initial divergence time.

In future I shall refer to the two sides of the tree, each evolving from one of the initial

species. One of the sides represents the haplorhine species, and the other the strepsirrhine

species. We require that both sides of the tree survive to time 0, as otherwise the initial

divergence time does not represent the primate crown-divergence time, but would represent

the stem-divergence time instead.

Recall that we wish to sample from the posterior distribution P(D|θ), and that N
represents the number of species in each interval. Inference in this model is slightly

more complicated than in Section 3.1 due to the hidden variable N . By writing π(θ,N ) =

P(N|θ)π(θ) for the joint distribution of θ and N , we can see that the posterior distribution

of (θ,N ) is found via

π(θ,N | D) ∝ P(D | θ,N )π(θ,N ).

We can then use the algorithms stated previously to get draws from the posterior distri-

bution π(θ,N|D) as follows:

Algorithm E: Inferring Divergence Times

E1 Draw θ from π(θ).

E2 Simulate a tree and fossil finds using parameter θ. Count the number of simulated

fossils in each interval, D′ = (D′
1, . . . ,D

′
14).

E3 Accept parameter θ if ρ(D,D′) ≤ ǫ. Return to step E1.

By ignoring accepted values of N , we are left with values of θ drawn from an approxima-

tion to the marginal posterior, π(θ|D), as required. The results from this algorithm are

presented in Section 3.2.4.

(5)Recall that the oldest primate fossil is at most 54.8 My old.
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3.2 Inference of a Single Divergence Time

A note about the simulations

The simulations in this thesis are computationally intensive. The majority of the results

are obtained by using a high-performance computing facility where it is possible to use

many processors simultaneously. One of the advantages of ABC methods are that the

algorithms are extremely easy to run in parallel with no issues about collating results

from different nodes.

In later chapters, it will be important to know the complete structure of the tree, rather

than just the population size at time t. Consequently, we shall need to keep track of the

relationships between species. This can be done easily in the C programming language by

storing the tree as a sequence of nested pointers. We declare treenode to be a structure

which contains two floating point numbers representing that species birth and death time,

and three pointers to other treenodes, one of which is its parent (allowing us to search

backwards in time) and the other two are its offspring (allowing us to search forwards in

time). If the species has no offspring the pointers are set to NULL. We also declare the

structure to contain an array of integers 14 numbers long. Each number is set to 0 or 1

according to whether a fossil of that species is discovered in the corresponding interval. If

a species is not extant during a given interval, obviously it cannot be preserved as a fossil

in that interval.

Once we have a sample tree we can simulate fossil finds by drawing a Bernoulli(αi) ran-

dom variable for each species that lived in interval i to determine whether the species was

found as a fossil in that interval. The nested tree structure used allows us to use recursive

functions making operations on the tree computationally simple. A simple function, such

as

gen fos(struct treenode *tree)

{
generatefossils(tree) // generates fossils for that species only

if (tree→left != NULL) gen fos(tree→left)

if (tree→right != NULL) gen fos(tree→right)

}
will then generate fossils on the entire tree.

3.2.4 Results

Our initial simulations were done using the prior distributions given by Equation (3.2),

the standard metric ρs, and ǫ = 0.1. This value of ǫ was chosen by initially saving all

of the output from the simulations, and then reducing the value of ǫ until the number

of accepted results became too low. After approximately 50 hours of computer time,

we were left with 7076 results, which is sufficient to get a clear picture of the marginal

posterior distributions. If we use a smaller value ǫ we do not get a large enough sample.
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3 Approximate Bayesian Computation

For example, with ǫ = 0.05 we are left with only 76 accepted results. By the acceptance

rate I mean the reciprocal of the number of trees successfully simulated (i.e., at time 0

both sides of the tree have extant representatives) per accepted tree in step E3 of the

inference algorithm. Lower acceptance rates will require that we simulate for longer. The

acceptance rate for this simulation was 2560 successfully simulated trees per simulated

tree. Note, however, that on average only 1 out of every 2.5 attempts at simulating a tree

is successful (i.e., 60% of all simulations go extinct on one side or the other before time

t). Table 3.3 contains a summary of the posterior distributions obtained, and Figure 3.4

contains plots of the marginal distributions. I have also included summaries of N0 values,

the present day diversity, for reasons that will become clear in later chapters.

Table 3.3: A summary of the posterior distributions found when dating the primate divergence
time. The results were obtained using ρs with ǫ = 0.1 (n=7076). LQ denotes the lower quartile
and UQ the upper quartile of the posterior distributions.

Min. LQ Median Mean UQ Max.

N0 50 112 167 215 262 2136
τ 3.9 16.0 23.0 25.8 32.4 93.4
α 0.010 0.073 0.118 0.130 0.178 0.300
ρ 0.020 0.294 0.373 0.359 0.440 0.500
γ 0.0050 0.0077 0.0101 0.0101 0.0126 0.0150

1/λ 2.00 2.34 2.59 2.57 2.81 3.00

The first thing to notice about these results is that the posterior distribution for τ

is bounded away from the origin. Recall from the introduction that palaeontologists

interpreting the fossil record have concluded that the primates did not coexist with the

dinosaurs (the dinosaurs died out 65 My ago at the end of the Cretaceous era). These

results suggest that conclusion can not be made using this data. The posterior probability

of a Cretaceous origin for the primates is P(τ > 10.2|D) ≈ 0.95, where 10.2 is significant

as it is the minimum temporal gap size required for a primate divergence time in the

Cretaceous. This clearly shows that under this model, the primate fossil data is insufficient

to constrain primate origins to the Cenozoic.

The marginal posterior distributions of the growth parameters ρ, γ and λ suggest that

we should perhaps extend the range of their prior distributions. If we do this, however, we

find that we must extend the ranges a large amount to find the complete range of values

supported. For example, values of 1/λ in the range 0 to 30 all have positive posterior

probability. The effect on the posterior of τ is to lose information, with the posterior

much more uniformly spread across the interval [0, 100]. I do not extend the prior ranges

of ρ, γ and λ for future calculations as these ranges represent our a priori beliefs, and can

be defended on those grounds.

46



3.2 Inference of a Single Divergence Time
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Figure 3.4: Marginal posterior distributions obtained when dating the primate divergence time.
The prior distributions are overlaid. The results were obtained using ρs with ǫ = 0.1.

The final point to note is that the majority of the mass in the distribution of N0 is

concentrated on values of 250 and less. Recall that we know that there are 376 extant

primate species. In the next chapter I show how to take this data into account in our

simulations.

3.2.5 Summary

In this chapter I have introduced Approximate Bayesian Computation and shown how

it can be used to perform inference in the speciation model given in Chapter 2. The

main conclusion is that the primate fossil record is not sufficient to constrain the primate

divergence time to the Cenozoic, as claimed by many palaeontologists.

The analysis in this chapter has only made use of part of the information contained in
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3 Approximate Bayesian Computation

the data set. We ignored the fact that we know the number of extant primate species, and

the fact that we have information about the internal structure of the tree. The anthropoids

are a monophyletic clade which diverged from other primates at least 37 My ago, and we

can use the anthropoid fossil counts to inform the structure of the simulated trees. In the

next chapter, I exploit these data to get more information out of the limited data that is

available.
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Chapter 4

Using more of the Available Information

The inference technique described in the previous chapter is an important first step towards

a more rigourous approach to inferring divergence times from the fossil record. Yet a quick

comparison between Table 1.1 containing the complete data set, and Table 3.1 containing

the data used for that analysis, shows that we have not used most of the rich data structure

given in Table 1.1. Every known primate species has been carefully classified into one of

two suborders, the haplorhini and the strepsirrhini. The strepsirrhine species have wet

noses and the suborder contains the lemur and loris families. The haplorhini are the dry-

nosed primates and contains the tarsier (long feet) and anthropoid (the higher primates)

families. The anthropoids are in turn divided into two parvorders: the platyrrhini and

catarrhini. The platyrrhini are the new world (American) monkeys and tend to be small,

arboreal (live in trees) and nocturnal. The catarrhini are distinguished from the platyrrhini

by their downwards pointing noses, and includes the old world monkeys and the ape family.

They are generally diurnal (active during the day) and are consequently better understood

than the platyrrhini.

The paucity of the primate fossil record, and the limited opportunites available for its

improvement, make it vital that we extract the maximum amount of information possible

from the data we have. Our aim in this chapter is to set out an approach that will take into

account some of the structure in the data so that we are able to simultaneously estimate
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4 Using more of the Available Information

two different divergence times. In the next section I give a method that will allow the joint

distribution of the primate and anthropoid divergence times to be inferred. By inferring

the joint distribution we hope to obtain a more accurate picture than would be possible

by doing two independent inferences.

The modern diversity (number of extant species) of each taxonomic grouping is also

known and can be used as an additional piece of data. The values shown in Table 1.1

come from Groves [56] and are continually being updated. In 2002 the known modern

diversity was 235 primate species [118], but by 2005 Groves gives 376 species. Since

this publication there have been several new discoveries. These include the Bemaraha

Woolly Lemur (Avahi cleesei), named after lemur enthusiast and actor John Cleese, and

the GoldenPalace.com monkey (Callicebus aureipalati), whose name was sold for $650,000

at auction. In Section 4.2 I include this information about the diversity in the analysis

and explain its importance to our inferences. In Section 4.3 I allow the haplorhini and

strepsirrhini, the two different sides of the evolutionary tree, to evolve independently. In

Section 4.4 I introduce the idea of using local-linear regression on the output, before giving

a short simulation study to indicate the accuracy of our methods.

4.1 Dating Two Divergence Times

Our aim in this section is to develop a methodology that takes into account the internal

tree structure and allows us to infer the joint distribution of two divergence times.

Table 4.1 shows the fossil counts for two different taxonomic groupings. The first column

of integers gives the number of crown-primate species discovered, D = (D1, . . . ,D14), say.

The second column gives the number of crown-anthropoid species, A = (A1, . . . , A14).

Notice that Dk ≥ Ak for all k, as the antropoids are a subset of the primates. No primate

fossils predating the Eocene epoch have been found, with the oldest primate fossil being at

most 54.8 My old. No anthropoid fossils have been found before the Late-Eocene epoch,

with the oldest anthropoid fossil being at most 37 My old.

As in Chapter 3, let τ denote the temporal gap between the oldest primate fossil and

the last common ancestor (LCA) of the extant primates. Analogously, let τ∗ denote the

temporal gap between the oldest anthropoid (platyrrhine-catarrhine) fossil and the LCA

of the anthropoids. See Figure 4.1 for clarification.

We could choose to date the anthropoid divergence time using the single-split approach

given in the previous chapter. Using just the anthropoid fossil counts in Table 4.1, the prior

distributions (3.2), and the sampling ratios given in Table 3.2 (but with p12 = p13 = 0.1),

we find the posterior distributions for τ∗ and α shown in Figure 4.2. The range extension

observed for τ∗ is small, with a median value of 2.6 My, and lower and upper quartiles of

1.1 My and 5.6 My respectively. This is much shorter than the values of τ observed in the
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4.1 Dating Two Divergence Times

Table 4.1: Strepsirrhini/haplorhini (primate-crown) and platyrrhini/catarrhini (anthropoid
crown) stem fossil counts

Primate Anthropoid
Epoch Tk Crown Crown

(My) Fossil Counts, D Fossil Counts, A
Extant 376 281

Late-Pleistocene 0.15 22 22
Middle-Pleistocene 0.9 28 28
Early-Pleistocene 1.8 30 30
Late-Pliocene 3.6 43 40
Early-Pliocene 5.3 12 11
Late-Miocene 11.2 38 34
Middle-Miocene 16.4 46 43
Early-Miocene 23.8 34 28
Late-Oligocene 28.5 3 2
Early-Oligocene 33.7 22 6
Late-Eocene 37.0 30 2
Middle-Eocene 49.0 119 0
Early-Eocene 54.8 65 0
Pre-Eocene 0 0

previous chapter.

The negative aspect of this approach is that it involves eliminating a large part of our

data set. We made no use of the primate fossil counts D, and consequently ignored the

unusual structure shown by the data. Note that in the most recent epochs, nearly all fossil

finds have been of anthropoid species. We must go back at least 33 My before we find a

significant number of non-anthropoid fossils, giving the data an unusual structure. The

anthropoid subtree that originates some time before the start of the Late-Eocene soon

grows to dominate the tree in terms of the number of fossil species found. We know that

there are at least 95 species of primates which are not anthropoids. However, for some

reason these species were not preserved as fossils.

The unusual tree structure may be of some importance, and taking it into account may

help to give a clearer picture of evolutionary events. It is only by doing joint inference of

τ and τ∗ that we will see the significance, or otherwise, of this structure. Our approach

is based on finding the subtree with fossil counts that most closely match the anthropoid

fossil counts. We extend Algorithm E in Chapter 3, so that once we have a simulated tree

with fossil counts close to D, we perform an exhaustive search for the subtree that has

fossil counts closest to A. If the distance between simulated and real anthropoid fossil

counts is less than our tolerance, ǫ2, we measure the temporal gap from the base of this

subtree to the start of the Late-Eocene interval. This is then our estimate for τ∗.
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Figure 4.1: A sample primate speciation tree with anthropoid-subtree highlighted. Here, tree
A represents the haplorhini and tree B the strepsirrhini, while subtrees 1 and 2 represent the
platyrrhine and catarrhine species. Parameter τ records the distance between the base of the Eocene
and the base of the tree, whereas τ∗ records the distance between the base of the Late-Eocene and
the anthropoid subtree.

There are a couple of technical points we must check. Firstly, we require that the

root of the subtree (the death time of the LCA) occurs earlier than the beginning of the

Late-Eocene epoch 37 My ago. Secondly, both branches leading from the root must have

extant descendants. This is required because the subtree represents the anthropoids. One

side of the subtree represents the platyrrhini and the other the catarrhini, and both of

these groups have modern representatives. For the remainder of the thesis, I refer to this

approach as Optimal Subtree Selection (OSS).

Algorithm F: Optimal Subtree Selection (OSS)

F1 Draw parameters θ = (τ, α, γ, ρ) from π(·).

F2 Simulate a tree and fossil finds using parameter θ. Count the number of simulated

fossils in each interval, D′ = (D′
1, . . . ,D

′
14).
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4.1 Dating Two Divergence Times
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Figure 4.2: Posterior distributions when using the approach of Chapter 3 on the anthropoid data
A. Results obtained using ρs with ǫ = 0.1 (n = 2224).

F3 Calculate the value of the metric ρ(D′,D). If

ρ(D′,D)
≤ ǫ1, go to step F4.

> ǫ1, reject θ and go to step F1.

F4 Perform an exhaustive search of all possible subtrees. For each subtree check that

the root of the subtree occurs at least 37 My ago, and that both offspring of this

root produce trees which survive to the present. If both conditions are met, count

the number of fossils on the subtree, A′ = (A1, . . . , A14).

F5 Determine which subtree has the smallest value of ρ(A,A′), i.e., has fossil counts

closest to the anthropoid fossil set. This is the optimal subtree. If

ρ(A,A′)
≤ ǫ2, accept θ and measure τ∗.

> ǫ2, reject θ and return to step F1.

4.1.1 OSS Results

We are now able to run the simulations to find the joint distribution of two divergence

times. Using the standard metric for steps F3 and F4 in the optimal subtree search with

a tolerance of ǫ = (ǫ1, ǫ2) = (0.2, 0.2), leads to the posterior distributions summarised in

Table 4.2 and Figure 4.3(1). Notice that Algorithm F uses a two-step metric. We could,

however, rewrite this as a single metric to be applied after the optimal subtree has been

found. However, splitting up the acceptance step by using the metric on two different

occasions allows us to reject trees with primate fossil counts unlike our data before we go

(1)I do not interpret these results here, as there are still problems to be solved. In Chapter 5 I give a
full description of the results and give three-dimensional plots of the joint posterior distributions of τ and
τ∗.
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through the expense of finding the optimal subtree. Note also that using a different metric

for the subtree search will, in general, lead to a different subtree being found as optimal

and hence a different value of τ∗. A larger value of ǫ than in Chapter 3 is necessary as we

now have two filtering steps, which essentially squares the acceptance rate.

Table 4.2: A summary of the posterior distributions from an optimal subtree search; obtained
using ρs with ǫ = (0.2, 0.2) (n=3210).

Min. LQ Median Mean UQ Max.

N0 43 87 103 112 127 369
τ 0.2 14.4 27.4 32.4 46.5 99.6
τ∗ 0.0 12.4 17.8 20.2 25.3 90.5
α 0.060 0.193 0.235 0.227 0.271 0.300
ρ 0.004 0.297 0.386 0.361 0.446 0.500
γ 0.0050 0.0088 0.0114 0.0110 0.0132 0.0150

1/λ 2.00 2.23 2.45 2.37 2.71 3.00

Notice the contrast between this approach to inference for τ∗, which takes into con-

sideration the structure, and the approach from Chapter 3 where the anthropoid data

is considered in isolation (Figure 4.2). The new approach leads to a marginal posterior

distribution for τ∗ which supports much larger values. Also, the posterior is bounded

away from the origin, unlike in Figure 4.2 where values are clustered around it.

The other point to note is that the distribution for N0 (the modern diversity) is un-

realistic; we know modern primate diversity is about 376, whereas our observations are

centred around values of about 100. This is dealt with in the following section.

Finally, note that Algorithm E could easily be extended to do inference for three or more

split points. The limiting factor, however, is computer power. It is not feasible to date

three split points as the unusual data structure and associated poor model fit would cause

the acceptance rate to become too small and we would be forced to use large ǫ values,

which would lead to a low degree of accuracy.

4.2 Using the Modern Diversity

One of the more obvious problems with the analysis presented in the previous section is

that observed values of N0 are too small. Groves [56] gives the modern primate diversity to

be 376 species, whereas our simulations are predicting average values of around 110 species.

In this section we incorporate this knowledge into our data and calculate the posterior

distribution of the parameters given the fossil counts D and the fact that modern diversity

is 376.

Augmenting D and {N0 = 376} differs from our previous approach, which was to treat
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Figure 4.3: Marginal posterior distributions obtained when dating the joint distribution of the
primate and anthropoid divergence times using the optimal subtree selection approach. Obtained
using ρs and ǫ = (0.2, 0.2).

the diversity as a priori knowledge. The prior ranges for ρ and γ were chosen so as

to make N0 take values of about 376 species. Instead, we aim to find the posterior

distribution of the parameters given the fossil data and the observed number of modern

species, i.e., π(·|D, N0 = 376). In an ideal world, this is easy to do. One would simulate

trees conditioned to have 376 modern species, i.e., from

P(Zt = · | ZT = 376) for t ≤ T. (4.1)

Unfortunately, although we can write down the probabilities in Equation (4.1), we do not

know how to efficiently simulate trees with this size-process. A crude approach would be to

use the rejection method: simulate unconditioned trees as before, discarding those that do
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not have N0 = 376. Although this does give observations from the required distribution,

it is inefficient and unacceptably slow for our purposes.

An alternative and approximate approach is to accept trees with N0 ∈ S, where S is

a set of acceptable N0 values, such as {n : n ≥ 376} or {n : |n − 376| ≤ δ} for some

choice of δ. Using |N0 − 376| ≤ δ is probably the better choice as the value of 376 has

some uncertainty surrounding it. As noted in the introduction, the estimated diversity

has increased from 235 to 376 in the past decade and seems set to change again as new

species are discovered and others are identified as being the same.

A different approach to solving this problem lies in adapting the metric used in the ABC

algorithm. We can sample (approximately) from the conditional distribution π(θ|D, N0 =

376), by changing the metric ρ so that trees with N0 6= 376 are penalised in proportion to

how far they are from reality. A metric I found to work well is

ρp(D,D′) =
k∑

i=1

∣∣∣∣
Di

D+
− D′

i

D′
+

∣∣∣∣+
1

2

∣∣∣∣
D′

+

D+
− 1

∣∣∣∣+
1

2

∣∣∣∣
N ′

0

N0
− 1

∣∣∣∣ (4.2)

where N ′
0 is the simulated diversity. I will refer to this as the population-adjusted metric

or ρp, in contrast to the standard metric, ρs(·, ·), which has been used thus far. Note that

ρp = ρs +
1

2

∣∣∣∣
N ′

0

N0
− 1

∣∣∣∣

so that ρp ≥ ρs for all data sets. Consequently, for the same value of ǫ we expect the

acceptance rate to be lower when using the population-adjusted metric.

Changing the metric illustrates one of the advantages of the ABC approach. It was noted

in Chapter 3 that when using ABC it is simple to combine different types of data. Data

D and N0 are dependent in some complicated manner. To do a traditional analysis we

would need to calculate the likelihood P(D, N0 = 376|θ), which, due to this dependence,

would likely be a non-trivial calculation, even if we did know P(D|θ). However, with the

ABC methodology we can simply add a term to our metric, and the posterior distribution

is automatically altered.

Using ρp with ǫ = (0.4, 0.4) and prior distributions (3.2), gives the results shown in

Table 4.3 and Figure 4.4. The acceptance rate was approximately 25900 simulated trees

per accepted tree, leaving 8931 results.

Notice that this has solved the problem of observing unrealistic values for the modern

diversity. The distribution of N0 is now nicely clustered around the true value of 376.

Notice also that a large value of ǫ was needed in order to make the simulations run, and

that the acceptance rate is low even using these large ǫ values. This is potentially due to

the fact that ρp ≥ ρs, but also because the model is still not producing N0 values that are

close to the data. Finally, note that the posterior distribution for α is now much more
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Table 4.3: A summary of the posterior distributions found when taking the modern primate
diversity into account by using the population-adjusted metric. Obtained using ρp with ǫ = (0.4, 0.4)
(n=8931)

.

Min. LQ Median Mean UQ Max.

N0 208 377 408 415 449 597
τ 0.0 6.8 16.0 23.6 33.8 100.0
τ∗ 2.0 18.6 25.5 32.6 39.6 115.6
α 0.022 0.049 0.063 0.066 0.080 0.140
ρ 0.0123 0.118 0.205 0.226 0.329 0.500
γ 0.0050 0.0072 0.0095 0.0096 0.0119 0.0150

1/λ 2.00 2.27 2.53 2.52 2.76 3.00

closely defined than in previous analyses. A rough calculation for α, based on the number

of fossils in the Late-Pleistocene (most recent) epoch, suggests a value of α = 19
376 = 0.051,

which fits with the value obtained here.

The posterior distributions of γ, ρ and 1/λ contain very little information about these

parameters, with the prior and posterior distributions being almost identical. Rather than

giving these parameters prior distributions we could estimate them and use the point

estimates in the simulations. Estimating these parameters by their posterior mode and

repeating the simulations of this section, we find the results shown in Table 4.4 and Figure

4.5. This increases the strength of the information about the parameters of interest, τ and

τ∗, but at the expense of taking account of less of the uncertainty. By fixing the values of

the growth parameters we are no longer taking into account the uncertainty surrounding

the growth rate of the primate diversity, assuming instead that it took place at a specified

rate.

Table 4.4: A summary of the posterior distributions found when taking the modern primate
diversity into account by using the population-adjusted metric. Obtained using ρp with ǫ = (0.2, 0.2)
(n=2721) and fixing the growth parameters to be equal to their posterior mode; ρ = 0.12, γ =
0.0095, 1/λ = 2.53.

.

Min. LQ Median Mean UQ Max.

N0 289 358 377 378 397 469
τ 0.0 2.5 4.8 5.4 7.6 23.4
τ∗ 2.5 14.7 17.7 17.8 20.9 36.2
α 0.036 0.056 0.061 0.062 0.067 0.090
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Figure 4.4: Marginal posterior distributions obtained when dating the joint distribution of the
primate and anthropoid divergence times and conditioning on N0 = 376. Obtained using ρp and
ǫ = (0.4, 0.4).

4.3 Modelling with Two Trees

In Section 4.1 some of the data structure was taken into account when we considered

methods for finding the joint distribution of two split points. We noted then that the data

has an unusual structure due to the quick rise to dominance by the anthropoids. Here

we break the data down in a different way and consider the haplorhine and strepsirrhine

suborders separately. Table 4.5 gives data broken down by suborder.

Notice that there are only a few fossil representatives of the strepsirrhini in recent

epochs, despite a relatively large modern diversity. This suggests that the strepsirrhine

and haplorhine suborders are subject to different sampling rates (and possibly different

growth parameters too). We test this idea by allowing ρ, γ and α to take different values
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Figure 4.5: Marginal posterior distributions obtained when dating the joint distribution of the
primate and anthropoid divergence times and conditioning on N0 = 376. Obtained using ρp and
ǫ = (0.2, 0.2) and fixing the growth parameters to be equal to their posterior mode; ρ = 0.12, γ =
0.0095, 1/λ = 2.53.

on the different sides of the tree. Let αS be the sampling fraction for the strepsirrhini

and αh the sampling fraction for the haplorhini, with a similar convention for ρH , γH ,

etc. We then simulate each side of the tree separately and decide whether to accept

the parameters according to whether the data they generate satisfies ρ(H,H′) ≤ ǫ1 and

ρ(S,S ′) ≤ ǫ2, where H′ are the simulated haplorhine fossil counts and S ′ the simulated

strepsirrhine counts.

When this is done with the standard metric, we get accepted values of NS
0 , modern

strepsirrhine diversity, that have a mean value of 9 species, whereas the average value of

NH
0 is 105 species. Both of these values fall a long way short of the observed diversity.

Using the population-adjusted metric solves this problem, and with ǫ = (0.4, 0.4) we find

the posterior distributions shown in Figure 4.6 and Table 4.6. The acceptance rate was

low with an average of 310090 simulated trees per accepted tree.

Notice that the marginal posterior distributions for the two sampling fractions, αH and

αS , are different. The distribution of the strepsirrhine sampling fraction takes values that

are smaller than those taken by the haplorhine sampling fraction. The growth parameters

ρ and γ do not show much difference between the two sides, however.

We shall have to wait until after Chapter 5 to perform this analysis properly, as at
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4 Using more of the Available Information

Table 4.5: Primate fossil counts, sorted by suborder.

Number of Number of
Epoch Tk strepsirrhine haplorhine

fossils, S fossils , H
Extant 0 88 288

Late-Pleistocene 0.15 0 22
Middle-Pleistocene 0.9 0 28
Early-Pleistocene 1.8 0 30
Late-Pliocene 3.6 3 40
Early-Pliocene 5.3 1 11
Late-Miocene 11.2 4 34
Middle-Miocene 16.4 2 44
Early-Miocene 23.8 6 28
Late-Oligocene 28.5 0 3
Early-Oligocene 33.7 4 18
Late-Eocene 37.0 14 16
Middle-Eocene 49.0 49 70
Early-Eocene 54.8 26 39
Pre-Eocene 0 0

present both sides of the tree use the same fixed sampling proportions ppp, as given in Table

3.2. The next chapter gives a method of removing this assumption, and contains the

results from performing a similar analysis to the above, but without the assumption that

αi = αpi.

Finally, it is possible to model each side of the tree separately and to use the optimal

subtree selection approach at the same time. Currently, however, the acceptance rate is

too low and we do not have the computer power required to successfully perform such a

simulation.

4.4 Regression Analysis

One of several extensions to the basic ABC algorithm was given by Beaumont, Zhang

and Balding in 2002 [11]. Their idea is that rather than using a hard cut-off, whereby we

reject or accept θ according to whether ρ(D,D′) is greater or less than some tolerance ǫ,

we use a soft cut-off and weight each observation according to its accuracy. The simulated

data sets that are closest to D will have the largest weights and will be given a greater

importance when doing inference than those which are far from D. They then recommend

fitting a local-linear regression of simulated parameter values on the data and using this

to predict the true parameter values by substituting the true data back into the regression

equation.
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Table 4.6: A summary of the posterior distributions found when dating the primate divergence
time by modelling the haplorhine and strepsirrhine suborders separately. Obtained using ρp with
ǫ = (0.4, 0.4) (n=1090).

Min. LQ Median Mean UQ Max.

NH
0 111 205 251 252 291 419

NS
0 53 81 87 86 91 118

τ 1.9 23.6 37.0 41.7 57.6 99.0
αH 0.027 0.052 0.066 0.072 0.087 0.176
αS 0.018 0.032 0.038 0.038 0.044 0.073
ρH 0.022 0.182 0.284 0.281 0.388 0.500
ρS 0.018 0.249 0.341 0.331 0.423 0.500
γH 0.0050 0.0069 0.0092 0.0095 0.0119 0.0150
γS 0.0050 0.0073 0.0096 0.0098 0.0122 0.0150

1/λH 2.00 2.30 2.55 2.53 2.77 3.00
1/λS 2.00 2.22 2.46 2.48 2.71 3.00

Formally, they aim to fit a model of the form

Θ = DB + eDB + eDB + e

where for our case the response variables Θ = (θi)i∈{1,...,n} are the parameters, the re-

gression variables DDD = (dij)i∈{1,...,n},j∈{1,...,p} are the simulated fossil counts(2), and eee is

a matrix of errors. It is assumed that E(eee) = 000, and that the errors are uncorrelated

but have different magnitudes, so that Cov(eee) = σ2VVV for some diagonal matrix VVV . The

variance of each error is assigned according to the weight of each observation, so that if WWW

is the diagonal matrix of weights, we set VVV = WWW−1. Then observations with large weights

(a small value of ρ(D,D′)) are assumed to be more accurate and so the error term has a

smaller variance. On the other hand, observations with small weights (large ρ(D,D′)) are

assumed to be less accurate and consequently Var(ei) is larger.

The solution is found by minimising the weighted sum of squares

n∑

i=1

(θi −DDDi.BBB)2Wi

with respect to BBB. Here DDDi represents row i of matrix D. The optimal choice for BBB is

given by

B̂BB
∗

= (DDDtWWWDDD)−1DDDtWWWΘ

Substituting the real fossil counts gives parameter predictions θ̂ = DB̂BB. To determine the

(2)The model can be given an intercept term by prepending a column of (1, . . . , 1)t to the matrix DDD.
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Figure 4.6: Marginal posterior distributions obtained when dating the primate divergence time
by modelling the haplorhine and strepsirrhine suborders separately. Obtained using ρp and ǫ =
(0.4, 0.4).

weight of an observation that has metric value t = ρ(D,D′), Beaumont et al. recommend

the use of the Epanechnikov kernel

Kδ(t) =

{
cδ−1

(
1 −

(
t
δ

)2)
, t ≤ δ

0, t > δ

Here, c is a normalising constant and δ is a tolerance value which determines the proportion

of the results that are given non-zero weights. It is claimed that the method is insensitive

to the choice of δ. To do inference for θ = (τ, τ∗, α), we must combine the two metric

scores into a single value. Initially, I use t = ρ(D,D′) + ρ(A,A′). I then use the following

algorithm:
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4.4 Regression Analysis

Algorithm G: Local-Linear Regression

G1 Generate the parameter values and data sets as before, but keeping all of the runs,

regardless of the value of ρ(D,D′) or ρ(A,A′).

G2 Pick out the runs with t = ρ(D,D′) + ρ(A,A′) in the bottom δ% of all t values.

G3 Set the weights Wi = 1 − t2

δ2 .

G4 Set B̂̂B̂B = (DtWDDtWDDtWD)−1DDDtWWWΘ, where each row of DDD contains one set of simulated pri-

mate fossil counts D′ and anthropoid counts A′, and each row of Θ the corresponding

θ values.

G5 Substitute the real data into θ = DB̂BB to find the point estimate, or substitute each

of the simulated data sets to find the adjusted posterior distributions.

Step G2 performs a similar role to steps 3 and 5 in Algorithm F, in that it outright

rejects any tree which has fossil counts (primate or anthropoid) that are not close to the

data. It is not feasible to use this algorithm, as it is written here, for the problem under

consideration. This is because step G2 requires that we retain all of the output until all

simulation has been completed. The memory requirement necessary to do this is is too

high. An alternative is to fix a value of ǫ and replace step G1 by

G1′ Generate the parameter values and data sets as before, rejecting any runs which

have ρ(D,D′) > ǫ1 or ρ(A,A′) > ǫ2.

We can then go on to apply the remainder of Algorithm G, however we will not require a

small value of δ (such as that used by Beaumont et al. [11]) as we have already discarded

a large proportion of the simulated data sets.

4.4.1 Results

We are now able to perform local-linear regression on the output given previously. I

reanalysed the output from Section 4.2 using the modified version of Algorithm G. I set

ǫ = (0.5, 0.5) in the initial simulations and then used a tolerance of 50% (δ = 0.5) in

the Epanechnikov weighting kernel(3). I am unable to use larger ǫ values as the file sizes

quickly become too large for the statistical package R to cope with. Using a 50% tolerance

means that 94119 results are taken into account in the analysis, although these will be

treated with varying importance. The summary of the regression adjusted posteriors is

shown in Table 4.7 and Figure 4.7.

(3)The use of a rejection step in G1′ has made step G2 superfluous to a certain extent. If the analysis
is repeated with δ = 1 the results obtained are almost identical.
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4 Using more of the Available Information

Min. LQ Median Mean UQ Max.

τ 0.0 10.9 15.6 18.5 23.0 93.1
τ∗ 0.0 13.7 17.4 19.1 22.6 83.8
α 0.042 0.074 0.080 0.081 0.087 0.167

Table 4.7: Summary of the posterior distributions when using local-linear regression on the output
of the ABC algorithm. Obtained using ρp with ǫ = (0.5, 0.5) and δ = 0.5.
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Figure 4.7: Posterior distributions when using local-linear regression on the output of the ABC
algorithm, with a tolerance of 50%.

Comparing these results with those obtained before applying the regression technique

(Figure 4.4 and Table 4.3) we can see some differences. The posterior distribution of τ is

now bounded away from 0 and has a much shorter tail than seen previously. The median

value of τ is about 16 My in both cases. The posterior distributions of τ∗ and α show

a larger difference between the two sets of results. The posterior median value of τ∗ has

decreased from 25.5 My when using standard ABC, to 17.4 My when applying local-linear

regression. Its posterior is also more sharply defined now, with a much shorter tail. The

posterior distribution of α is also more sharply defined than before, with the interquartile

range now only 40% as large as that seen when using standard ABC.

At present, it is not known whether the regression-adjusted output is more or less

accurate than the standard ABC output. I did a simulation study to test this, the results

from which are shown in the next section.

4.5 Simulation Study

I now give a selection of results from a detailed simulation study which was performed

to assess the accuracy of our inference mechanisms. These are then used to estimate the

accuracy of the ABC approach. This is done by choosing parameter values and simulating

a data set using these values, before using the inference algorithms above to find the

posterior distributions. By examining the accuracy of the estimates we hope to show that

our inference technique is performing sufficiently well.
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4.5 Simulation Study

The basic idea is as follows: we choose values of τ and α, and then generate a target

tree and fossil counts using these parameters. A target subtree is then selected at random

and we count the number of fossils and measure its temporal gap τ∗. We then use either

Algorithm F or G to estimate the posterior distribution of these parameters in the usual

manner. This is then repeated for many different target trees, recording each time the

values of the parameters used to generate the tree, and our estimates of those parameters

after a short simulation.

We choose target values of τ and α from their prior distributions(4). A target value

of τ∗ is chosen by randomly picking a split point in the interval [37, 54.8 + τ ], and then

finding the first subtree on the path back to the root for which both offspring have extant

descendants.

The accuracy of the algorithms is measured by finding the probability that the point

estimate (usually the posterior mean or median) is within a factor p of the true value. We

aim to find

Φτ (p) := P

(
τ

p
≤ τ̂ ≤ pτ

)
,

where τ̂ is the estimate from the algorithm, and τ is the target (true) value. Φτ∗(p)

and Φα(p) are defined similarly. An alternative way of measuring the error would be to

consider the mean deviation of our estimate from the true value, or the mean integrated

square error of our estimates. This would assess the accuracy of the posterior distribution

found rather than just the accuracy of a point estimate. With hindsight this may have

been the better choice. However, I believe that Φ is a more readily understood measure

of the accuracy of the inferences. An approximate value for Φ.(·) is found by looking at

the proportion of target trees for which the ABC algorithm correctly places the parameter

estimates in the required interval. Knowledge of Φ then allows the relative accuracy of

different stochastic inference techniques to be compared.

Initially, all the simulation attempts are kept for each run regardless of the size of

ρ(D,D′). This then allows the output files to be post processed and filtered with different

levels of ǫ and the effects studied. Because of the computationally heavy burden of the

inference algorithms, larger values of ǫ are necessary than might otherwise be used.

4.5.1 Findings

In total 247 different target trees were looked at. One of the problems faced was that

there was a high degree of variability of the acceptance rates for different target trees.

This made choosing a value of ǫ difficult as some target trees would produce lots of close

approximations, whereas others would produce relatively few. So that our impression of

(4)Values for ρ, γ and 1/λ are also chosen from the prior distributions, although no results are shown
for these nuisance parameters.
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the accuracy was not distorted by runs where very few target trees are generated, we ignore

any targets that have less than 1,000 approximation attempts remaining after filtering.

Table 4.8 shows how the accuracy Φ(p) varies with p varies when using Algorithms F

and G. The results for Algorithm F were obtained by using the standard metric with

ǫ = (0.2, 0.2). The results for Algorithm G were obtained by selecting the 1000 results

with the smallest ρ(D,D′) + ρ(A,A′) values and then using δ = 1.

Table 4.8: The relative accuracy of Algorithms F and G. Accuracy of Algorithm F when using
ρs with ǫ = (0.2, 0.2), and Algorithm G applied to the 1000 results with the smallest ρs(D,D′) +
ρs(A,A′) values (δ = 1).

Algorithm F:

p 2.0 1.8 1.6 1.4 1.2

Φτ (p) 0.82 0.76 0.70 0.60 0.36
Φτ∗(p) 0.90 0.88 0.78 0.68 0.46
Φβ(p) 0.91 0.86 0.81 0.63 0.35

Algorithm G:

p 2.0 1.8 1.6 1.4 1.2

Φτ (p) 0.92 0.89 0.85 0.74 0.54
Φτ∗(p) 0.91 0.87 0.82 0.76 0.48
Φβ(p) 0.92 0.89 0.85 0.70 0.48

These results show that Algorithm G is more accurate than Algorithm F for this scenario.

In other words, using local-linear regression on the output from Algorithm G does improve

the accuracy, although not by a great amount. Different values of ǫ and δ can be used,

and these do have a small effect on the value of Φ. In general though, the local-linear

regression appears to always improve the accuracy, but by varying degrees.

If we use the Euclidean metric given in the previous chapter (Equation (3.4)), both

algorithms perform less well. Table 4.9 shows the results from applying Algorithm G to

the 1000 results with the smallest values of ρe(D,D′) + ρe(A,A′). I showed before that

there is a strong correlation between the metrics, but this clearly shows that the standard

metric ρs is better than the Euclidean metric at picking out the important aspects of the

data. As before, these results have been confirmed in other settings when using different

tolerance and ǫ values.

Table 4.9: Accuracy of Algorithm G when using the Euclidean metric ρe after choosing the 1000
results with the lowest ρe(D,D′) + ρe(A,A′) values.

p 2.0 1.8 1.6 1.4 1.2

Φτ (p) 0.87 0.85 0.74 0.58 0.41
Φτ∗(p) 0.87 0.76 0.65 0.53 0.34
Φβ(p) 0.72 0.66 0.61 0.46 0.25

One final point to note is the importance of the acceptance rate. For an unknown
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reason, the acceptance rate varies widely between different target trees. For some targets

we find that after 10 hours of simulation with ǫ = 0.1 there are thousands of accepted

simulations, whereas for other targets we find there are less than 100 accepted results.

Table 4.10 shows the accuracy when we only look at target trees that gave rise to at least

5000 results after simulating for 10 hours. We can see that the accuracy of our predictions

is better when looking at these selected targets. Plots of how Φ changes with p are shown

in Figure 4.8.

p 2.0 1.8 1.6 1.4 1.2

Φτ (p) 1.00 1.00 1.00 0.90 0.64
Φτ∗(p) 0.92 0.92 0.92 0.82 0.56
Φβ(δ) 0.98 0.98 0.90 0.84 0.60

Table 4.10: Accuracy of Algorithm G when looking at only those target trees which lead to high
acceptance rates. Filtering is done with ǫ1 = 0.1 and then only targets with at least 5000 results
are considered. Local-linear regression is used on the output with δ = 0.2.
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Figure 4.8: Shows how Φ(p) changes with p for the data in Table 4.10.

I also examined how best to weight each result. For the results given above, each

simulation was weighted by the sum of the two metrics, t = ρs(D,D′)+ρs(A,A′). However,

we can use other weightings to try and emphasise different aspects of the data. I found

that none of the other weightings I examined improved the accuracy beyond that found

when using the simple weighting first suggested in Algorithm G.
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4.5.2 Limitations

There are several limitations as to how realistic these assessments of the accuracy of our

simulations really are. Firstly, the target trees we are trying to approximate are generated

from our model. So, at best, this simulation study tells us how good our inference methods

are, given that the model is the true model. Unfortunately, we do not have such confidence

in our model.

Secondly, we know that the accuracy of these algorithms is dependent upon the value

of ǫ that is used. For this simulation study it was not feasible to simulate each target tree

for a length of time comparable to that used for the analysis of the real data in previous

sections. On average in this study, each target tree was given six hours on a single node.

This is less than 5% of the computing time that was devoted to the analysis of the real

data set in Section 4.1. Consequently, the results given above are only really of use in

suggesting the relative accuracy of different algorithms.

Finally, the aim of inference is to find the posterior distribution of the parameters. Here,

I looked at the accuracy of a point estimate rather than the accuracy of the distributions

found. It may be that if we looked at the tails of the distributions (using a measure such

as mean integrated square error) we would find a different level of accuracy. Also, even

if we were accurately inferring the posterior distribution, we would not expect a point

estimate to always be within a factor of p of the true value of the parameter.

In conclusion, the results here should not be taken as a measure of the absolute accuracy

of our algorithms, but more as a guide when choosing between methods. The results may

also serve to put our mind at ease that the ABC algorithms are not failing in an obvious

manner.
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Chapter 5

Combining Approximate Bayesian Computation

and Markov Chain Monte Carlo

In Chapter 3 I noted that Approximate Bayesian Computation is based upon the rejection

algorithm and as a consequence can be inefficient; a large amount of time is spent simulat-

ing data with parameter values that lie in the tails of the posterior distribution. The idea

behind Markov Chain Monte Carlo methods (MCMC) is that by correlating observations,

more time is spent in regions of higher likelihood. The tails of the distribution are still

visited, but less time is spent there.

Unlike the approximate Bayesian computation methods studied so far, MCMC methods

are exact: if done properly (and this is a potentially big if), they produce draws from

the true posterior distribution. Approximate Bayesian computation does not give samples

from the posterior distribution, but from some approximation to it.

Motivated by these two thoughts, I use some of the ideas behind MCMC to produce

a more efficient and more accurate approximate inference technique that can be used in

problems where the likelihood function is unknown.

This will allow the introduction of more parameters into the species divergence time

problem than was previously possible. Up until this point of the thesis, I have been

assuming that the sampling fractions are held in a fixed ratio to each other, so that
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5 Combining Approximate Bayesian Computation and Markov Chain Monte Carlo

αi = αpi. The new methodology presented here will allow this assumption to be removed.

In the next section I give a brief overview of previous methods, before going on to give

a new development. In Section 5.2 I give details of how to apply these ideas to the species

divergence problem, removing the need for the simplifying assumption made about the

sampling fractions in Chapter 3. Results and discussion follow in Sections 5.3 and 5.4.

5.1 A Hybrid ABC-MCMC Sampler

In this section I give a brief introduction to Markov Chain Monte Carlo methods. Brooks

[22] gives an excellent review of MCMC methods while Tierney [119] gives proofs of the

main theoretical results.

The two most popular Markov Chain Monte Carlo (MCMC) algorithms are known as

the Metropolis-Hastings sampler and the Gibbs sampler. The latter is a special case of

the former, but the distinction is commonly made and serves our purpose here. Although

MCMC methods are not inherently Bayesian, MCMC samplers have long been used in

Bayesian applications. As this is how they will be used here, I consider the problem of

sampling from the posterior distribution π(θ|D). The Metropolis-Hastings algorithm for

generating dependent observations from π(θ|D) is as follows:

Algorithm H: Metropolis-Hastings

H1 If currently at θ, propose a move to θ′ according to transition density q(θ, θ′).

H2 Accept the move to θ′ with Metropolis-Hastings acceptance probability

h(θ, θ′) = min

(
1,

π(θ′)P(D|θ′)q(θ′, θ)

π(θ)P(D|θ)q(θ, θ′)

)
. (5.1)

If rejected, stay at θ. Go to step H1.

Other forms of acceptance probability can be used, but Peskun [91] showed that this

form is optimal in the sense that it rejects suitable candidate moves least often. This

maximises the statistical efficiency of any Monte Carlo estimate made with output from the

algorithm. Subject to the condition that the resulting chain is irreducible and aperiodic,

any choice of transition density q(·, ·) can be used. If q(θ, θ′) ≡ q(θ′), so that candidate

observations are drawn independently of the current state, then the sampler is known as

an independence sampler; if q(θ, θ′) ≡ q(θ′ − θ), then the sampler is known as a random-

walk sampler. Another common choice is the Gibbs sampler, which will be explained

later. If the parameter θ is multidimensional, then we can partition it into components,

and update each component in turn.
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Note that knowledge of the normalising constant, P(D), is not required in the Metropolis-

Hastings acceptance probability, but that knowledge of P(D|θ) is necessary. For the prob-

lems considered in this thesis, the likelihood function, P(D|θ), is not usually computable,

and so using MCMC is not an option. Marjoram et al. [76] suggested the following

likelihood-free MCMC algorithm:

Algorithm I: Likelihood-Free Metropolis-Hastings

I1 If currently at θ, propose a move to θ′ from transition density q(θ, θ′).

I2 Simulate D′ from the model P(·|θ′).

I3 If D = D′, calculate

h(θ, θ′) = min

(
1,

π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)

)
.

Else return to step I1.

I4 Accept the move to θ′ with probability h(θ, θ′). If rejected, stay at θ and return to

step I1.

This algorithm is exact, with the difference between algorithms H and I analgous to the

difference between algorithms A and B in Chapter 3. No knowledge of the likelihood

function is required, but in problems of any complexity we will rarely, if ever, observe

simulated data that exactly matches the real data. The approximate version of this

algorithm, proposed by Marjoram et al., replaces step I3 in the algorithm above with

I3′ If ρ(D,D′) < ǫ calculate h(θ, θ′). Else return to step I1.

Poor choices for transition kernel q can make the efficiency of the algorithm worse than

that of the rejection-based ABC algorithms. In practice, this chain often mixes extremely

slowly; each time ρ(D,D′) ≥ ǫ the chain stays in its current location. Because consecutive

results are correlated, very long runs are often required to achieve sufficient output to

cover most of the parameter space.

The Gibbs sampler (see [27, 50]) is a special type of MCMC algorithm. The parameter

is split into a number of components, and at each iteration one of these components is

updated by conditioning on the values of the other components. In other words, the

new parameter block is sampled from its posterior conditional density given all the other

components and the data. An advantage of this type of update is that the Metropolis-

Hastings probability, h, is always equal to 1. Consequently, every move that is proposed

is accepted.

More formally, if θ = (θ1, . . . , θk), then block i is updated from density π(θi | θ[−i],D)

where θ[−i] = (θ1, . . . , θi−1, θi+1, . . . , θk). If this is done for each i = 1, . . . , k in turn, then

this is known as the systematic-scan Gibbs algorithm. If coordinate i is chosen at random
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from {1, . . . , k} then it is known as the random-scan Gibbs sampler (see [73]). Blocks θi

can be multidimensional.

Combining Kernels

A Markov Chain Monte Carlo algorithm does not have to always use the same update

strategy. In practice, it is often convenient to combine a number of different update

strategies. For example, we could randomly choose to use independence samplers, Gibbs

samplers or any other Metropolis-Hastings step in any order we wish, as long as some

basic conditions are satisfied. Propositions 3 and 4 from Tierney [119] show that under

weak conditions on the updates, a hybrid algorithm of mixtures or cycles of these kernels

can be combined. A common hybrid algorithm is the Metropolis-within-Gibbs sampler,

in which we use Gibbs update steps whenever the full posterior conditionals are known

and use Metropolis-Hastings acceptance steps when the conditional distribution is not

available.

Here I combine Gibbs sampling steps with rejection or ABC-rejection steps. For ease

of exposition, suppose the parameter is split into just two components, θ = (θ1, θ2), and

that π(θ1|D, θ2) is known and that π(θ2|D, θ1) is unknown. Then the following algorithm

samples from the posterior distribution:

Algorithm J: Approximate-Gibbs Sampler

J1 If currently at θ = (θ1, θ2), draw θ′1 from π(θ1|D, θ2) and set θ = (θ′1, θ2).

J2 Draw θ′2 from π(θ2) and simulate data D′ using parameter θ = (θ′1, θ
′
2).

J3 If D = D′, set θ = (θ′1, θ
′
2) and return to step J1. Otherwise stay at θ = (θ′1, θ2) and

return to step J2.

Steps J2 and J3 above are the mechanical version of the rejection algorithm which gives

samples from π(θ2|D, θ1). By replacing step J3 with

J3′ If ρ(D,D′) ≤ ǫ, set θ = (θ′1, θ
′
2) and return to step J1. Otherwise stay at θ = (θ′1, θ2)

and return to step J2.

we can generate approximate draws from π(θ2|D, θ1). Alternatively, we could use a

likelihood-free MCMC step as follows:

Algorithm K: Approximate Metropolis-within-Gibbs Sampler

K1 If currently at θ = (θ1, θ2), draw θ1 from π(θ1|D, θ2) and set θ = (θ′1, θ2).

K2 Draw θ′2 from q(θ2, θ
′
2) and simulate data D′ using parameter θ = (θ′1, θ

′
2).
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K3 If ρ(D,D′) ≤ ǫ, calculate

h(θ2, θ
′
2) = min

(
1,

q(θ′2 → θ2)π(θ′2)

q(θ2 → θ′2)π(θ2)

)
.

Otherwise return to step K2.

K4 Accept the move to θ′2 with probability h and set θ = (θ′1, θ
′
2). Otherwise stay at

θ = (θ′1, θ2). Return to step K1.

These algorithms can easily be extended to deal with cases where the parameter is divided

into more than two components. Equally, the first step of algorithms J and K can be

replaced with any other MCMC update step that preserves detailed balance.

A rule of thumb?

Liu [73] (p27) suggests the following rule of thumb for Monte Carlo computation:

One should carry out analytical computation as much as possible.

The algorithms above are based on an analogous idea. For the type of intractable problems

considered in this thesis (i.e., where we can not compute the likelihood) the following rule

of thumb might apply:

One should carry out exact Monte Carlo inference as much as possible.

5.2 Independent Sampling Fractions

The sampling fraction for interval i, αi, is defined to be the proportion of species that

lived in interval i that are preserved as fossils. In the preceding chapters I followed Tavaré

et al. [118] and set the sampling fractions so that the ratio between any two values was

fixed, that is, I set αi = αpi where ppp = (p1, . . . , pk) is a fixed vector. The values used are

given in Table 3.2.

Tavaré et al. took the subjective Bayesian approach that these values are the opinions

of the authors and other people are free to insert their own values as they please. They

did not try to justify their choice, although they did partially test the robustness of their

conclusions to this choice by trying one other value for ppp. Fixing ppp in this way is one of

the main assumptions of their work that is open to criticism by others [113].

The Bayesian solution to this problem is to give the sampling fraction for each interval a

prior distribution, and then find the posterior distributions. One way to do this is to give

the same prior distribution to each parameter αi, where the prior distribution depends on

hyperparameter ψ. This leads to a hierarchical model, with a structure as shown in plate

notation in Figure 5.1.
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ψ

λ

N

Di

αi

i = 1, . . . , n

Figure 5.1: A plate diagram for our model. Here, the plate or box indicates replication of the
enclosed parameters. The number in the bottom right corner gives the number of replicates.

In theory, we are now able to proceed with a rejection-based ABC algorithm similar to

algorithms E and F to do inference for all of the parameters. In practice, however, there

are problems. The advantage of fixing the ratios of the αi is that we can take into account

the structure of the data. Although none were given in the paper, it is possible to imagine

reasons why Tavaré et al. may have decided to set the pi as they did. For example, if

the number of rock formations accessible from the Late-Oligocene and Pre-Eocene epochs

(intervals 9 and 14) was fewer than those available from other intervals, this would justify

the decision to set p9 and p14 to be small (intuitively, less accessible rock means less chance

of discovering fossils [92, 93]). What is clearly not acceptable is to examine the data, find

that there are only a few fossil finds from these two epochs and then decide to fix the pi

to be small.

Allowing the αi to vary freely has added fourteen more dimensions to the parameter

space. Because rejection-based ABC chooses parameters from the prior distribution, the

increased number of dimensions causes the acceptance rate to plummet to low values as

the majority of simulations will be with parameter values from regions of low likelihood.

An intuitive analogy is of looking for a needle in a multidimensional haystack: the lower

the number of dimensions, the more likely we are to find the needle. And so it is with

rejection based ABC: the lower the number of parameters, the more likely we are to

randomly pick parameter values that have high posterior probability.
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5.2.1 The Algorithms

Our aim is to simulate from the posterior distribution of our parameters given the data,

i.e., from

π(λ, τ,N ,α|D) ∝ P(D|α,λ, τ,N )P(N|τ,λ)π(τ)π(λ)π(α)

where λ = (λ, γ, ρ) are the growth parameters, α = (α1, . . . , α14) is a vector of sam-

pling fractions, and N = (N1, . . . , N14) represents information about the underlying tree

structure, with Ni denoting the number of species that lived at any point during interval i.

An advantage of including the tree structure, N , in the equations above is that parts

of the likelihood equation become computable. We cannot use a Gibbs sampler (or any

other MCMC algorithm) as the distribution of N is unknown and thus the conditional

distributions of τ and λ are unknown. However, we can use the approximate MCMC

algorithms, J and K, proposed earlier.

We split the parameter θ = (τ,λ,α,N ) into two parts, α and (λ, τ,N ). We are able to

write down the conditional distributions required for the Gibbs sampler for the fourteen

α = (α1, . . . , α14) parameters:

π(α|D,λ, τ,N ) ∝ π(α,λ, τ,N|D)

∝ P(D|τ,λ,N ,α)P(N|τ,λ)π(τ)π(λ)π(α)

∝ π(α)P(D|N ,α)

∝ π(α)
14∏

i=1

αDi

i (1 − αi)
Ni−Di .

We can see that if we choose to make the prior distributions for the {αi} independent, the

posterior distributions will also be independent. Moreover, note that we can use conjugate

beta distributions for the αi. If αi has a Beta(a, b) distribution then

π(α|D,λ, τ,N ) ∝
14∏

i=1

αDi

i (1 − αi)
Ni−Diπβ(αi; a, b)

∝
14∏

i=1

αDi

i (1 − αi)
Ni−Diαa−1

i (1 − αi)
b−1

∝
14∏

i=1

αDi+a−1
i (1 − αi)

Ni−Di+b−1

∝
∏

πβ(αi ;Di + a,Ni − Di + b).

Here, πβ(x ; a, b) denotes the probability density function of a Beta(a, b) random variable.

Note that using beta prior distributions has led to the posterior distributions also being
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beta distributions. The posterior mean of αi is then

E(αi|D,N ) =
Di + a

Ni + a + b
(5.2)

If we choose a and b to be small compared with Ni and Di, then Equation (5.2) is

approximately equal to the ratio of the number of fossil species to the true number of

species, which is the value we intuitively expect the sampling fractions to take:

E(αi|D,N ) ≈ Di

Ni
.

The other conditional distribution π(τ,λ,N|D,α) is not known, but we can simulate from

it using a rejection-ABC algorithm as done in previous chapters.

Algorithm L: Inferring a Single Split Time

L1 Suppose we are at θ(t) = (λ(t),α(t), τ (t),N (t)) after t iterations.

L2 Propose α′ from

π(α|D,λ(t), τ (t),N (t)) =
∏

Beta(a + Di, N
(t)
i − Di + b) (5.3)

L3 Propose (λ′, τ ′) from prior π(τ)π(λ) and simulate tree N ′ from P(N ′|τ ′,λ′). If

Ni < Di for any i repeat step L3.

L4 Simulate fossil counts D′.

L5 Accept (λ′, τ ′,N ′) if ρ(D,D′) ≤ ǫ and set θ(t+1) = (λ′,α′, τ ′,N ′). If ρ(D,D′) > ǫ

stay at (λ(t),α(t), τ (t),N (t)) and return to step L3.

To initialise the algorithm I choose λ, τ and α from their respective prior distributions.

The parameters a and b used in the beta prior distributions are known as hyperparameters.

Their value should not matter greatly as long as both are small, as they will be dominated

by the data, as Equation (5.2) shows.

In order to infer the joint distribution of two split points we must again use the optimal

subtree selection idea from Chapter 4 to find the subtree that most closely matches the

anthropoid subtree counts.

Algorithm M: Inferring Two Divergence Times

M1 Suppose we are at θ(t) = (λ(t),α(t), τ (t), τ∗(t),N (t)) after t iterations.

M2 Propose α′ from

π(α|D,λ(t), τ (t),N (t)) =
∏

Beta(a + Di, N
(t)
i − Di + b).
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M3 Propose (λ′, τ ′) from prior π(τ)π(λ) and simulate tree N ′ from P(N ′|τ ′,λ′). If

Ni < Di for any i repeat step M3.

M4 Simulate fossil counts D′.

M5 Find the subtree with fossil finds A′ that minimize the metric ρ(A,A′), and measure

its temporal gap τ∗.

M6 Accept (λ′, τ ′, τ∗,N ′) if ρ(D,D′) ≤ ǫ1 and ρ(A,A′) ≤ ǫ2, update the parame-

ter so that θ(t+1) = (λ′,α′, τ ′, τ∗,N ′) and return to step M1. Otherwise stay at

(λ(t),α(t), τ (t), τ∗(t),N (t)) and return to step M3.

A note about the simulations

In order to make correct inferences we must ensure not only that we have enough output,

but also that the Markov Chain has converged. We also have the problem that output

from these algorithms is correlated. More details and some diagnostic tests are performed

in Section 5.4.1. Each run starts from a different position and so different runs are in-

dependent of one another. In the following few chapters, I give the results from many

different scenarios but so as not to become too repetitive I will not report on convergence

details for every run, unless there is a problem.

A problem observed during testing is that we often need to simulate an unusually large

number of trees until the first is accepted. Once the first successful observation has been

made, the acceptance rate increases and we need only simulate a much smaller number of

trees per successful tree. The reason for this is that each run starts with parameter values

drawn from the prior distributions, and only once the first tree has been accepted does the

sampler reach regions of high posterior probability. By using a warm-up period, we can

greatly speed up the simulations. By this, I mean that we start with large ǫ values and

decrease the value after each acceptance until we are at the level we desire. This greatly

speeds up the simulations.

There are two main approaches to MCMC. The first is to run one long chain and thin

the output (recommended by Raftery et al. [100]). The second is to run many shorter

chains and take the final value from each run (recommended by Gelfand et al. [48]). I

have taken a mixture of the two approaches and run several independent medium length

chains and then thinned and combined the output from each one.

5.3 Dating the Primate Divergence Time

In this section, I repeat the analysis of the crown-primate data first done in Section

3.2. Instead of giving the sampling fractions a fixed ratio αi = αpi, I give each αi an

independent Uniform[0, 1] prior distribution. Note that this is equivalent to letting a =
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b = 1 in the beta prior distributions, as these then reduce to uniform priors. Hence, we

can still take advantage of the conjugate nature of the problem. The other parameters

will be given the same prior distributions as in Equation (3.2).

Using Algorithm L with the standard metric, the usual problem that observed N0 values

are too small is more severe than before. N0 now has a posterior median value of 35 species

with an upper quartile of 41. The reason the problem has become worse is due to the

additional freedom we have introduced by adding 13 extra parameters. The first few

N0 values accepted on each run are of a similar size to those seen in previous sections

(N0 ≈ 200). But after a short period N0 tends to smaller values, while at the same time

the α−Markov chains move to larger values consistent with such small N0.

The key to solving this problem lies, as before, in augmenting the data D with {N0 =

376}. However, using the population-adjusted metric alone does not solve the problem

as it did in the previous chapter. Initial runs using ρp ran extremely slowly with a very

low acceptance rate. This is caused by the warm-up period: as the tolerance ǫ decreases

the α−Markov chains become stuck in regions of low posterior density with N0 values

that are too small. I found that the simplest solution is to build in a hard constraint

on N0, such as requiring that N0 is larger than some fixed value. The results presented

in Table 5.1 and Figure 5.2 are obtained using the constraint N0 ≥ 200, and with the

population-adjusted metric ρp with ǫ = 0.15. The acceptance rate was 13828 simulated

trees per accepted tree, which after a burn-in period of 50 results and thinning by taking

every second result, leaves 2452 results(1).

(i) Min. LQ Median Mean UQ Max.

N0 301 355 370 368 382 438
τ 0.1 7.4 14.0 19.6 24.4 99.7
ρ 0.013 0.074 0.140 0.182 0.271 0.497
γ 0.050 0.0072 0.0095 0.0096 0.0119 0.0150

1/λ 2.00 2.43 2.67 2.62 2.85 3.00

(ii)

k αk

1 0.059
2 0.061
3 0.063
4 0.073
5 0.022
6 0.037
7 0.054
8 0.037
9 0.0070
10 0.047
11 0.10
12 0.25
13 0.58
14 0.026

Table 5.1: Summary statistics when dating the primate divergence time using the approximate-
Gibbs sampler (algorithm L). Obtained using ρp, Nmain

0
≥ 200, and ǫ = 0.15 (n=2542); (i)

posterior summary statistics, (ii) posterior means of the sampling fractions.

(1)Issues of convergence and burn-in are dealt with in Section 5.4.1

78



5.3 Dating the Primate Divergence Time

300 340 380 420

0.
00

0
0.

01
0

0.
02

0

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

0.006 0.010 0.014

0
40

80
12

0

2.0 2.2 2.4 2.6 2.8 3.0

0.
0

0.
5

1.
0

1.
5

Accepted N0 values Accepted τ values Accepted ρ values

Accepted γ values Accepted 1/λ values

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

Figure 5.2: Marginal posterior plots for the primate divergence time when using the approximate-
Gibbs sampler. Obtained using ρp, Nmain

0
≥ 200, and ǫ = 0.15.

The hard constraint N0 ≥ 200 has no effect on the results once the chain has converged.

In fact, once the warm-up period has finished we are able to remove this constraint without

any effect on the accepted observations. If we run the algorithm using the standard

metric and the constraint N0 > 376 we observe almost identical marginal distributions

for τ,α and ρ. However, the posterior distribution for N0 then supports values that are

unrealistically large, with an upper quartile of 954. Most experts would agree that there

are not 900 primate species in the biota.

Comparing these results to those obtained when αi = αpi (Figure 3.4) we can see that

allowing αi to vary freely leads to smaller estimates for the temporal gap τ . This is

probably due to the fact that α14 is no longer constrained to be much smaller than the

other αi values (in Chapter 3 we set p14 = 0.1 whereas the average p value was 0.66).

Setting p14 = 0.1 has the effect of allowing only a few fossils to be found before the

Eocene, thus allowing τ to take larger values.

If we compare the sampling fractions we found here with the ratios given by the ppp values

in Table 3.2 we can see there is a reasonable agreement. For intervals one to ten the ratios

roughly match those assumed before. However, intervals 11 to 14 do not. Intervals 11,

12 and 13 have average sampling fractions that are much larger that the values for other

intervals. ᾱ13 is about 10 times as large as ᾱ1, whereas previously we have modelled them
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as taking the same value (p1 = p13 = 1). Also α14, although smaller than all the other

sampling fractions, is larger than assumed previously.

Finally, although I concluded in the previous chapter that performing local-linear re-

gression improves the accuracy, I do not use this technique in the remainder of the thesis

as it is not obvious how to apply the method to the techniques of this chapter.

5.4 Dating the Primate and Anthropoid Divergence Times

We now move our attention to estimating the joint distribution of the primate and an-

thropoid crown divergence times using Algorithm M (cf. Sections 4.1.1 and 4.2). When

using the standard metric, ρs, we see the usual problem of N0 values that are too small

(mean of 128) along with an extremely low acceptance rate. The low acceptance rate can

be explained by looking at the posterior distribution of the growth parameter ρ, shown in

Figure 5.3, which is clearly bimodal. If we look at those runs which have ρ < 0.2, then the

posterior mean value of N0 increases from 128 to 273 and the peak at ρ ≈ 0.1 agrees with

the results presented later, obtained using the population-adjusted metric. The reason
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Figure 5.3: The bimodal marginal posterior distribution of ρ when dating the primate divergence
time using the standard metric and the approximate-Gibbs sampler.

the acceptance rate is slow is that there are two stable solutions: one with small N0 and

large α values that corresponds to large ρ values, and the other with large N0 and small

α values corresponding to small ρ values. The MCMC sampler on the α−chains becomes

stuck in one of the two stable solutions, and can not easily jump to the other. This is the

classic MCMC problem of poor mixing, which inevitably leads to slow convergence rates.

Table 5.2 shows the effect of using different combinations of metric and constraint in

Algorithm M. Notice the variation in acceptance rates when using different combinations of

metric. Any requirement on the anthropoid diversity, N sub
0 , leads to a low acceptance rate.

This means that using ρp for the anthropoid subtree is not practicable as the simulations

run too slowly. The reason for the low acceptance rate is that our model does not fit the

data as well as it might. The subtree population does not grow as quickly in our model
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as the data suggests it should. I present a solution to this in Chapters 7 and 8. For

now though, a trade-off is made between the desire to achieve accurate results, and the

need to produce those results in a finite amount of time. I use the population-adjusted

metric, ρp, for the main tree and the standard metric, ρs, on the subtree. The constraint

Nmain
0 ≥ 200 is needed to aid convergence.

Main Sub- Restrictions on N0 ǫ 1/Acceptance Median value of

Tree tree Main Tree Subtree rate τ τ∗ N0

ρs ρs - - (0.3, 0.3) 130400 27.0 13.3 77
ρs ρs - - (0.4, 0.4) 51900 17.0 19.2 131
ρs ρs N0 ≥ 376 - (0.4, 0.4) 35300 7.4 16.7 904
ρs ρs N0 ≥ 376 - (0.5, 0.5) 1200 9.7 19.7 665
ρs ρs N0 ≥ 376 N0 ≥ 281 (0.7, 0.7) 1342 11.7 21.5 708

ρp ρs N0 ≥ 200 - (0.4, 0.4) 17781 14.1 17.1 385

ρp ρp N0 ≥ 200 N0 ≥ 100 (0.5, 0.5) 32930 12.3 16.9 443
ρp ρp N0 ≥ 200 N0 ≥ 100 (0.5, 0.6) 9220 14.2 18.3 412
ρp ρp N0 ≥ 200 N0 ≥ 100 (0.6, 0.6) 5790 13.6 18.6 436

Table 5.2: Summary of the effects of using different combinations of metric and restrictions on
N0, based on short runs for each scenario.

We can increase the acceptance rate by reducing the range of the prior distributions

used for ρ and τ . This does not have an effect on the posterior distributions as the range

used in prior distributions (3.2) had zero posterior probability in the tails. The prior

distributions used in this section are

τ ∼ U [0, 50]

ρ ∼ U [0, 0.4]

γ ∼ U [0.005, 0.015]

1/λ ∼ U [2, 3]

(a, b) = (1, 1).

A summary of the results obtained when using ǫ = (0.4, 0.4) is shown below in Table 5.3,

and Figure 5.4, and two plots of the joint distribution of τ and τ∗ are shown in Figure

5.5. The acceptance rate was 6392 successfully simulated trees per accepted tree, which

left 4930 results.

The 90% credibility intervals for τ and τ∗ are (0, 25.1) My and (0, 25.2) My respectively.

The posterior estimate of the primate divergence time is 69.8 My ago with a 90% credibility

interval of (54.8, 79.9) My. The posterior estimate of the anthropoid divergence time is

54.7 My ago with a 90% credibility interval of (37.0, 62.2) My.

Comparing these results with those of Chapter 4 (Table 4.7 and Figure 4.7), we can
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(i) Min. LQ Median Mean UQ Max.

Nmain
0 200 334 384 385 437 619

N subtree
0 2 104 150 151 196 364
τ 0.6 9.5 13.5 15.0 18.9 49.5
τ∗ 0.1 13.8 17.1 17.7 21.0 49.9
ρ 0.017 0.064 0.080 0.083 0.098 0.238
γ 0.0050 0.0070 0.0092 0.0095 0.0119 0.0150

1/λ 2.00 2.24 2.48 2.49 2.74 3.00 (ii)

k αk

1 0.059
2 0.060
3 0.063
4 0.072
5 0.023
6 0.038
7 0.062
8 0.048
9 0.011
10 0.081
11 0.20
12 0.49
13 0.81
14 0.020

Table 5.3: Summary statistics when dating the primate and anthropoid divergence times using the
approximate-Gibbs sampler. Obtained using ρp for the main tree and ρs for the subtree, Nmain

0
≥

200 and ǫ = (0.4, 0.4) (n=4930); (i) posterior summary statistics (ii) posterior means of the
sampling fractions.

see that the posterior distributions for τ and τ∗ are very similar to those obtained when

using fixed ratios for the αi and using local-linear regression on the output. The posterior

mean value of τ has decreased by 3.5 My and the tail is a little shorter, but overall the

agreement is good.

Figure 5.6 contains plots of the posterior distributions for the sampling fractions. Notice

that the sampling rates vary a large amount from interval to interval. The maximum value

of 0.81 occurs in the Early-Eocene epoch, and the minimum value is 0.011 which occurs in

the Late-Oligocene. This variation cannot be taken at face value, however, as the length

of each epoch is different. In the next chapter I improve this situation by using a more

realistic Poisson sampling scheme.
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Figure 5.4: Plots of the posterior distributions when dating the primate and anthropoid divergence
times using the approximate-Gibbs sampler. Obtained using ρp for the main tree and ρs for the
subtree.
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Figure 5.5: Plots of the joint posterior distribution of the primate and anthropoid divergence
times. These distributions were obtained using Algorithm M with ρp for the main tree and ρs for
the subtree.
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Figure 5.6: Plots of the posterior distributions of the sampling fractions, αi, when dating the
primate and anthropoid divergence times using the approximate-Gibbs sampler. The prior distri-
butions are αi ∼ U [0, 1].
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5.4.1 MCMC Difficulties and Concerns

The advantage of using Markov Chain Monte Carlo rather than the rejection algorithm

is that by correlating the output more time is spent simulating with parameter values

with higher posterior probabilities. MCMC, however, does suffer from potentially serious

drawbacks: the output from an MCMC algorithm is not stationary, and it is difficult

(perhaps impossible) to know whether any given chain has converged. Ergodic averages are

used to estimate the equilibrium distribution and are known to converge in the limit (see

Meyn and Tweedie [84]). Difficulties in assessing convergence arise due to the correlated

nature of the output slowing the speed at which the chain explores the state space, and

the fact that the output is only a sample from a distribution, rather than the distribution

itself. Cowles et al. [34] and Brooks et al. [24] give a review of different convergence

diagnostics.

There are also several implementation decisions that need to be made, such as how many

results we need, where to start each chain, whether to use a burn-in, and whether to thin

the output. In this section I address some of these issues and introduce some diagnostic

tests to try to find any problems.

One of the most common difficulties faced when using MCMC is that the chain fails

to mix well and consequently it fails to converge to equilibrium. When we use MCMC,

a Markov chain which converges to the target distribution of interest is simulated on the

parameter space. In our case, this is the posterior distribution π(θ|D). If the chain starts

from a region in the tail of the posterior distribution, it can take a long time to converge

to equilibrium. For this reason, some authors propose that the results from some initial

transient phase, often called a burn-in period, are discarded in the hope that we are then

left with output from the equilibrium distribution. Others, such as Geyer, point out that

burn-in is only a method for finding a good starting point for the Markov chain, and

recommend starting each new run where the previous run finished. He goes on to suggest

that a good point is any you would not mind having in your sample, and that the problem

can be avoided entirely if we condition on the starting point in a Bayesian fashion.

Another complication is that the output is correlated. A common approach is to thin

the output by taking every nth value, where n is chosen so that samples are approximately

independent. Figure 5.7 below shows plots of the autocorrelation function, R(l) = E[(Xi−
µ)(Xi+l − µ)]/σ2, for four of the parameters. Note that the correlation quickly drops to

a negligible level for all four parameters, as it does for the parameters not shown. The

quick decay of the correlation suggest that we do not need to thin the results too much, if

at all, as our interest lies solely in τ, τ∗ and α. From now on, I thin the output by taking

every second value.

A maximally informative sample would be a set of independent draws from the distri-

bution of interest. Autocorrelation decreases the amount of information in the sample;
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Figure 5.7: Plots of the autocorrelation function for four different parameters when using Algo-
rithm M. The decay of the correlation is given across a range of different lags.

the size of the correlation determines the effective sample size (see Liu [73] page 126). For

the chain analysed here, which is 2000 samples long, we have marginal effective sample

sizes as follows:

Nmain
0 τ N sub

0 τ∗ ρ α1

568 1560 1625 2000 1142 692

This means that the 2000 data points only contain as much information about τ as 1560

independent draws from the posterior distribution would. Notice that for parameters with

a longer tailed correlation structure, such as α1, the marginal effective sample size is much

smaller than 2000. Conversely, for parameters with no correlation between values, such

as τ∗, the effective sample size is equal to the true sample size.
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5 Combining Approximate Bayesian Computation and Markov Chain Monte Carlo

The effective sample size determines the standard error of our estimates. Because of the

correlated nature of the output, we use the time-series standard error which takes account

of the correlation between consecutive values. This is also known as the asymptotic

standard error and is given by the square root of the spectral density estimate divided

by the sample size. The small correlation between successive values means that for our

data, the two measures of standard error are nearly identical. The standard error in the

estimate of the posterior mean for each parameter is as follows:

Nmain
0 τ N sub

0 τ∗ ρ γ 1/λ α1 α2

0.60 0.061 0.53 0.048 0.00022 0.000023 0.0021 0.00016 0.00015

These are all small and suggest that we have large enough sample sizes to have confidence

in the estimates(2).

Raftery et al. [100] give a method for estimating the run length needed to estimate

quantiles to within a certain accuracy when using the Gibbs sampler. For example, sup-

pose we wish to estimate the quantile q = P(θ ≤ u|D) to within an accuracy of ±r with

probability s. They construct a two-state Markov chain Zt = Iθt≤u, where u is the quan-

tile of interest, and consider its transition function and convergence rate. An R-function

raftery.diag() is available in the package coda [95] to implement this technique. For

our output, if we wish to estimate the median to within ±0.01, with probability 0.95, the

Raftery-Lewis method predicts that we need 10783 independent results (so we will need

more than this if correlated output is used). If we wish to predict the upper 95% quantile

with the same accuracy, we need 2065 results. Brooks et al. [24] points out that this

method is only valid when estimating the run length needed when inferring quantiles, and

should not be relied upon for other quantities of interest such as the mean. The method

also suggests how long a burn in period is needed. Taking a burn in of 1000 iterations

appears to be sufficient.

Raftery et al. [100] also suggests that posterior correlation between parameters can

cause MCMC algorithms to converge slowly, and that one should reparameterise models

to decrease correlations as much as possible. Table 5.4 shows the correlations between

some of the parameters used in our model. None of these are greater than 0.5.

How well the chain mixes refers to the speed with which the sampler explores the

posterior distribution. It can be difficult to diagnose poorly mixing chains; if a chain stays

in one region and converges slowly, it may look as though it has converged, even when it

has not. A simple diagnostic test is to run independent chains with a variety of starting

points. After a possibly transient initial period, output from different chains should be

indistinguishable. I checked this after each run and to the naked eye each chain seems to

be from the same distribution. Another quick ad-hoc test is to look at the trace of the

(2)Confidence subject to the proviso of having used an approximate inference technique, our choice of
model, etc.
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Nmain
0 τ N sub

0 τ∗ ρ γ 1/λ

Nmain
0 1 -0.19 0.35 0.060 0.046 -0.13 0.099

τ 1 -0.025 0.30 -0.50 -0.13 0.19
N sub

0 1 0.019 -0.049 -0.062 0.0037
τ∗ 1 -0.10 -0.027 0.30
ρ 1 -0.023 -0.047
γ 1 -0.020
1/λ 1

Table 5.4: Correlations between different parameters when using the approximate-Gibbs sampler
(Algorithm M) to date the primate and anthropoid divergence times.

output for each parameter of interest and to check that the sample space is being explored

efficiently. Figure 5.8 shows the trace of the first 5000 results for three of the parameters

of interest. Note that the chain moves quickly around the whole space, which suggests

that the sampler is mixing well and converges quickly.

Many authors have given more complex diagnostic tests to check that chains have

reached convergence. The lack of any general technique for a priori prediction of con-

vergence times leads Brooks et al. [24] to assert that ‘it is necessary to carry out some

form of statistical analysis in order to assess convergence’, and they recommend the tests

of Gelman and Rubin [49] (generalised by Brooks and Gelman [23]) and of Raftery and

Lewis. However, these tests do not detect whether a chain has converged, but try to detect

when it has not.

Gelman et al. [49] propose using multiple independent runs which have starting points

that are over-dispersed with respect to the target density to diagnose a lack of convergence.

The method gives an estimate of how close we are to convergence and how much we could

improve if we run the chains for longer. The coda function gelman.diag() reports the

value Rc, known as the potential scale reduction factor (PSRF). If Rc is close to one,

Gelman et al. argue that we can conclude that the set of observations is close to the

target distribution. For all of the parameters reported in this section, we had a maximum

PRSF of 1.01, and so conclude that the chains have converged.

Brooks et al. [23] point out that the approach of Gelman et al. ignores some of the

available information when computing Rc. They propose a iterated graphical approach

to address some of these problems and this has been implemented in the R-function

gelman.plot(). Figure 5.9 shows the output when this is applied to a selection of param-

eters from our output. The plots show whether Rc, the potential scale reduction factor,

has really converged to one, or whether it is still fluctuating. The plot shows that we can

be satisfied that our chains really have converged.

Finally, it is worth noting that there are a variety of opinions about the value of run-

ning convergence diagnostics. Geyer refers to the total “bogosity of MCMC convergence
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Figure 5.8: Trace of the MCMC output from Algorithm M for τ , τ∗ and α1.

diagnostics” and points out that they are only capable of finding gross and embarrassing

problems. No test is guaranteed to work and so a variety of tests should be used. There is

good reason to believe that the algorithms we use in this chapter should converge quickly,

and that the output should not require too much thinning. The rejection-based ABC step

samples parameters from their prior distributions and ensures that the autocorrelation

function of the chain tends quickly to zero over a very short lag.

5.5 Returning to the Two Trees Situation

In Chapter 4 I gave a simulation approach which allowed us to give different growth pa-

rameters to the haplorhine and strepsirrhine sides of the speciation tree. In this chapter

I have shown how to remove the fixed ratio assumption that was previously used on the

sampling fractions. This section contains the results from re-examining the two trees situ-

90



5.5 Returning to the Two Trees Situation

100 200 300 400 500 600

1.
0

1.
5

2.
0

2.
5

3.
0

Nmain
0

S
h
ri

n
k

fa
ct

or
Median
97.5%

Last iteration in chain

100 200 300 400 500 600

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

τ

S
h
ri

n
k

fa
ct

or

Median
97.5%

Last iteration in chain

100 200 300 400 500 600

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

τ ∗

S
h
ri

n
k

fa
ct

or

Median
97.5%

Last iteration in chain

100 200 300 400 500 600

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

α1

S
h
ri

n
k

fa
ct

or
Median
97.5%

Last iteration in chain

Figure 5.9: Plots showing the convergence of the potential scale reduction factor for the output
from Algorithm M. This suggests our chains have reached convergence.

ation but with sampling fractions that are allowed to vary freely on both the strepsirrhine

and haplorhine subtrees. A similar calculation to that given in Section 5.2.1 shows that

the natural Gibbs update scheme for the strepsirrhine and haplorhine sampling fractions,

αS and αH , is to let

αS
i ∼ Beta(a + Si, b − Si + NS

i )

αH
i ∼ Beta(a + Hi, b − Hi + NH

i )

where Si and Hi represent the number of strepsirrhine and haplorhine fossils in interval i

(see Table 4.5). Parameters N S = (NS
1 , . . . , NS

14) and NH = (NH
1 , . . . , NH

14) are the total

number of strepsirrhine and haplorhine species in each interval in the previously accepted
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tree.

Running the simulations with prior distributions (3.2), hyper parameters both equal

to one (a = b = 1), and using the population-adjusted metric, leads to an extremely

low acceptance rate. The acceptance rate starts off at a comparable value to previous

simulations, but in a short amount of time it decreases to values which make simulation

infeasible. A possible reason for this is that the α-Markov chains eventually move to a

region where large α values are accepted, and once this has happened the chain becomes

stuck and unable to return to the small values seen in previous sections.

The simulations can be dramatically speeded up by using different values for the hyper-

parameters a and b. With a = 0.1, b = 1 the acceptance rate when using the population

adjusted metric on both data sets (i.e., the haplorhine and strepsirrhine data) with a tol-

erance of ǫ = (0.3, 0.3), gives an acceptance rate of 4743 successfully simulated trees per

accepted tree. A summary of the results is given in Table 5.5 and Figure 5.10.

(i) Min. LQ Median Mean UQ Max.

NH
0 166 238 266 267 293 395

NS
0 50 75 85 85 93 123

τ 0.8 23.7 46.7 48.6 73.6 99.7
ρH 0.010 0.171 0.269 0.269 0.266 0.500
ρS 0.010 0.235 0.336 0.321 0.322 0.500
γH 0.0050 0.0070 0.0094 0.0096 0.0119 0.0150
γS 0.0050 0.0071 0.0094 0.0096 0.0119 0.0150
1/λ 2.00 2.38 2.62 2.58 2.81 3.00

k αH
k αH

k

1 0.080 0.0010
2 0.082 0.00090
3 0.085 0.00096
4 0.091 0.022
5 0.026 0.0078
6 0.041 0.015
7 0.059 0.0088
8 0.030 0.021
9 0.0048 0.00048
10 0.028 0.019
11 0.035 0.089
12 0.072 0.13
13 0.12 0.17
14 0.00090 0.00076

Table 5.5: A summary of the posterior distributions when using different growth parameters
and different α for the haplorhine and strepsirrhine sides of the tree. Obtained using ρp with
ǫ = (0.3, 0.3), (n=1893); (i) summary statistics, (ii) posterior means.

Comparing the sampling fractions above with those seen in Table 5.3 shows that the

haplorhine sampling fractions show much less variation, which is more realistic than the

large variation seen previously. The strepsirrhine sampling fractions, however, show much

more variation with at least two orders of magnitude difference between some values. This

is a consequence of the large unsampled taxonomic family(3) in the strepsirrhine suborder.

If we use the same sampling fractions on both sides of the tree then the acceptance

rate is much lower. Using the same simulation conditions but with ǫ = (0.4, 0.4) and

αS = αH , the acceptance rate is 12037 simulated trees per accepted tree. This is much

(3)Recall that there are no lemurs fossils, but that there are at least 85 modern lemur species.
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Figure 5.10: Plots of the posterior distributions when using the approximate-Gibbs sampler and
modelling the haplorhini and strepsirrhini suborders separately. The results were obtained using
different α and different growth parameters for the haplorhini and the strepsirrhini. Metric ρp was
used for both trees with ǫ = (0.3, 0.3).

slower than when we allow the α to take different values on each side of the tree. This

is to be expected, as allowing α to vary on each side has introduced 14 more parameters

and so we should expect that the model will fit the data better.

Unfortunately, however, using so many parameters (34 in total) cannot be supported

by the data. The data set we have is limited. Breaking the fossil counts down into

haplorhine and strepsirrhine species gives us 30 different data points, and so to expect a

model with 34 parameters to learn anything meaningful is unrealistic. We can see what

effect such a large number of parameters has had by examining the posterior distribution

of τ in Figure 5.10. There is very little difference between the uniform prior distribution

and the marginal posterior distribution. This is because all the variation in the data

93



5 Combining Approximate Bayesian Computation and Markov Chain Monte Carlo

can be explained by the 28 different sampling fractions, and so consequently we lose any

biotic signal about the temporal gap τ . Too many parameters also leads to confounding

between the parameters, where we are no longer able to distinguish between the effect of

each variable.

These results show that, given our limited data set, we are at the limit of what is possible

in terms of the complexity of our model. It is not possible to increase the number of pa-

rameters in the model any further without making the output meaningless. Consequently,

the work that follows this chapter focusses mainly on improving the model, rather than

adding complexity. Improvements are made by making more realistic assumptions and

correcting some of the simplistic approaches that have been necessary thus far.
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Chapter 6

Modelling Extensions

In this chapter I extend and improve the model that lies at the heart of our approach, by

introducing a more realistic model for the discovery of fossils. Rather than each species

having an equal probability of being preserved, I let the preservation probability depend

upon the length of time for which that species lived. In Section 6.2 I introduce a model

for the mass extinction event that wiped out the dinosaurs at the Cretaceous-Tertiary

boundary 65 My ago. In Section 6.3 I outline the possibility for a model selection approach

that emerges naturally from the ABC algorithm, before applying this in Section 6.4 to

determine which form of growth curve best fits the data.

6.1 A Poisson Sampling Scheme

The binomial fossil find model introduced in Section 2.2 has been used exclusively up until

this point. Under this model each species alive during a particular epoch has an equal

probability of being discovered as a fossil. This leads to a simple binomial structure, so

that if Ni species lived during interval i, then Di ∼ Bin(Ni, αi).

It is, however, more realistic to use a model in which the probability of a species being

preserved depends upon the length of time that species lived for. So for example, a species
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that only lived for 1 My should be less likely to be discovered as a fossil than one that

lived for 10 My. One way to do this is to use a Poisson sampling scheme. We assume that

fossil finds occur as the events of a Poisson point process on the branches of the tree. As

we are only interested in whether a species is discovered or not, we do not care how many

times a given species is found. Label each of the Nk species in interval k from 1 to Nk,

then let

I
(k)
j =

{
1 if we find species j in interval k,

0 otherwise.

Then, if species j lives for time t
(k)
j in interval k, let P(I

(k)
j = 1) = 1 − e−βkt

(k)
j where

{βk}k=1,...,14 are the sampling rates(1) for each interval. The {I(k)
j }j=1,...Nk

are independent

Bernoulli random variables with parameters 1−e−βkt
(k)
j , where t

(k)
j is a random parameter.

The number of fossil finds is the sum of these random variables:

Dk =

Nk∑

j=1

Ij,

i.e., the number of fossils found in interval k is the sum of Nk independent Bernoulli

random variables where each variable has a different parameter.

Our aim is to find a Gibbs update step for the βk similar to the beta conjugate priors

used in Section 5.2.1. The posterior distribution of βk is

π(βk|D,λ, τ,N ) ∝ π(βk)P(D|N , βk)

∝ π(βk)

Nk∏

j=1

(1 − e−βkt
(k)
j )Ij (e−βkt

(k)
j )1−Ij

where the final term on the right is the probability of observing any particular set of

fossil finds, {I(k)
j }j=1,...,Nk

. Because the t
(k)
i terms are all different, no conjugate prior

distribution exists, which means we are not able to use standard Gibbs updates. We are,

however, able to write down a Metropolis-Hastings update step, but due to the acceptance

step (H2 in Algorithm H) the algorithm slows down considerably. Instead, it is possible

to approximate D′ by a Poisson distribution

D′
k =

Nk∑

j=1

I
(k)
j ≈ Po




Nk∑

j=1

(1 − e−βkt
(k)
j )




(1)It no longer makes sense to call the βk sampling fractions, as unlike the αk, they do not represent the
fraction of species preserved.
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so that

π(βk|D,λ, τ,N ) ∝ π(βk)




Nk∑

j=1

(1 − e−βkt
(k)
j )




Di

exp


−

Nk∑

j=1

(1 − e−βkt
(k)
j )


.

The Kullback-Liebler divergence between the distribution of the sum of Bernoulli variables

and the Poisson approximation, has been bounded above by Kontoyiannis et al. [69], so

that

D(PSn ||Po(λ)) ≤ 1

λ

n∑

i=1

p3
i

1 − pi
,

where Sn is the sum of n independent Bernoulli(pi) random variables and λ =
∑

pi.

Unfortunately, even with this approximation, there is still no conjugate distribution we

can use. However, by approximating the sum of parameters in the Poisson distribution to

first order, we find that

Nk∑

j=1

(1 − e−βkt
(k)
j ) ≈ βk

Nk∑

j=1

t
(k)
j = βkLk

where Lk is the total length of all the lineages in interval k. This gives

π(βk|D,λ, τ,N ) ∝ π(βk)Po(βkLk)

∝ π(βk)e−βkLk(βkLk)
Dk

and so we can use conjugate gamma prior distributions, βk ∼ Γ(a, b). The posterior

distributions are then also gamma distributions, but with different parameter values.

βk|D,N ∼ Γ(Dk + a,Lk + b).

When a and b are small the posterior means of the sampling rates are again close to the

value initially hoped for:

E(βk|D,N ) =
Dk + a

Lk + b
≈ Dk

Lk
. (6.1)

6.1.1 Primate Crown Divergence Time

In this section I focus on dating the primate divergence time. Throughout this section the

following set of prior distributions are used:

τ ∼ U [0, 50]

γ ∼ U [0.005, 0.015]

ρ ∼ U [0, 0.2]

1/λ ∼ U [2, 3].

(6.2)
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I have reduced the prior range for τ and ρ, as experience has shown that all of the posterior

mass is concentrated in these regions. Extending the prior ranges for τ and ρ has no effect

other than to slow down the simulations. We also need to choose the hyperparameters

a and b for the gamma prior distributions given to the sampling rates. I tried numerous

different combinations, none of which changed the posterior quantiles for N0, τ , ρ or γ by

more than a couple of percent. Different values for a and b did lead to different posterior

values for β = (β1, . . . , βk), however. It also had a large effect on the acceptance rate,

with smaller values leading to lower acceptance rates.

Initially the simulations suffered from the same problem as found when using a binomial

sampling scheme, namely that the observed values of the modern diversity were too small

(the posterior median of N0 was 50). Using the population-adjusted metric and imposing

the constraint N0 > 200, as used in Chapter 5, did not solve the problem. The reason for

this is that N0 converges on the lower bound of 200, so that most of the accepted runs

have N0 ≈ 200. A solution is to require N0 to be greater than some larger value, such as

N0 ≥ 360. The value of 360 is chosen to be large enough so as to stop the chain converging

to the wrong place, and slightly less that the ‘known’ diversity of 376 to account for the

uncertainty surrounding this value.

Table 6.1 and Figure 6.1 give a summary of the posterior distributions obtained using

(a, b) = (5, 50) with the population-adjusted metric and ǫ = 0.4. These hyperparame-

ter values are small enough so that the posterior is largely determined by the data (cf.

Equation (6.1)), but large enough so that the simulations run sufficiently quickly. The

acceptance rate was 5362 simulated trees per accepted tree, which after burn-in and thin-

ning leaves 3568 accepted results. The acceptance rate is much lower for the Poisson

sampling scheme than for the binomial sampling scheme, suggesting that it is a poorer fit.

The smallest tolerance value that can feasibly be used is ǫ = 0.4, whereas for the binomial

scheme ǫ = 0.15 was used.

Comparing these results to the analysis done using the binomial sampling scheme (Figure

5.2), we can see that the posterior distribution for τ has a shorter tail when using Poisson

sampling, although both medians are roughly the same. The posterior distribution of ρ

shows the most clearly defined change from its prior distribution seen so far, which may

be due to the constraint on N0.

The largest change to previous analyses, as expected, is to the sampling rates. If we

rank the epochs according to the size of the average sampling rate βi, we find a markedly

different order to that seen in Chapter 5 and that given by Tavaré et al. (Table 3.2). The

values given in Table 6.1 agree much more closely with what we might intuitively expect.

Raup [101] argued that the fossil record is biased towards more recent species because

there is more available rock from the more recent past (this is the so called pull of the

recent argument). The inferred sampling rates largely show that here. Aside from small
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6.1 A Poisson Sampling Scheme

(i) Min. LQ Median Mean UQ Max.

N0 360 366 374 377 384 476
τ 0.1 9.6 13.6 14.7 18.5 43.9
ρ 0.017 0.056 0.066 0.067 0.077 0.177
γ 0.0050 0.0064 0.0084 0.0089 0.0110 0.0150

1/λ 2.00 2.24 2.49 2.49 2.74 3.00

(ii)

k βk

1 0.25
2 0.26
3 0.23
4 0.13
5 0.053
6 0.030
7 0.053
8 0.038
9 0.018
10 0.071
11 0.19
12 0.25
13 0.41
14 0.033

Table 6.1: Summary statistics when using the Poisson sampling scheme to date the primate
divergence time. Obtained with ρp, N0 ≥ 360, and ǫ = 0.4 (n=3568); (i) posterior summary
statistics (ii) posterior means of the sampling fractions.

fluctuations, the βi decrease from the most recent epoch, all the way back to the Early-

Oligocene. They then rise again through the Eocene. However, the relative increase

through these epochs is not as large and therefore not as unrealistic as that found with

the binomial sampling scheme (cf. Section 5.3).

6.1.2 Joint Distribution of the Primate and Anthropoid Divergence Times

I now find the joint distribution of τ and τ∗ using the Poisson sampling scheme. Initially, I

tried using the same strategy as in Section 5.4 and used ρp on the main tree and ρs on the

subtree. Although this runs with a reasonably high acceptance rate, the observed values

of N sub
0 are too far from the known value of 281. Instead, I used the population-adjusted

metric on both the main tree and the subtree. Using the hard constraint Nmain
0 ≥ 360,

and ǫ = (0.5, 0.5) gives an acceptance rate of 4966 simulated trees per accepted tree, which

after burn-in and thinning leaves 4815 results. A summary of the posterior distribution is

shown below in Table 6.2 and Figure 6.2.

Unlike in the previous section, we now find that using the Poisson sampling scheme is a

better fit than the binomial scheme. Using the same metrics and tolerances with binomial

sampling led to an acceptance rate of 32930 simulated trees per accepted tree (see Table

5.2) which is more than six times slower than the simulations done here.

Comparing these results with those obtained when using the binomial sampling scheme

in Section 5.4, we can see that the marginal posterior distributions for the two divergence

times, τ and τ∗, are almost identical for both sampling models. The sampling rates, βi,

are very similar to those found in Table 6.1, which differs from Chapter 5 where we found
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Figure 6.1: Plots of the posterior distributions when dating the primate divergence time using a
Poisson sampling scheme with ρp, N0 > 360, ǫ = 0.4, and Γ(5, 50) priors for the βi.

that dating two split points caused a large change in the sampling fractions. Similarly,

under the Poisson sampling scheme the posterior distribution of τ is the same whether

dating both the primate and anthropoid divergence times, or just the primate divergence

time. This is not what we observed in Chapter 5, but is clearly a desirable outcome.

As before, using the population-adjusted metric to measure the accuracy of the simulated

anthropoid fossil counts slows down the simulations (by a factor of 10 in this case). Even

using ρp, the observed values of the anthropoid diversity, N sub
0 , do not closely match the

known diversity of 281 species. This is a problem with our model and is addressed in

Chapter 7. Using ρp on the subtree slows the acceptance rate by a factor of 10 compared

to using ρs. This is because our model is not fitting as well as it could.

6.2 Modelling the K-T Mass Extinction

The Cretaceous-Tertiary (K-T) boundary 65 My ago marks the end of the Mesozoic era,

often called the age of the dinosaurs, and the start of the Cenozoic era and the dominance

of bird and mammal species. It also marks one of the five big mass extinction events [103].

Although some authors wonder whether most fluctuations in diversity are really artefacts
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6.2 Modelling the K-T Mass Extinction

(i) Min. LQ Median Mean UQ Max.

Nmain
0 360 373 388 393 408 549

N sub
0 103 169 187 189 208 303
τ 0.2 9.8 13.9 15.1 19.0 49.8
τ∗ 0.6 11.2 15.0 15.4 19.0 49.8
ρ 0.022 0.059 0.070 0.073 0.084 0.191
γ 0.0050 0.0067 0.0087 0.0091 0.0113 0.0150

1/λ 2.00 2.21 2.44 2.46 2.70 3.00 (ii)

k βk

1 0.25
2 0.26
3 0.22
4 0.12
5 0.050
6 0.027
7 0.047
8 0.033
9 0.016
10 0.065
11 0.18
12 0.25
13 0.41
14 0.033

Table 6.2: Summary statistics when dating the primate and anthropoid divergence times using
Poisson sampling. Obtained with ρp for both trees, Nmain

0
≥ 360, and ǫ = (0.5, 0.5) (n=4815); (i)

posterior summary statistics (ii) posterior means of the sampling fractions.

of the fossil record [92, 109], most now believe that a large mass extinction, known as

the K-T crash, did take place at the K-T boundary. This led to the extinction of the

dinosaurs, probably due to either a extraterrestrial impact or a flood basalt event [2].

Many authors believe the K-T crash to be of key importance in the evolutionary history

of primates and other mammalian species. It is suggested that mammals evolved to fill

the evolutionary niche presented by the dinosaurs demise [3]. Others, however, believe

that mammals, possibly including some primate species, coexisted with the dinosaurs

[19, 33, 90].

If the dinosaurs were killed by an extraterrestrial impact, then any primate species would

almost certainly have been affected as well. A large asteroid collision would have thrown

huge clouds of debris into the atmosphere inhibiting photosynthesis and starving many

species. For this reason, in this section I give a model for the K-T crash and examine the

effects on our predictions.

I model the effect of the K-T crash on the primates by specifying the probability, PC ,

that each primate species becomes extinct at the K-T boundary. The parameter PC , which

I will refer to as the cull-probability, can then be treated in the same way as the other

parameters by giving it a prior distribution. Our palaeontologist collaborators suggest

that at least 50% of primate species became extinct at this time and so we will use the

prior distribution PC ∼ U [0.5, 1]. Note that there is no fossil evidence of Cretaceous

primates and so any a priori belief about the proportion that became extinct at the K-T

boundary is based solely on examining other taxonomic families.

Using the prior distributions (6.2), (a, b) = (5, 50), Poisson sampling, the hard constraint
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Figure 6.2: Plots of the posterior distributions when dating the primate and anthropoid divergence
times using Poisson sampling, obtained with ρp for the main tree and the subtree, Nmain

0
≥ 360,

(a, b) = (5, 50) and ǫ = (0.5, 0.5).

N0 ≥ 360, and the population-adjusted metric for both trees with ǫ = (0.5, 0.5), we find

the posterior distributions shown in Table 6.3 and Figure 6.3. The acceptance rate is 3098

successfully simulated trees per accepted tree, which after burn-in and thinning leaves

5819 results. Notice that this model fits the data better than the model in which the K-T

mass extinction event is not considered(2).

Comparing the posterior distribution for τ with the results found in Section 6.1 we can

see that τ < 10.2 My is much more likely when modelling the K-T crash. The value

(2)In Section 6.1, the acceptance rate when using the same priors, metrics and constraints, was 4966
simulated trees per accepted tree. This is lower than observed here, which indicates a poorer model fit (cf.
Section 6.3.
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6.2 Modelling the K-T Mass Extinction

(i) Min. LQ Median Mean UQ Max.

Nmain
0 360 374 391 397 413 559

N sub
0 95 169 189 191 211 315
τ 0.1 6.7 8.8 11.5 13.9 49.7
τ∗ 0.1 10.4 14.1 14.2 17.7 51.2
ρ 0.019 0.064 0.076 0.080 0.92 0.197
γ 0.0050 0.0068 0.0090 0.0093 0.0117 0.0150
λ 2.00 2.17 2.37 2.41 2.62 3.00

PC 0.500 0.592 0.702 0.718 0.836 1.000

(ii)

k βk

1 0.25
2 0.25
3 0.22
4 0.12
5 0.049
6 0.026
7 0.046
8 0.033
9 0.016
10 0.066
11 0.18
12 0.26
13 0.44
14 0.044

Table 6.3: Summary statistics when modelling the K-T crash with cull probability PC ∼ U [0.5, 1],
using Nmain

0
≥ 360 and ρp with ǫ = (0.5, 0.5) (n=5819); (i) posterior summary statistics (ii)

posterior means of the sampling fractions.

τ = 10.2 My is significant as this value corresponds to the K-T boundary. Examining the

distribution more closely we can see that there is a clear change point at this time.

A posterior estimate of the probability that primates and dinosaurs coexisted can be

obtained from the output by looking at the proportion of accepted τ values that are

larger than 10.2 My, i.e., all those values that correspond to the primates diverging before

the K-T boundary. For the simulations above we find that out of 5819 results, 1760

have τ > 10.2 My, which gives the posterior probability 1760/5819 = 0.30 that primates

existed in the Cretaceous. If we return to the simulations reported in Table 6.2, we find

that P(τ > 10.2|D) ≈ 0.73. Modelling the mass extinction at the K-T boundary has

made the posterior probability that Cretaceous primates existed less than half what it

was previously.

Examining the posterior distribution of τ∗ we can see that there is also a change point

in this distribution at τ∗ = 28 My, which again corresponds to the K-T crash. This can

be seen more clearly by forcing the simulations to have Cretaceous primates by giving τ a

U [10.2, 100] prior distribution. Plots of the marginal distributions for τ and τ∗ are shown

in Figure 6.4. This allows us to more clearly see the change point for τ∗, and we can see

that modelling the K-T crash makes the posterior estimate of the existence of Cretaceous

anthropoids much less likely.

Finally, as expected, there is limited information about PC contained in its posterior

distribution. If we use a fixed value for PC in the range [0.5, 0.9] the posterior distributions

do not change much. If we use a larger prior range for PC such as PC ∼ U [0, 1], then the

same effects are observed, but with less extreme change points.
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Figure 6.3: Plots of the posterior distributions when modelling the K-T crash with PC ∼ U [0.5, 1].
Results are obtained with the Poisson fossil find model, Nmain

0
≥ 200, and ρp with ǫ = (0.5, 0.5)(n =

5819).

6.3 Model Selection via ABC

During the modelling process, there are many decisions to be taken. We must choose the

model, the prior distributions, and the inference technique, etc. One of the most important

decisions, in terms of the effect on the results, concerns which model to use. There are

often several different models available which we label M1, . . . ,Mk say. While it is often

acceptable to declare that we are using model M1 and that all results are dependent upon

this fact (cf. Goldstein’s [53] subjective Bayesian approach), it is valuable to know which

model best explains the data. Another common approach is to find the relative a posteriori

probabilities for each model and then to take a weighted average of the predictions.

Many different model selection approaches have been used over the previous decades.
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Figure 6.4: Posterior plots of the primate and anthropoid temporal gaps when we condition
on having Cretaceous primates by giving τ a U [10.2, 100.0] prior distribution. Obtained using
PC = 0.75 and ρp with ǫ = (0.5, 0.5).

Wasserman [122] gives an excellent review of some of the simpler techniques and a review

of more recent developments is given by Clyde and George [30]. The problem can be

described as follows: suppose we have models M1, . . . ,Mk each with prior probability

π(Mi). Each model gives a specification of the probabilities P(D|θi,Mi) and prior distri-

butions π(θi|Mi), where θi is the multidimensional parameter used in model i. The aim

is to find the posterior model probabilities, π(Mi|D).

For the problems considered in this thesis, where the likelihood function P(D|θi,M) is

unknown, most model selection approaches I know of are impossible to apply. For example,

the simplest and most popular methods are a set of asymptotic approximations, such as the

Akaike Information Criterion [1] (AIC), the Bayesian (or Schwartz) Information Criterion

[107] (BIC), or more recently the Deviance Information Criterion [114] (DIC), all of which

depend on being able to explicitly calculate the likelihood function. Model selection is

often a trade-off between complexity and goodness of fit, the idea being that models with

more parameters should fit better, but are more complex. The guiding principle is that of

Occam’s razor, which states that simpler models are preferable to more complex models.

Bayesian model selection is based on calculating the Bayes factors, which Jeffreys [61]

proposed as an alternative to hypothesis testing. If we wish to select between models M1

and M2, we use the Bayes factor for M1 to M2:

B12 =
P(D|M1)

P(D|M2)
=

∫
π(θ1|M1)P(D|θ1,M1)dθ1∫
π(θ2|M2)P(D|θ2,M2)dθ2

.

The reason this quantity is used can be seen by writing

P(M1|D)

P(M2|D)
=

π(M1)

π(M2)

P(D|M1)

P(D|M2)

so that the posterior odds = prior odds × Bayes Factor.
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6 Modelling Extensions

The size of B12 records how far the data change our prior beliefs in M1 in preference

over M2 (often called the strength of evidence for model one over model two). Jeffreys

gives a scale for the interpretation of Bayes factors. Hypothesis testing via Bayes factors

has several advantages over traditional Pearson χ2-significance tests: they allow easy

comparison of non-nested models; they give strength of evidence (or a measure of fit) for

a model (whereas Neyman-Pearson tests only reject or accept models); and they can be

used to give posterior model probabilities which can then be used to average over different

models. See Kass and Raftery [64] for more details.

Calculation of Bayes factors is often either hard or impossible, as they depend upon the

normalising constants P(D|Mi) which are usually difficult to compute with any accuracy.

Various methods have been suggested: Schwartz [107] gives an asymptotic approximation

for the logarithm of the Bayes factors, Chib [29] gives an approach based on rearrang-

ing Bayes formula, and Newton and Raftery [89] give an importance sampling approach

to estimating the required integrals. These methods all rely on knowing the likelihood

function, and in the case of the latter two, are often reported to be unstable.

The ABC approach to estimating Bayes factors is based on the acceptance rate of the

algorithms. The exact rejection algorithms A and B in Chapter 3 both have acceptance

rates equal to P(D|M). By using two different models we can, in theory at least, get an

estimate of the Bayes factor by taking the ratio of two acceptance rates.

When using the approximate algorithms C and D, the acceptance rate is equal to

P(ρ(D,D′) ≤ ǫ|M). By looking at the ratio of the acceptance rates we approximate

the value
P(ρ(D,D′) ≤ ǫ|M1)

P(ρ(D,D′) ≤ ǫ|M2)

which should tend to the Bayes factor as ǫ ↓ 0. At present, there is no theory to show that

either estimate will be robust. In the next section I try to apply this idea to choosing a

growth curve for primate evolution.

6.4 Using Different Growth Curves

Up until this point of the thesis I have exclusively used a logistic growth curve to model

the diversity as this is the model most commonly used in the palaeontology literature (cf.

Section 2.1.1). There are, however, numerous other growth curves that could have been

used to determine the birth probabilities. In this section I try a couple of other growth

curves before using the methodology of the previous section to indicate which best fits the

data.

The method outlined in Section 6.3 only works for the rejection-based ABC algorithms.

It is not clear how to extend the methods to the hybrid ABC-MCMC algorithms of Chapter

5, and so for this reason I shall use Algorithm E from Chapter 4 throughout this section.
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6.4 Using Different Growth Curves

I also use the simpler binomial fossil-find model with no K-T crash in order to keep

everything simple and to help aid comparison with previous results. Throughout this

section I use the prior distributions τ ∼ U [0, 100], α ∼ U [0, 0.3], and the population-

adjusted metric.

6.4.1 Linear Growth

In this section I use a linear growth curve to model the primate diversity through time.

Equating the linear growth curve

E(Zt) = at + b

with the expected diversity for the general binary branching process (Equation (2.9))

gives, after differentiating, the branching probabilities

p2(t) =
1

2
+

a

2λ(at + b)
, p0(t) =

1

2
− a

2λ(at + b)
.

The parameter b is determined by the initial population size, and so we fix b = 2 for all

of the simulations. Experimentation with the prior range for the gradient parameter a

leads us to try giving a a U [0, 50] prior distribution. Changing the prior range has little

effect, as can be seen from the plots of its marginal posterior distribution. Using the

population-adjusted metric with ǫ = 0.15 gives the results summarised in Figure 6.5.

0 20 40 60 80 100

0.
00

0
0.

01
0

0.00 0.10 0.20 0.30

0
20

40

0 10 20 30 40 50

0.
00

0
0.

01
0

0.
02

0

Accepted τ values Accepted α values Accepted a values

D
en

si
ty

D
en

si
ty

D
en

si
ty

Figure 6.5: Marginal posterior distributions when using a linear growth curve for the primate
population growth. Obtained using ρp with ǫ = 0.15 (n = 1553).

I am not proposing linear growth as a realistic model, and so I will not give much

attention to these results other than to say that the divergence times suggested by the

marginal distribution for τ are unrealistic. The large range extension is due to the slow

linear population growth that does not allow the population to reach a large enough value

to account for the number of Eocene fossils in a short period of time. Acceptance rates

for different values of ǫ are shown in Table 6.4.
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6 Modelling Extensions

6.4.2 Exponential Growth

I also tried fitting an exponential growth curve. Equating

E(Zt) = 2ekt

with Equation (2.9) and differentiating leads to the branching probabilities

p2(t) =
1

2
+

k

2λ
, p0(t) =

1

2
− k

2λ
.

Using exponential growth is equivalent to using a homogeneous Galton-Watson process,

which can be seen by noting that the branching probabilities do not depend upon time.

The main difficulty when using an exponential growth curve is that the population size

grows extremely quickly and so care needs to be taken to discard trees once they become

too large. Giving k a uniform prior, k ∼ U [0, 0.05], and using ρp with ǫ = 0.2 leads to the

results summarised in Figure 6.6. Again note that observed τ values are unrealistic, as

is to be expected. Exponential population growth is not feasible over an extended period

due to the limited amount of resources available.
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Figure 6.6: Plots of the marginal posterior distributions when using exponential growth curves
for the primate population growth. Obtained using ρp with ǫ = 0.2 (n = 490).

6.4.3 Logistic Growth

Throughout this thesis I have used logistic growth (Equation (2.10)) to describe the pri-

mate diversity. However, I have not yet given the results from dating just the primate di-

vergence time using the population-adjusted metric. Using prior distributions ρ ∼ U [0, 0.5]

and γ ∼ U [0.005, 0.015] with ǫ = 0.1 gives the results summarised in Figure 6.7.

Notice that the marginal posterior distribution for the sampling fractions α is almost

identical for all three growth curves. This is because the constraint on the diversity

imposed by the population-adjusted metric ensures that only a small range of α values

are able to explain both the fossil counts and the fact that N0 = 376 species.
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Figure 6.7: Plots of the marginal posterior distributions when using a logistic curve for the
primate population growth. Obtained using ρp with ǫ = 0.1.

6.4.4 Acceptance Rates

I now give the acceptance rates for each model. Before doing this however, we should

consider what quantity we should use to calculate the acceptance rates. We have a choice;

either the reciprocal of the number of trees simulated per accepted tree, or the reciprocal

of the number of successfully simulated trees per accepted tree. By a successfully sim-

ulated tree I mean a tree that survives to the present with both sides extant (i.e., with

extant haplorhine and strepsirrhine species; cf. Section 2.3.1.). The value we use makes

a difference to the size of the Bayes factor between the models. For example, using a

linear growth curve leads to more trees going extinct during the simulations than using

the logistic growth curve does. And so using the first quantity to calculate the Bayes

factor BLoLi (evidence for logistic over linear growth) gives a larger value than using the

second quantity.

Here I use the second quantity, the number of successfully simulated trees per accepted

tree, as I believe that this is what we are interested in. Our model is Z̃ from Chapter

2, i.e., trees that survive on both sides. Because we are unable to simulate from this

model we use the trick of simulating Z values and throwing away results where Z = 0.

The acceptance rate should therefore be based on what percentage of successful trees are
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6 Modelling Extensions

Acceptance Rates

ǫ Logistic Growth Linear Growth Exponential Growth

0.3 72 127 387
0.2 451 1109 11925
0.15 2964 11759 23419
0.1 135238 ∞ ∞

Bayes Factors

ǫ BLoExp BLoLi BLiExp

0.3 5.4 1.8 3.1
0.2 26.4 2.5 10.8
0.15 7.9 4.0 2.0

Table 6.4: Acceptance rates and Bayes factors for the three different models; linear, logistic and
exponential population growth. Acceptance rates given as number of successfully simulated trees
per accepted tree.

accepted.

Table 6.4 shows how the acceptance rate varies with ǫ for the three different growth

curves, and the approximate Bayes factors between the three models. We can see that

for ǫ = 0.15, BLoExp and BLoLi are both greater than three, which Jeffries interprets as

substantial evidence in favour of logistic growth over either of the other two forms.

For this toy example we would not need to perform model selection as there are physical

reasons why exponential and linear growth are unrealistic. The analysis is included here,

however, as an example of how it could be used in other situations.

There are many problems with this approach. Firstly, Table 6.4 shows how unstable

the estimate of the Bayes factor can be, with large fluctuations as ǫ varies. Secondly, the

acceptance rate varies with the prior range of values used. If we used the prior distribution

τ ∼ U [0, 50] then the evidence in favour of logistic growth becomes much stronger. I am

not sure how to solve either of these two problems, or indeed whether they can be solved.

For this reason, I think the ideas expressed in Section 6.3 can only be used as a tool for

the modeller to compare the relative fit of two similar models, rather than as a formal

tool to use in model selection.

6.5 Future Modelling Extensions

There is disagreement amongst primatologists about the early evolutionary history of pri-

mates. One of the areas of contention concerns the Eocene primates. Nearly all primates

from this epoch belonged to either the adapiform infraorder, often known as lemuroids,

or the omomyiforms which are often known as tarsioids [81]. One of the key unanswered

questions in primatology concerns how these infraorders are related to the extant primates
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[105]. Previously, there was widespread belief that adapiforms were relatives of modern

strepsirrhine primates and that omomyiforms were relatives of modern haplorhine pri-

mates. However, new fossil discoveries have led to this picture being questioned [78]. An

alternative theory is that the adapiforms and the omomyiforms formed a separate out-

group. Although the idea is not pursued here, it is possible to apply the model selection

approach above to see which evolutionary scenario best fits the model. For example, if we

examine the primate data without the omomyiform and adapiform fossil counts (Table

6.5; derived from Table 1.1 by summing over the columns for each row, but excluding

the stem strepsirrhine and stem haplorhine columns) we find that the acceptance rate is

much higher than that observed previously. For example, using the prior distributions

(3.2), the population-adjusted metric on the main tree and the standard metric on the

subtree, with ǫ = (0.4, 0.4) gives an acceptance rate of 210 successfully simulated trees

per accepted tree. This is much faster than in Section 5.4 where the acceptance rate was

6392 successfully simulated trees per accepted tree. This shows that the reduced data set

fits the logistic growth model much better than the full data set. Plots of the posterior

distributions of the temporal gaps are shown in Figure 6.8. Note how the range extension

for the primates (τ) is smaller than seen previously (cf. Figure 5.4), but that the range

extension for the anthropoids (τ∗) is comparable to before. Both results are as expected.

In order to construct a full model selection argument between the four evolutionary sce-

narios given in Martin [78], we would need to better develop the two trees approach and

model the adapiforms and omomyiforms as a subtree that dies out towards the end of the

Eocene. This is beyond the scope of this thesis.
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Figure 6.8: Plots of the posterior temporal gaps for the primates and the anthropoids when using
the data set without the adapiform and omomyiform data. Obtained using ρp for the main tree, ρs

for the subtree with ǫ = (0.4, 0.4).

A further modelling extension, would be to use a more general growth curve. Logis-

tic growth, although widely accepted, is very simple and may be ignoring some of the

complexities hidden in the data. It may be possible to take into account some of the
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Table 6.5: Fossil counts for the strepsirrhine and haplorhine crown species. These data do not
include any adapiform or omomyiform fossil counts.

Number of Number of
strepsirrhine and haplorhine anthropoid

crown fossils fossils

Extant 376 281

Late-Pleistocene 22 22
Middle-Pleistocene 28 28
Early-Pleistocene 30 30
Late-Pliocene 43 40
Early-Pliocene 12 11
Late-Miocene 35 34
Middle-Miocene 45 43
Early-Miocene 34 28
Late-Oligocene 2 2
Early-Oligocene 18 6
Late-Eocene 9 2
Middle-Eocene 13 0
Early-Eocene 2 0
Pre-Eocene 0 0

fluctuations that are believed to have taken place throughout the Cenozoic. For example,

we could take into consideration the two possible mass extinctions that took place dur-

ing the Cenozoic. The first occurred at the Eocene-Oligocene boundary and is known as

the Grand Coupure. All European primates became extinct at this time, possibly due to

climate change. The second extinction took place during the Miocene. We could model

this growth curve either by using a more general curve shape or by allowing the birth and

death probabilities p2 and p0 to vary from epoch to epoch.

It is of course, simple to date other divergence times using the data set we have available.

We could for example, without much difficulty, find the joint distribution of the primate

and catarrhine divergence times. There would likely be some convergence problems to

overcome, but in theory this would pose no problem. I do not believe it is possible to

find the joint distribution of three or more divergence times at present as the computer

time required would be too great. However, with further methodological developments

and increases in computer power it may become possible in the future.
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Chapter 7

Conditioned Galton-Watson Trees

In previous chapters I have stressed the importance of conditioning in our calculations. For

example, in Chapter 2 I noted that because we know that there are extant primates, we

should model speciation using branching processes conditioned to have a non-zero modern

diversity. Similarly, in Chapter 4 we adjusted the metric used in the ABC algorithms so

that we were estimating the posterior distribution of the parameters conditioned on the

data and on the fact that there are 376 modern primate species.

Another implicit act of conditioning has also been performed since Section 4.1. In

that section we took into account the fact that we knew that the anthropoids formed a

subtree in the main primate tree. To take this into account I proposed the optimal subtree

selection algorithm to find which subtree looked most like the known anthropoid subtree.

A better and more theoretically sound approach would have been to simulate a primate

tree conditional on the fact that the anthropoid subtree originated at a given time. That

is the aim of this chapter.

Although many authors have considered conditioned branching processes before, no

one has looked at processes conditioned to have a subtree originate at a particular point

in time. Kennedy [68] considered discrete time homogeneous Galton-Watson processes

conditioned on the total number of progeny; Geiger [45] considered continuous time binary

Galton-Watson trees conditioned on extinction and non-extinction; and Chauvin et al. [28]
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7 Conditioned Galton-Watson Trees

considered Markovian branching particle systems in R
d conditioned to have a particle in

a particular place at a given time. Waugh [124] considers general conditioned Markov

processes. Unfortunately, none of these approaches is directly applicable to our situation,

although Chauvin et al. provides the inspiration for the approach set out in Section 7.3

of this chapter.

This chapter contains a description of the structure of continuous time inhomogeneous

branching processes conditioned to have a birth at a particular point in time. Section 7.1

contains a calculation that motivates the formal theory which is contained later in Sec-

tion 7.3. Section 7.2 contains an approximate method for simulating conditioned trees,

which I worked on before discovering a more efficient and exact method. The final part of

the chapter, Section 7.3, contains a description of the fish-bone like structure of the condi-

tioned trees. In order to prove that this is the case, a measure space on trees is described,

and the Galton-Watson measure is explained. The proof is rather technical and relies

on representing the birth process of the tree as a random point measure on the line and

using Palm theory to perform the conditioning. The approach works for general offspring

distributions, not just the binary trees considered so far. Details of how to implement this

approach, and the results obtained, are given in Chapter 8.

7.1 The Conditioned Tree

In this section I give a heuristic derivation to illustrate what effect conditioning has on the

Galton-Watson process. The arguments used in this section are not intended as a formal

proof, but instead as calculations to motivate what follows in Section 7.3.

The aim is to discover the structure of Galton-Watson processes conditioned to have a

birth (i.e., a split point) at some fixed time y. Initially, I only consider Galton-Watson

processes which begin with a single lineage at time 0. We can deal with processes begun

with more than one lineage by an application of the size-biased lemma given later in this

section. As in Chapter 2, let X(t) denote the size at time t of a tree begun from a single

species at time zero, and let Z(t) denote the size of the tree begun from two species. Let

B(y) denote the event that a species dies and is replaced by two new species at time y,

and let B(y, y + h) denote the event that a birth occurs between times y and y + h. As

we are interested in the continuous time process, a priori, P(B(y)) = 0 for any given y.

Therefore, in order to determine the conditional probability P(X(t) = k|B(y)), we must

consider the limit limh↓0 P(X(t) = k|B(y, y + h))(1).

It is necessary to split the calculation into two parts: namely, before and after the birth

at time y. Firstly, consider the growth of the tree before the conditional split point, i.e.,

(1)Feller [42] contains a useful discussion about conditioning on events which have probability 0.

114



7.1 The Conditioned Tree

t < y:

P(X(t) = j | B(y)) = P(X(t) = j). lim
h↓0

P(B(y, y + h) | X(t) = j)

P(B(y, y + h))
.

By conditioning on the value X(y), and recalling that for a population of size n the time

to the next death has an Exp(nλ) distribution, we can see that

P(X(t) = j|B(y)) = P(X(t) = j) lim
h↓0

∑∞
k=0 P(B(y, y + h)|X(y)=k)P(X(y) = k|X(t) = j)∑∞

k=1 P(B(y, y + h) | X(y) = k)P(X(y) = k)

= P(X(t) = j) lim
h↓0

∑
(kλh + o(h)) p2(y) P(X(y) = k | X(t) = j)∑

(kλh + o(h)) p2(y) P(X(y) = k)

where p2(t) is the probability that a death at time t leads to the birth of two new species.

By dividing both the numerator and the denominator by h, recalling that lim(an/bn) =

lim an/ lim bn, and exchanging the order of the summation and the limit, we find that

P(X(t) = j|B(y)) = P(X(t) = j)

∑
lim(kλ + o(h)/h) P(X(y) = k | X(t) = j)∑

lim(kλ + o(h)/h) P(X(y) = k)

= P(X(t) = j)

∑
kP(X(y) = k | X(t) = j)∑

kP(X(y) = k)

= P(X(t) = j)
E(X(y) | X(t) = j)

EX(y)
.

The branching property implies that E(X(y) | X(t) = j) = jE(X(y) | X(t) = 1) and we

can use the tower property to note that

EX(y) = E[E(X(y) | X(t))]

= E[X(t)E(X(y) | X(t) = 1)]

= EX(t)E(X(y) | X(t) = 1)

and that therefore

P(X(t) = j | B(y)) =
jP(X(t) = j)

EX(t)
. (7.1)

Now consider the structure of the process after the conditioned split point, i.e., for t > y:

P(X(t) = j | B(y)) =

∞∑

k=1

P(X(t) = j,X(y+) = k + 1 | B(y))

=
∑

P(X(t) = j | X(y+) = k + 1)P(X(y−) = k | B(y))

=
∑

P(X(t) = j | X(y) = k + 1)
kP(X(y) = k)

EX(y)
. (7.2)

where y+ denotes the time just after the birth B(y) and y− represents the time just

before. Taken together, Equations (7.1) and (7.2) give the distribution of the size process
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of conditioned Galton-Watson trees.

Equation (7.1) shows that the conditioning leads to what Lyons et al. [74] and others call

size-biased Galton-Watson trees. A size-biased random variable is defined as follows [106]:

Definition. Let X be a positive random variable with density f such that EX < ∞, then

the size-biased version, X̂ say, has density

f̂(x) =
xf(x)

EX

If X is a discrete random variable with P(X = j) = pj, then

P(X̂ = j) =
jpj

EX

Size-biased distributions occur naturally in a variety of situations. For example, if the

random variables X1,X2, . . . represent the life times of components in a renewal process

(and are independent and identically distributed), then the probability distribution of the

life time of the component in use at some fixed time t is the size-biased distribution of X.

This is the source of the well known waiting-time paradox.

The calculation of Equations (7.1) and (7.2) are for Galton-Watson trees begun with a

single species, whereas we are interested in trees begun with two ancestors at time zero.

The following result will be used to justify our simulation approach.

Lemma. Let X1,X2, . . . ,Xk be discrete independent positive random variables with EXj =

λj, and let ̂ denote the size-biasing operator. The size-biased version of the sum,

S = X1 + · · · + Xk, has the following distribution:

Ŝ =d X1 + . . . + XJ−1 + X̂J + XJ+1 + . . . + Xk

where the random variable J has distribution

P(J = j) =
λj

λ1 + · · · + λk
, j = 1, 2, . . . , k

and is independent of the Xj .

This result is well known. However, I have been unable to find a proof of it and so for

completeness I include one below.

Proof. Let Y be a positive discrete random variable with distribution P(Y = y) = py

and probability generating function (pgf) φY (u). Then the size-biased variable Ŷ has pgf

φbY (u) =
∑

y

yuypy

EY
=

u

EY

d

du

∑

y

uypy =
uφ′

Y (u)

φ′
Y (1)

. (7.3)
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The Xi are independent, and so we can write

φS(u) = E(u
P

Xi) =

k∏

i=1

φi(u)

where φi(u) denotes the pgf of Xi. Using Equation (7.3) we find that the pgf of the

size-biased sum, Ŝ, is

φbS(u) =
u d

du

∏
φi(u)

d
du

∏
φi(u)|u=1

=
u
∑

j φ′
j(u)

∏
i6=j φi(u)

∑
λi

. (7.4)

Now we find the pgf of the random variable X1 + . . .+XJ−1 + X̂J +XJ+1 + . . .+Xk given

in the lemma:

φ bXd
(u) = E(uX1+...+ bXJ+...+Xk) = E(E(uX1+...+ bXj+...+Xk |J = j))

= E

(uφ′
J(u)

φ′
J(1)

∏

i6=J

φi(u)
)

=
u
∑

j φ′
j(u)

∏
i6=j φi(u)

∑
λi

(7.5)

Observing that Equations (7.4) and (7.5) agree shows that Ŝ and X1 + . . .+XJ−1 + X̂J +

XJ+1 + . . . + Xk do indeed have the same distribution.

Remarks:

1. I have only stated the result for discrete random variables as that is all we shall

require, however the result also holds for continuous random variables. The proof is

similar, except Laplace transforms must be used rather than probability generating

functions.

2. This lemma says that to simulate a size-biased Galton-Watson tree begun with two

lineages, we can simulate two independent trees, one of which is a standard Galton-

Watson tree and the other a size-biased Galton-Watson tree, both begun with one

lineage:

Ẑ(t) =d X1(t) + X̂2(t).

We can use Equations (2.5) and (2.17) to calculate the distribution of X̂ and Ẑ. We find

that

P(X̂(t) = j) = j(1 − η)2ηj−1

P(Ẑ(t) = j) = j(1 − η)2ηj−2(
1

2
(1 − ξ)(1 − η)j−1 + ξη).
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As discussed in Chapter 2, our interest is in Z̃(t), the tree conditioned on non-extinction,

rather than in Z(t). Calculating the size-biased distribution of
̂̃
Z using Equation (2.18)

gives

P(
̂̃
Z(t) = j) =

1

2
j(j − 1)(1 − η)3ηj−2.

This allows us to note that the independence of different sides of the tree carries over to

trees conditioned on non-extinction, i.e.,

̂̃
Z(t) =d X̂(t) + X̃(t).

A Problem

The calculations above give values of P(Z(t) = j|B(y)). It is not clear whether knowing

the distribution of the size process is sufficient to uniquely determine the structure of the

tree. There could conceivably be various ways to simulate trees with this size law, but

which lead to trees with different structures. Ideally, we would like a result similar to the

one given in Geiger [46] which says something along the lines of

P(T ∈ dt|B) =
P(T ∈ dt)Zt(T )

EZt(T )
,

where T represents the tree, dt a subset of the tree space, and Zt(T ) the size of tree T
at time t. This requires a measure space on the type of trees we are interested in (i.e.,

those extant at time t), and a measure for Galton-Watson trees. This is given in Section

7.3. In the next section, I give an approximate method for simulating size-biased random

variables and trees.

7.2 Size-Biased Simulation Methods

In this section I give a couple of algorithms for simulating size-biased versions of a random

variable, all of which depend upon being able to simulate observations from the original

distribution, F (·). One option for sampling from F̂ (·) is to use a simple Metropolis

independence sampler:

1. Suppose we are currently at x. Propose a move to y ∼ F (·)

2. Accept the move with probability

r = min

(
1,

q(y → x)π(y)

q(x → y)π(x)

)
= min

(
1,

y

x

)
.

As discussed in Chapter 5, MCMC algorithms often have a high start-up cost as we must

wait for convergence. Thus, in situations where only a single observation is required from
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each distribution, this approach will be too slow.

An alternative approach is to use a rejection-based algorithm. Suppose X ≤ C almost

surely (a.s.). Then the following rejection algorithm gives observations from the size-biased

distribution:

1. Draw X ∼ F (·).

2. Accept X with probability r = X
C .

The proof that this algorithm gives draws from the size-biased distribution F̂ (·) is es-

sentially identical to those given in Section 3.1, and so is not reproduced here. The

condition that X ≤ C a.s. will not be true in many cases of interest, including the condi-

tional Galton-Watson trees considered earlier. In these cases we can either resort to using

MCMC (which requires no such conditions) or we can use an approximate form of the

rejection method. The following algorithm is just one such approximate method:

1. Simulate X ∼ F (·)

2. Accept X with probability r = min(1, X
C ).

The acceptance rate of this algorithm, assuming that F admits a density f , is

A = P(I = 1) =

∫

x:x≤C

x

C
f(x)dx +

∫

x:x>C
f(x)dx

=
1

C

(∫ ∞

0
xf(x)dx −

∫

x:x>C
(x − C)f(x)dx

)

=
1

C
(EX − ǫC)

where ǫC = E(X − C)+ =
∫
x:x>C(x − C) f(x)dx. Let f̂1 denote the probability density

function of observations from this algorithm. Then

f̂1(x) =





xf(x)
CA if x ≤ C

f(x)
A if x > C

We can calculate the accuracy of this approximation by calculating the total variation

distance between f̂ and f̂1:

dTV (f̂ , f̂1) =
1

2

∫ ∞

0
|f̂(x) − f̂1(x)|dx

=
1

2

(∫

x:x≤C

∣∣∣∣
xf(x)

CA
− xf(x)

EX

∣∣∣∣dx +

∫

x:x>C

∣∣∣∣
f(x)

A
− xf(x)

EX

∣∣∣∣dx

)

=
1

2

(
ǫC

EX − ǫC
P(X̂ ≤ C) +

∫

x:x>C
f(x)

∣∣∣∣
xǫC − EX(x − C)

(EX − ǫC)EX

∣∣∣∣ dx

)
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It does not seem possible to evaluate this integral, but we can use the triangle inequality

to bound the total variation distance.

dTV (f̂ , f̂1) ≤
1

2

(
ǫC

EX − ǫC
· P(X̂ ≤ C) +

∫

x:x>C
f(x)

(
xǫC + EX(x − C)

(EX − ǫC)EX

)
dx

)

=
1

2

(
ǫC

EX − ǫC
· P(X̂ ≤ C) +

ǫC

EX − ǫC
+

ǫC

EX − ǫC
· P(X̂ > C)

)

=
ǫC

EX − ǫC

By controlling the size of C we can control the size of the error for this approximation.

But, as usual, the more accurate we wish to be, the longer we will need to run the

computations. So a potential method for simulating size-biased Galton-Watson trees is as

follows:

1. Simulate a standard Galton-Watson tree until time y.

2. With probability min(1, Z(y)/n) accept the tree. If rejected, return to step 1.

3. Pick a random species from those alive at time y and replace it with two new species.

4. Simulate the tree into the future as required.

By calculating that

ǫC =

∞∑

n=C

(n − C)P(Z(t) = n)|Z(y) = 2)

=

(
1 − ξ

1 − η

)
ηC−1(C(1 − η)(1 − ξ) + 2η)

we can choose n large enough to guarantee that the error is less than some predetermined

value.

There are several problems with this approach. Firstly, it is too slow. If we require a

total variation distance of less than 0.01, this algorithm is about two orders of magnitude

slower than the method of previous chapters. Secondly, for the reason stated at the end

of the previous section, it is not clear that we are generating the correct distribution with

this algorithm. In the next section I give a description of the fish-bone like structure of

conditioned trees, which will then allow us to use a more efficient simulation approach.

7.3 The Fish-Bone Process

Size-biased Galton-Watson trees have been considered in the past by several other authors:

Lyons, Pemantle and Peres [74] used size-biased trees to give conceptual proofs of various
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L log L criteria(2) for discrete time Galton-Watson trees; Geiger [45, 46] used size-biased

trees to give a Poisson process representation of critical continuous time Galton-Watson

trees and to prove various limit laws; Chauvin, Rouault, and Wakolbinger [28] considered

Markovian branching particle systems in R
d conditioned to be in a specific location at a

given time, and found that this conditioning leads to size-biased tree structures.

All of these authors found that size-biased trees have what I will call a fish-bone structure.

Geiger [46] gave the structure for critical size-biased Galton-Watson trees to be as follows:

the initial ancestor (the root of the tree) lives for an Exp(λ) period of time before giving

birth to a size-biased number of offspring, L̂. One of these offspring is chosen at random

and after another Exp(λ) period it then gives birth to a size-biased number of offspring,

and so on. This defines a central spine, or distinguished path of individuals from the root

to time t. Offspring not part of this spine give rise to a standard number of offspring,

L, and evolve as independent Galton-Watson trees. See Figure 7.1 for an illustration of

this structure. Notice that because the offspring distribution on the distinguished path is

size-biased, the tree cannot become extinct. Geiger proved that given a size-biased tree

with at least two lineages at time t, the distinguished path cannot be recovered, and that

the final member of the distinguished path is uniformly distributed across all lineages

extant at time t.

It is clear that if we are able to find a similar construction for trees conditioned on

having a birth at time y, our simulations will be much more efficient than those based

on the rejection algorithm. Unfortunately however, the arguments given by other authors

are not readily adaptable to our scenario. The method of Chauvin et al. [28] most

closely matches our requirements, and the notation and measure space I use is based

on their approach. However, they consider a different type of conditioning (conditioning

particles in a branching particle system to occupy a given place at a given time) and only

consider the homogeneous case, whereas we require trees conditioned to have a birth at a

given time and are interested in the inhomogeneous case where the offspring probabilities

{pk(t)}k=0,1,2,... are functions of time.

7.3.1 A Measure Space and the Galton-Watson Distribution

I now give a description of a tree sample space, a σ-algebra on this space and a description

of the Galton-Watson measure on this σ-algebra. The description is fairly technical due to

the amount of information that we are required to keep track of. The space must describe

the tree topology and the lengths of each branch. Because the birth probabilities pk(t) are

inhomogeneous, the space must also record when in time each tree originated. I shall also

describe a pruning operator which will allow subtrees to be pruned from the main tree and

(2)Throughout this section, L denotes the number of offspring of a given lineage, and has distribution
{pk(t)}k=0,1,.... A critical tree has EL = 1, a subcritical tree EL < 1, and a supercritical tree EL > 1.
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GW

GW

GW

GW

Time
Figure 7.1: The fish-bone structure of size-biased trees. The spine is shown by the thick lineage
down the centre. Offspring distributions on this spine are size-biased. GW denotes the standard
Galton-Watson trees that branch off the central spine.

considered as separate members of the tree space which will be useful when conditioning

on a birth at a particular point in time.

Firstly, we need a notation that allows us to describe the tree topology. Let Ø denote

the root of the tree and let νø be the number of offspring, which we label as 1, 2, . . . , νø.

We then denote the offspring of individual k as k1, k2, . . . , kνk and so on. More formally,

let U = {Ø} ∪ ⋃∞
n=1 N

n be the space of individuals, where N
n represents the Cartesian

product of N with itself n times.

Following Neveu [88], we call a subset ω̃ ⊆ U a tree if

1. Ø ∈ ω̃ (the root belongs to the tree).

2. For all u, v ∈ ω̃, (uv ∈ ω̃) ⇒ (u ∈ ω̃) (the ancestor u of the individual uv belongs to

the tree).

3. For all u ∈ ω̃ there exists νu ∈ N∪ {0} such that uj ∈ ω̃ for j = 1, 2, . . . νu (νu is the

number of offspring of individual u and {uj}j≤νu are its offspring).
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Let Ω̃ denote the set of trees described above. Denote by Ω̃u the subset of Ω̃ which contains

only those trees containing u:

Ω̃u = {ω̃ ∈ Ω̃ : u ∈ ω̃}

As we are using the continuous time Galton-Watson process, we need to include informa-

tion about the life duration of each species which is represented in the tree by the length of

each branch. We define the branch length information for ω̃ to be a collection (σu : u ∈ ω̃)

of values in R
+. We label the birth time of the root as sø where sø takes values in R. We

then define a continuous-time tree to be the triple

ω = (ω̃, (σu : u ∈ ω̃), sø)

and let Ω denote the set of all such trees. We can define the subset of Ω containing

only those trees which contain u by letting p represent the canonical projection of Ω into

Ω̃, such that p(ω) = ω̃ and then letting Ωu = p−1(Ω̃u). The values σu and νu can be

considered mappings with σu the branch length mapping σu : Ωu → R
+, and νu the

offspring mapping νu : Ωu → N ∪ {0}. A couple of other mappings that will be required

are the birth and death time mappings, defined on Ωu as

Birth Mapping: Su : Ωu → R

s.t. Su = Sv + σv and Sø = sø

Death Mappling: Du : Ωu → R

s.t. Du = Dv + σu and Dø = sø + σø

where v is u’s parent

This completes the description of the space Ω of continuous time branching trees. For

notational convenience, from this point on I let s = sø, σ = σø and ν = νø represent the

birth time, branch length, and number of offspring of the root.

I now define a σ-algebra on Ω. The choice needs to be fine enough to ensure that all the

subsets of interest are included. For example, it must include the subset of trees which

have births at time y. This is achieved by letting F be the σ-algebra on Ω generated

by Sø and {Ωu, σu} for all u ∈ U . This ensures that the mappings Du, Su and σu are all

measurable functions from (Ω,F ) to (R,B) or (R+,B+) where B (or B+) is the Borel

σ-algebra on R (or R
+). Together, the double (Ω,F ) form a measurable space.

Because we are considering trees that evolve through time, it will be useful to have a

filtration {Ft}t∈R on F . A filtration is an increasing sequence of σ-algebras (i.e., Ft is

a σ-algebra for all t and if s ≤ t, then Fs ⊆ Ft ⊆ F ). In order to define a filtration we

shall need the killing operator Mt. For t ∈ R
+, let Mt : Ω → Ω be the killing operator
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7 Conditioned Galton-Watson Trees

defined by

p(Mt(ω)) = {u ∈ p(ω) : Su(ω) − Sø(ω) ≤ t}
σu(Mt(ω)) = σu(ω)

Sø(Mt(ω)) = Sø(ω)

so that Mt(ω) only includes those individuals in the tree ω which were born before time

sø + t. This allows us to define the filtration Ft = Mt(F ) on F . The σ-algebra F0 then

represents the knowledge contained by the root only, namely ν, σ and sø.

Before we can define the Galton-Watson probability distribution (i.e., measure) on

(Ω,F ), we need one final mapping, the pruning operator Tu. For a tree ω ∈ Ω, Tu(ω) is

the subtree which has root u and birth-time equal to the birth-time of u. Formally, for all

u ∈ U , let Tu : Ωu → Ω, with behaviour defined by

p(Tu(ω)) = {v ∈ U : uv ∈ p(ω)}
σv(Tu(ω)) = σuv(ω)

Sø(Tu(ω)) = Su(ω).

We are now finally able to consider the probability distribution of Galton-Watson trees.

Neveu [88] proved that there exists a unique family of probability distributions {Ps}s∈R

on (Ω,F ) such that

(1) Ps({ω ∈ Ω : Sø 6= s}) = 0, i.e., Ps only gives positive probability to trees which

originate at time s.

(2) Under Ps, the root has length σ ∼ Exp(λ), and conditional on a death taking place

at time t, the root has ν offspring with distribution (pk(t) : k = 0, 1, . . .).

(3) The branching property holds: conditional on knowing σ and ν, the subtrees formed

by the offspring, T1, T2, . . . Tν , are independent and identically distributed Galton-

Watson trees, with distribution Ps+σ.

Conditions (2) and (3) describe the structure we have been using throughout this thesis.

The branching property can be expressed mathematically by looking at expectations

of measurable functions: if {fi}i∈N is a sequence of non-negative measurable functions

fi : Ω → R, then

Es(

ν∏

i=1

fi ◦ Ti|Fσ) =

ν∏

i=1

Es+σ(fi) (7.6)

where Es denotes expectation with respect to probability measure Ps, i.e.,

Esf =

∫

Ω
f(ω)Ps(dω).
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7.3 The Fish-Bone Process

This illustrates a result I shall rely upon later, namely that two measures µ1 and µ2

agree on (Ω,F ) if and only if for all non-negative measurable functions f the equality∫
fdµ1 =

∫
fdµ2 holds.

7.3.2 The Fish-Bone Theorem

We are now in a position to state the main result of this chapter:

Theorem 1. The Galton-Watson process, begun at time s, and conditioned on having a

death at time y > s, has the following properties:

(i) σ has an inhomogeneous exponential (λm(·)) distribution truncated at y. That is, it

has probability density function

gs(σ) = λm(s + σ)e−λ
R s+σ

s
m(t)dt.Is+σ<y + e−λ

R y

s
m(t)dt.δy−s(σ) (7.7)

where m(t) =
∑∞

k=0 kpk(t), is the mean of the offspring distribution, L, at time t.

(ii) If s + σ < y (first death is before time y)

(a) ν, the number of offspring of the distinguished species, has a
{

kpk(σ+s)
m(σ+s)

}
k=1,2,...

distribution,

(b) one of the subtrees, Tj say, is choosen uniformly from {T1, . . . , Tν}. Tj is then

a Galton-Watson tree born at time s + σ conditioned to have a split point at

time y. The other subtrees, Ti for i 6= j, are independent identically distributed

Galton-Watson trees born at time s + σ, i.e., they have distribution Ps+σ.

(iii) If s + σ = y (first death is at time y), then ν has the usual (pk(y) : k = 0, 1, . . .)

offspring distribution. The offspring subtrees, T1, . . . , Tν, all evolve as independent

identically distributed Galton-Watson trees begun at time y.

Remarks:

1. Part (ii)(a) of the theorem shows that lineages on the distinguished path have a

size-biased number of offspring, L̂.

2. The distribution of lifetimes on the distinguished path is what I have called a trun-

cated inhomogeneous exponential distribution. Suppose that m(t) is a positive inte-

grable function with
∫∞
s m(t)dt = ∞ for all s. We say that X has an inhomogeneous

exponential distribution with rate m(·) started at time s if

Ps(X > x) = exp
(
−
∫ s+x

s
m(t)dt

)
,
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7 Conditioned Galton-Watson Trees

and we write X ∼ Exps(m(·)). Differentiating 1 − Ps(X > x) with respect to x,

truncating at time y and adding an atom at this point so that the density integrates

to one, leads to the density gs(σ) given by Equation (7.7) in part (i) of the theorem.

Here, δ.(·) denotes the Dirac delta function, which is defined by its behaviour when

integrated:
∫

A
δx(y)dy =





1 if x ∈ A

0 if x /∈ A

3. This theorem describes Galton-Watson trees conditioned on having a death at time y.

To condition on a having a birth at time y, simply change the offspring distribution

in step (iii) of the theorem so that ν has offspring distribution {pk(y)/(1 − p0(y))}
for k = 1, 2, . . ..

The proof of the theorem works by constructing a random point measure on R with

atoms at the death times of the species in the tree. In this way, each tree ω defines a point

measure on R (see Figure 7.2). We then look at the distribution of the point measure

conditioned on it having an atom (i.e., a death) at a fixed time y. The conditioning is

done by using the Palm approach to random point measures (see Kallenberg [63] or Daley

et al. [36] for example).

Let M denote a random point measure on R with

M : Ω × R → N ∪ {0}
s.t. M(ω,dy) =

∑

u: u∈ω

δDu(ω)(dy).

An intuitive way to think of M is as follows: Tyche, the Goddess of Chance, picks a

random tree ω from Ω according to the law Ps. This then defines the point measure

M(ω, ·) on R with atoms at the death times of individuals in the tree. A point measure is

simply a measure which counts the number of points in a set. This description treats M

as a map from Ω → N , where N is the set of integer valued measures on R. Alternatively,

we can view {M(A)}A∈B as a collection of integer valued random variables (i.e., maps

from Ω to N ∪ {0}).

The Campbell measure, Cs, is a product measure on (Ω × R,F ⊗ B) where ⊗ denotes

the product σ-algebra. It is defined as

Cs(dω × dy) = Ps(dω)M(ω,dy).

If f is any B measurable function f : R → R, and g is a F measurable function g : Ω → R,
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7.3 The Fish-Bone Process

Point Process M(ω, ·)

Tree ω

Time
Figure 7.2: Point process representation of a tree. Every death in the tree, ω, is represented as
an atom in the point process M(ω).

then

∫

Ω×R

f(y)g(w)Cs(dω × dy) =

∫

Ω×R

f(y)g(ω)Ps(dω)M(ω,dy)

=

∫

Ω×[s,∞)
f(y)g(ω)Ps(dω)M(ω,dy),

where the restriction from R to [s,∞) can be assumed because of condition (1) in the

description of the Galton-Watson measure. The Palm distributions on Ω, Qs
y for y > s,

are found by a disintegration of Cs with respect to its first marginal. Theorem 15.3.3 in

Kallenberg [63] guarantees that we can decompose the σ-finite measure Cs on Ω× R into

a σ-finite measure vs(dy) = EsM(dy) on R and a kernel Qs
· (·) from R to Ω such that

∫

Ω×[s,∞)
f(y)g(ω)Ps(dω)M(ω,dy) =

∫

Ω×[s,∞)
f(y)g(ω)Qs

y(dω)EsM(dy) (7.8)

Remarks:

1. The Palm distributions Qs
y can be thought of as the conditional distributions of the
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7 Conditioned Galton-Watson Trees

point measure M given that there is an atom at time y. In terms of the branching

process, this is the conditional distribution of a Galton-Watson process given that

there is a death at time y.

2. To say Qs
· (·) is a kernel means that Qs

y(dω) is a probability measure on Ω for all

y > s and Qs
. (A) is a B measurable function on R for all A ∈ F . The existence

and almost sure uniqueness of (Qs
y)y>s are consequences of the Radon-Nikodým

Theorem.

3. We can calculate EsM(dy) as follows:

EsM(dy) =

∞∑

n=1

E(number of deaths in (y, y + dy)|My = n)P(My = n)

=
∞∑

n=1

(λn.dy + o(dy))(1 − ξ(s, y))(1 − η(s, y))η(s, y)n−1 by Equation (2.5)

=
1 − ξ(s, y)

1 − η(s, y)
λ.dy

= λeλ
R y

s
(m(t)−1)dt.dy by Equation (2.9)

4. An alternative way to write Equation (7.8) is to split the integration over the product

space and to write the increment with the integral

∫

Ω×[s,∞)
f(y)g(ω)Qs

y(dω)EsM(dy) =

∫ ∞

s
f(y)

[∫

Ω
g(ω)Qs

y(dω)

]
EsM(dy)

=

∫ ∞

s
EsM(dy)f(y)

∫

Ω
Qs

y(dω)g(ω)

The following two results shall be required in the proof of the theorem:

e−λθ
Es+θM(dy) = e−λ

R s+θ

s
m(t)dt.EsM(dy) (7.9)

e−λ(y−s) = e−λ
R y

s
m(t)dt.EsM(dy) (7.10)

The crux of the problem is to identify the Palm probabilities Qs
y for all y > s. Measures

are uniquely determined by their behaviour when integrating measurable functions. The

σ-algebra F is generated by functions of the form

f0(ω)Iν(ω)=k

ν(ω)∏

i=1

fi ◦ Ti(ω) (7.11)

where f0 is Fσ measurable, and the fi are F measurable. To prove the theorem it is

sufficient to show that Qs
y behaves on functions of this form in the way described by the
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theorem.

Proof of Theorem 1. Under the Galton-Watson distribution Ps, we can decompose M

into its subtrees, and an atom at the time of the first death:

M(ω,dy) =

ν(ω)∑

j=1

M(Tj(ω),dy)Iy>s+σ(ω) + δs+σ(ω)(dy) (7.12)

Then on functions of the form (7.11) multiplied by Borel measurable f(·)

I =

∫

Ω×[s,∞)
f(y)f0(ω)Iν(ω)=k

ν(ω)∏

i=1

(fi ◦ Ti)(ω)Ps(dω)M(ω,dy)

=

∫

Ω×[s,∞)
f(y)f0Iν=k

ν∏

i=1

(fi ◦ Ti)




ν∑

j=1

M(Tj(ω),dy)Iy>s+σ(ω) + δs+σ(ω)(dy)


Ps(dω)

= Es

[
f0Iν=k

(
k∑

j=1

k∏

i = 1

i 6= j

(fi ◦ Ti) × (fj ◦ Tj)

∫ ∞

s
f(y)Iy>s+σ(ω)M(Tj ,dy)

+

k∏

i=1

(fi ◦ Ti)

∫ ∞

s
f(y)δs+σ(dy)

)]
.

Then, using the tower property of expectation Es(f) = Es(Es(f |Fσ)), we can see that the

integral above is equal to

= Es

[
pk(s + σ)f0Es

(
k∑

j=1

k∏

i = 1

i 6= j

(fi ◦ Ti) × (fj ◦ Tj)

∫ ∞

s
f(y)Iy>s+σ(ω)M(Tj ,dy)

+

k∏

i=1

(fi ◦ Ti)

∫ ∞

s
f(y)δs+σ(dy)|Fσ

)]

as ν and f0 are Fσ measurable

= Es

[
pk(s + σ)f0

(
k∑

j=1

k∏

i = 1

i 6= j

Es+σ(fi) × Es+σ(fj

∫ ∞

s
f(y)Iy>s+σM(dy))

+
k∏

i=1

Es+σ(fi) × Es+σ(

∫ ∞

s
f(y)δs+σ(dy))

)]

(7.13)

by the branching property (7.6) and treating M(dy) as a random point measure on R.

Looking at the right hand term on both lines, and using the decomposition (7.8) and the
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properties of the Dirac-delta function, we can see that

Es+σ(fj

∫ ∞

s
f(y)Iy>s+σM(dy)) =

∫

Ω×[s,∞)
fj(ω)f(y)Ps+σ(dω)Iy>s+σM(ω,dy)

=

∫

Ω×[s,∞)
fj(ω)f(y)Qs+σ

y (dω)Iy>s+σEs+σM(dy)

Es+σ(

∫ ∞

s
f(y)δs+σ(dy)) = f(s + σ)

Note that σ is considered a constant in the three lines above as they appear within an

expectation in Equation (7.13). Hence

I = Es

[
pk(s + σ)f0

(
k∑

j=1

k∏

i = 1

i 6= j

Es+σ(fi) ×
∫

Ω

∫ ∞

s
fj(ω)f(y)Qs+σ

y (dω)Iy>s+σEs+σM(dy))

+

k∏

i=1

Es+σ(fi) × f(s + σ)

)]

By making explicit the first expectation, and writing the increment with the integrand (i.e.,

write
∫
B×A f(x, y)dx× dy =

∫
A dy

∫
B dxf(x, y) so that it is clear what we are integrating

over), we can see that I is equal to

∫ ∞

0
dθλe−λθpk(s + θ)f0(θ, k)

(
k∑

j=1

k∏

i = 1

i 6= j

Es+θ(fi)

∫

Ω
Qs+θ

y (dω)fj

∫ ∞

s
Es+θM(dy)f(y)Iy>s+θ

+

k∏

i=1

Es+θ(fi) × f(s + θ)

)

Then, using Fubini’s Theorem to justify changing the order of integration, and using

Equation (7.9), we can see that I equals

∫ ∞

s
EsM(dy)f

∫ y−s

0
dθλe−λ

R s+θ

s
m(t)dtpk(s + θ)f0(θ, k)

k∑

j=1

k∏

i = 1

i 6= j

Es+θ(fi)

∫

Ω
Qs+θ

y (dω)fj

+

∫ ∞

s
dyλe−λ(y−s)pk(y)f0(y − s, k)

k∏

i=1

Ey(fi) × f(y)

where the final term comes from using the substitution y = s + θ. Using Equation (7.10)
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and rearranging, we can see that

I =

∫ ∞

s
EsM(dy)f(y)

[∫ y−s

0
dθλm(s + θ)e−λ

R s+θ

s
m(t)dt kpk(s + θ)

m(s + θ)
f0(θ, k)

× 1

k

k∑

j=1

k∏

i = 1

i 6= j

Es+θ(fi)

∫

Ω
Qs+θ

y (dω)fj

+ λe−λ
R y

s
m(t)dtpk(y)f0(y − s, k)

k∏

i=1

Ey(fi)

]
.

Comparing this expression with Equation (7.8) we can see that Qs
y acts as described in

the theorem, thus completing the proof.

Remarks:

1. For clarity, note that we can write the final expression in the proof as

I =

∫ ∞

s
EsM(dy)f(y)

(∫ y−s

0
dθg(θ)

[
Iθ<y−s

kpk(s + θ)

m(s + θ)
f0(θ, k)

× 1

k

k∑

j=1

k∏

i = 1

i 6= j

Es+θ(fi)

∫

Ω
Qs+θ

y (dω)fj

+ Iθ=y−spk(y)f0(y − s, k)

k∏

i=1

Ey(fi)

])

where g(θ) is the density given in Equation (7.7).

2. It is not obvious how to extend this result to trees conditioned to have two or more

specified split points. The difficulty arises when considering whether or not later

split points lie on the same distinguished path back to the root as the first split

point does. For an application such as the evolutionary trees considered in this

thesis, conditioning on two or more split points is possible as we know in advance

whether later split points lie in the same subtree as the first split. In this case the

theorem extends in the obvious manner.

3. Note that after the death at time y, all branches evolve as independent identically

distributed Galton-Watson trees.

In this chapter I have described the structure of Galton-Watson trees when they are

conditioned to have a branching point at a specified time. The resulting fish-bone structure

clearly suggests a method of simulation. In the next chapter I give details of how to
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simulate such trees and I give the results from a full Bayesian analysis of the distribution

of the primate and anthropoid divergence times.
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Chapter 8

A Full Bayesian Analysis

In Chapter 4 I gave the optimal subtree selection algorithm, which has since been used to

infer the joint distribution of the primate and anthropoid divergence times. The idea was

that we could infer the anthropoid divergence time by simulating primate trees and then

finding the subtree that looked most like the anthropoid data. This ad hoc approach is, in

some sense, unsatisfactory. For the parameters ρ, γ, λ, α and τ , the approach has been to

choose values from prior distributions, simulate a tree forwards in time, and then decide

whether to reject or accept the parameters into the posterior distribution according to

how close the simulations are to reality.

The approach used for the anthropoid temporal gap τ∗ is different; I have been simulat-

ing a tree and then determining τ∗ according to some optimality criterion. Consequently,

it is not clear what the resulting distribution for τ∗ represents: it is not a posterior dis-

tribution.

The ideas in the previous chapter have shown that it is possible to simulate speciation

trees conditional on a subtree originating at a given point in time. In this chapter I

implement this approach. This allows us to choose τ∗ from a prior distribution and then

use the ABC approach to infer its posterior distribution as we have been doing for the

other parameters. This allows us to find the joint posterior distribution of two divergence

times using a full Bayesian analysis for the first time.
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8 A Full Bayesian Analysis

Section 8.1 contains the details of how to simulate conditioned trees, and includes an

approximate method for simulating inhomogeneous exponential distributions. Section 8.2

gives the results from the simulations.

8.1 Fish-Bone Simulations

In this section I show how to simulate the conditioned Galton-Watson process described

in Chapter 7. One of the requirements is to simulate inhomogeneous Exps(λm(·)) random

variables, as this is the lifetime distribution of species on the distinguished path (Theorem

1 step (i)). The distribution function of this variable is

F (x) = Ps(X ≤ x) = 1 − exp
(
−
∫ s+x

s
m(t)dt

)
(8.1)

where s, in our case, is the world time at which the species originates.

The function m(t) =
∑

kpk(t) is the mean of the offspring distribution at time t. We

require that
∫∞
s m(t)dt = ∞ in order that F (x) represents a distribution function. For

logistic population growth, we found in Chapter 2 that the mean offspring distribution

m(t) = 1 +
ρ
2λ(1 − γ)

1 − γ + γeρt

gave the required diversity.

One method for simulating Exps(λm(·)) random variables is to use the inverse of the

distribution function, as described in Liu [73]. If U is a uniform random variable on

[0, 1] then F−1(U) has distribution F (·). Unfortunately, the distribution F (x) = Ps(X <

x) = 1 − exp
(
− λ

∫ s+x
s m(t)dt

)
has no closed form expression for its inverse for the

value of m(·) above. Instead, we could numerically find F−1(u) = inf{x : F (x) ≥ u} if

desired. However, because the function m(t) changes slowly in comparison to the average

lifetime distribution, we can use a simple approximation. For a species born at time t,

I approximate its branch length by a standard Exp(λm(t)) distribution, where m(t) is

treated as a constant.

We are now in a position to simulate conditioned Galton-Watson trees. Starting from

time zero with two species, one of which is labelled as distinguished and the other as

undistinguished, we can use the following algorithm:

Algorithm N: Simulating Conditioned Galton-Watson Trees

N1 For each undistinguished species, replace it with L offspring after an Exp(λ) period,

where L has distribution {pk(d)}k=0,1,2,... and d is the death time of that species.

Label all the offspring as undistinguished.
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N2 If there is a distinguished species, let s denote its birth time, and generate σ ∼
Exps(λm(·)). Let d = s + σ denote the proposed death time.

(a) If d < y, replace the distinguished species with L̂ species, where L̂ has size-

biased distribution {kpk(d)/m(d)}k=1,2,.... Uniformly choose one of these species

and label it as distinguished. Label all other offspring as undistinguished.

(b) If d > y, kill the distinguished species at time y, and replace it by L new

species. Label all offspring as undistinguished.

N3 Return to step N1 until we have simulated far enough into the future.

This algorithm describes how to simulate conditioned Galton-Watson trees with general

offspring distributions. We, however, are only interested in binary trees, where each species

has either zero or two offspring, which is a special case of the algorithm above. We are

now able to write down the complete inference algorithm:

Algorithm O: A Full Bayesian Analysis

O1 Draw parameters τ, τ∗,α, γ, λ, ρ from their prior distributions.

O2 Simulate a tree starting with two species at time −54.8 − τ My ago conditional on

a birth at time y = −37 − τ∗ My ago.

O3 Check that both sides of the tree survive to the present, and also that both sides of

the subtree originating at time y survive to the present.

O4 Simulate fossil finds and count the number of fossils on the complete tree (D′) and

on the subtree (S ′).

O5 If ρ(D,D′) < ǫ1 and ρ(S,S ′) < ǫ2, accept the parameters. Otherwise reject. Return

to step O1.

This algorithm is approximately two orders of magnitude quicker than the approximate

size-biasing algorithm I gave in Section 7.2. Comparing the output from the two algorithms

acts as a quick check that the calculations of the previous chapter are correct.

8.1.1 Prior Distributions

Throughout this chapter, I use the prior distributions shown below, which are similar to

those used in previous chapters, with the exception that we are now able to specify a prior

distribution for τ∗.

τ ∼ U [0, 100]
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τ∗ ∼ U [0, 30]

β ∼ U [0, 0.6]

γ ∼ U [0.005, 0.02]

ρ ∼ U [0, 0.8]

1/λ ∼ U [2, 3]

The prior for τ∗ was chosen after discussions with our primatologist collaborators. The

oldest anthropoid fossil is from the Late-Eocene, and so 37 My is an upper bound on the

divergence time. For a lower bound, it was felt that the anthropoid divergence time is

somewhat better constrained by the fossil record than the primates and that an upper

bound of 67 My ago was sufficient. Assuming a flat prior distribution for the temporal

gap gives a Uniform[0, 30] prior distribution for τ∗. As shall be seen from the results,

little difference is made by using a larger range extension. Note that for small τ values,

large τ∗ values would mean that the anthropoid subtree originated before the primate

tree originated, which is clearly impossible. Thus in practice, the prior used for τ∗ is

really a uniform distribution on [0,min(30, 17.8 + τ)], i.e., the event τ∗ > τ has zero prior

probability.

8.2 Results

In this section, I give the results generated by Algorithm O. As is perhaps to be expected by

now, the initial simulations were unsuccessful. The simulations ran extremely slowly, even

when large values of ǫ were used, and the accepted results had unacceptably small values

of Nmain
0 and N sub

0 , the extant numbers of primates and anthropoids. Upon examination,

it was discovered that this is due to the assumption made in Chapter 2 that the population

diversity grows logistically. This assumption requires that there is an initial phase of rapid

population growth, followed by a long period of constant population size(1). Once the

initial period of population growth is finished, the offspring probabilities, p0(t) and p2(t),

are both approximately equal to 1/2. From Equation (2.11) we can see that p0(t) ↑ 1/2

and p2(t) ↓ 1/2 as t tends to infinity. At the point the subtree originates I found that

both values were usually very close to 1/2. This means that the subtree is essentially

a critical Galton-Watson process (EL = 1). The expected population size for critical

processes equals the initial population size, which in this case is two species. Even when

conditioning on non-extinction, the population size only grows linearly with time.

A solution to observing unrealistically small N sub
0 values is to assume that both the

anthropoid and the non-anthropoid population diversity grow logistically. Scientifically,

(1)It is only the expected population size that remains constant, and so in practice, the population size
will fluctuate for each simulation
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this does not present any problem as there is no consensus about which taxonomic level we

should model as having logistic growth. So modelling the primate order, or the anthropoid

parvorder, as having logistic growth are both valid approaches. Of course, a consequence

of allowing both anthropoid and non-anthropoid populations to grow logistically is that

the primate population will no longer show logistic growth.

In the results that follow, I assumed that the two different growth curves take different

parameter values, as I could see no reason for why they should be the same. Note that

previously this was not possible, as we did not know in advance which subtree represented

the anthropoids. All of the results given in this chapter are obtained using the Poisson

sampling scheme introduced in Chapter 6.

8.2.1 Fixed Sampling Rates

In this section I present results obtained using the fixed sampling rate approach from

Chapter 3, where βi = βpi. The notation used is as follows: Nmain
0 is the extant primate

diversity and N sub
0 the extant anthropoid diversity. Nmain

1 and Nmain
2 represent the extant

diversity on either side of the main primate tree, with side one representing the haplorhini

(includes the anthropoid subtree), and side two the strepsirrhini. Parameters ρmain and

γmain are the growth parameters for the non-anthropoids, and ρsub and γsub the growth

parameters for the anthropoid subtree. Using the population-adjusted metric on both

trees with ǫ = (0.4, 0.4) gives the results shown in Table 8.1 and Figure 8.1.

Min. LQ Median Mean UQ Max.

Nmain
0 228 360 391 393 425 553

Nmain
1 165 296 328 329 361 496

Nmain
2 5 41 58 64 81 231

N sub
0 140 233 260 259 284 430
τ 0.0 17.9 36.0 40.3 60.3 99.9
τ∗ 0.0 2.6 5.9 7.6 10.8 30.0
β 0.057 0.186 0.279 0.305 0.416 0.600

ρmain 0.003 0.397 0.533 0.516 0.657 0.800
ρsub 0.041 0.148 0.235 0.270 0.365 0.791

γmain 0.0050 0.0096 0.0133 0.0131 0.0167 0.0200
γsub 0.0050 0.0078 0.0111 0.0115 0.0150 0.0200
1/λ 2.00 2.31 2.56 2.54 2.80 3.00

Table 8.1: A summary of the posterior distributions when using the conditioned Galton-Watson
process from Chapter 7. The results were obtained using the Poisson sampling model with fixed
ratios for the sampling rates and ρp for both trees with ǫ = (0.4, 0.4) (n = 4392).

The acceptance rate was 6682 successfully simulated trees per accepted tree, which

is much higher than that found in Chapter 4 when using the binomial sampling scheme

and the optimal subtree selection algorithm. The fact that the conditioned Galton-Watson
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Figure 8.1: Plots of the posterior distributions obtained when using the conditioned Galton-
Watson process from Chapter 7. Obtained using the Poisson sampling scheme with βi = βpi and
using ρp for both trees with ǫ = (0.4, 0.4).

trees (with anthropoid logistic growth) are a better fit has allowed us to use the population-

adjusted metric on the subtree as well as the main tree so that the anthropoid diversity

is taken into account.

The main difference between these results and those obtained in previous chapters is the

shorter range extension for τ∗. The 90% credibility interval for the anthropoid divergence

time is now (53.7, 37) My ago. The posterior distribution for τ is now more disperse than

previously observed, however.

For these simulations the same fossil sampling rates were used throughout the tree so
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that all species in the same interval had an equal chance (per million years) of being

preserved as a fossil. The data, however, suggest otherwise. Table 4.1 shows that 75% of

modern species are anthropoids yet 97% of Pliocene and Pleistocene (i.e., from 5.3 My ago

to the present) fossil species are anthropoids. This suggests that perhaps the two groups

were subject to different sampling rates.

Now that our simulation approach specifies in advance which subtree will represent the

anthropoids, we are able to vary the parameters used on the subtree. This was not possible

previously as it was not known at the time of simulation which tree would represent the

subtree. In the results above, I allowed the growth parameters to differ on the main tree

and the subtree. We can also allow the sampling rates to differ on the subtree and the

main tree. Using the same fixed ratios for each side of the tree, βmain
i = βmainpi and

βsub
i = βsubpi, and using the population adjusted metric on each tree with ǫ = (0.4, 0.4)

leads to the results shown in Table 8.2 and Figure 8.2.

Min. LQ Median Mean UQ Max.

Nmain
0 207 328 358 358 386 539

Nmain
1 153 293 324 325 354 492

Nmain
2 1 10 24 34 47 284

N sub
0 133 247 274 272 297 419
τ 0.0 12.0 27.5 34.2 52.0 100.0
τ∗ 0.0 3.1 6.7 8.5 12.4 29.9

βmain 0.014 0.050 0.077 0.113 0.133 0.600
βsub 0.026 0.058 0.075 0.083 0.100 0.270
ρmain 0.001 0.440 0.586 0.553 0.696 0.800
ρsub 0.062 0.141 0.236 0.281 0.391 0.760

γmain 0.0050 0.0101 0.0139 0.0134 0.0172 0.020
γsub 0.0050 0.0071 0.0112 0.0115 0.0152 0.0200
1/λ 2.00 2.35 2.61 2.58 2.81 3.00

Table 8.2: A summary of the posterior distributions when using fixed sampling fractions with the
conditioned Galton-Watson process, but with different β values on each side of the tree. Obtained
using ρp for both trees with ǫ = (0.4, 0.4) (n = 4150).

The acceptance rate was 34021 successfully simulated trees per accepted tree. This

is lower than when using the same β on each tree as the extra parameter means that

the sample space has an extra dimension which we must now search, and so the ABC

algorithm thus misses the target (areas of high posterior density) more often.

The main change between the results obtained using the same sampling rates on each

tree and using different rates, is on the posterior distribution of β, the sampling rate. In

Figure 8.2 the posteriors are tightly constrained around peaks at about 0.06 fossils per

million years. Whereas in Figure 8.1, the posterior for β is constrained away from the

origin and is much more widely dispersed.

One of the problems with this analysis is that I have assumed that the ratio of the
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Figure 8.2: Marginal posterior distributions for the parameters of interest when using different
sampling rates for the main tree and the subtree in the conditioned Galton-Watson model of Chapter
7. Obtained using ρp for both trees with ǫ = (0.4, 0.4).

sampling rates is fixed the same for both trees, i.e., βmain
i = βmainpi and βsub

i = βsubpi.

In the next section I try to remove this assumption and suggest why this is not feasible.

8.2.2 Free Sampling Fractions

The obvious way to proceed from the previous section is to allow the sampling fractions

β = (β1, . . . , β14) to take independent values and use the ABC-MCMC hybrid sampler

described in Chapters 5 and 6 to infer their posterior distributions. Unfortunately, this

approach is unsuccessful. Using the population-adjusted metric ρp on both trees with

ǫ = (0.6, 0.6) leads to the marginal posterior distributions shown in Figure 8.3.

We can see that the posterior distributions for the two temporal gaps, τ and τ∗, have

barely changed from their original prior distributions. I believe there are two main reasons

why this approach has failed to provide any information about the temporal gaps.

Firstly, simulating successful conditioned trees takes much longer than using the model

used in previous chapters. Because of this I have been forced to use larger tolerance values

than was previously necessary, thus providing less pressure on the simulated data to look

like the real data.

Secondly, and probably more importantly, I believe that we are seeing the effects of
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Figure 8.3: Marginal posterior distributions obtained using the conditioned Galton-Watson pro-
cess and allowing the sampling fractions to vary freely. Inference was done using the approximate-
Gibbs sampler from Chapter 5. The large number of model parameters used have stopped us learning
anything about the primate and anthropoid divergence times.

confounding between the parameters. Since using the conditioned Galton-Watson trees

I have introduced new parameters into the problem. For the simulations in this section

we used 21 parameters. Since the data only consists of 28 data points this is too large a

number to be supported by the data. Having too many parameters means that the effect

of each is confounded with the others. In conclusion, I believe we are at the limit of what

the data can support.

8.2.3 Using previous parameter estimates

An alternative approach that brings together some of the previous inferences is to fix some

of the parameters to have a specific value and to repeat the simulations. As discussed

in Chapter 4, fixing parameter values does not fully account for all of the uncertainty,

but the practice is commonplace. Fixing the sampling rates, β1, . . . , β14, to be equal to a

multiple of those those given in Table 6.2, and taking the growth parameters to be equal

to the posterior modal values from Figure 8.1, we find the results given in Table 8.3 and

Figure 8.4.

Removing the uncertainty surrounding these values reduces the number of free param-

eters in the model, which lessens the effects of the confounding seen previously. The

posterior distributions for τ and τ∗ do now contain a signal that is different to their prior

distributions. We found the 90% credibility interval for the primate divergence time to be

[54.8, 92.1] My ago, and the corresponding interval for the anthropoid divergence time to

be [37.0, 52.0] My ago.
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Min. LQ Median Mean UQ Max.

Nmain
0 202 315 355 354 392 521

Nmain
1 134 259 302 301 342 475

Nmain
2 12 38 51 53 66 128

N sub
0 126 223 263 262 298 425
τ 0.0 5.6 10.7 14.0 20.2 49.9
τ∗ 0.0 3.3 6.5 6.9 9.9 25.4

βmain 0.78 2.9 4.2 4.7 6.2 10.0

Table 8.3: A summary of the posterior distributions when using fixed sampling fractions (with val-
ues from Table 6.2) and fixed growth parameters with the conditioned Galton-Watson process. Ob-
tained using ρp for both trees with ǫ = (0.4, 0.4), ρmain = 0.72, ρsub = 0.265, γmain = 0.02, ρsub =
0.0065, 1/λ = 3, (n = 2185).
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Figure 8.4: Marginal posterior distributions for the parameters of interest when using fixed growth
parameters and fixed sampling rates (from Table 6.2) with the conditioned Galton-Watson pro-
cess. Obtained using ρp for both trees with ǫ = (0.4, 0.4), ρmain = 0.72, ρsub = 0.265, γmain =
0.02, ρsub = 0.0065, 1/λ = 3, (n = 2185).

142



Chapter 9

Conclusions and Future Work

The key conclusion from this thesis is that the primate divergence time is not as tightly

constrained by the fossil record as previously thought. Previous work [51, 52] has over-

stated the accuracy of the predictions possible using only fossil evidence; it is not possible

using this evidence alone to rule out the possibility that the primates originated well into

the Cretaceous and coexisted alongside dinosaurs for many years before their eventual

extinction 65 My ago. Throughout this thesis I have used various different models, all of

which have suggested that the posterior probability that primates diverged in the Creta-

ceous is large. For the sake of brevity I only report here what I consider to be the strongest

set of inferences, which are those from Chapter 6.1.2.

The 95% credibility interval(1) for the primate divergence time was found to be [83.4, 54.8]

My ago. The 95% credibility interval for the anthropoid divergence time was [62.8, 37.0] My

ago (although if the conditioned Galton-Watson model from Chapter 7 is used, the 95%

credibility interval for the anthropoids reduces to [52.0, 37.0] My ago). If the K-T crash is

modelled (cf. Section 6.2) these intervals reduce to [82.0, 54.8] and [60.4, 37.0] My ago for

(1)The aim of Bayesian inference is to find posterior distributions. To reduce these posteriors to a point
estimate or a credibility interval is not philosophically sound. However, as this is the norm, I give the
credibility intervals found for the parameters of interest and refer the reader to the plots of the distributions
in Chapter 6.
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the primate and anthropoid divergence times respectively. While it is to be expected that

modelling the K-T mass extinction should make the estimates more recent, the effect is

not sufficient to make the likelihood of Cretaceous primates as low as previously claimed.

The work presented here also goes some way towards explaining the difference between

the genetic and fossil based estimates. For while the estimates found here do not overlap

with recent genetic estimates, they are much closer. For example, in a recent 2007 Nature

article Bininda-Emonds et al. [19] gave a 95% confidence interval of [90.4, 85.0] My ago for

the primate divergence time. It should also be remembered that we expect some disparity

between genetic estimates and fossil estimates as genetic estimates date the time at which

genetic mixing ceased, whereas fossils, at best, date the time at which the diagnostic

characters first appeared, which will always be after the genetic date. Benton [14] has

suggested that the estimates will in time converge as more fossils are discovered and as

genetic estimates better take account of the irregular molecular clock.

In addition, it should be noted that our estimates also cover the dates given by the

palaeontology community, which generally place primates firmly in the Cenozoic. It was

never going to be possible to disprove that the primates have Cenozoic origins, and nor

was it the aim. I have, however, shown that the possible degree of accuracy when making

predictions using the fossil record is less than previously thought by many authors. Given

the data that are available, the expected temporal gap between the divergence time and

the age of the first fossil discovery is larger than is currently accepted.

The guiding principle when developing the methodology was that the inference of di-

vergence times should be based on a sound theoretical platform. The methodology used

was based on the work of Tavaré et al. [118], but with a new inference mechanism rooted

in the Bayesian approach to statistics which finds the posterior distributions of the pa-

rameters. I have given special emphasis to using all of the information available in the

data, by conditioning on both the modern diversity and the internal structure provided

by the number of anthropoid species. Inference of the anthropoid divergence time was

done firstly by using an optimality criterion to select the subtree which closest matched

the data, and later by conditioning the Galton-Watson model to have a subtree originate

at a particular point in time.

I have made several improvements to the model of fossil preservation and discovery

used previously. The binomial model in which each species had an equal probability of

preservation, regardless of its branch length, was replaced by a Poisson sampling scheme

in which longer lived species were more likely to be discovered than shorter lived ones. I

also removed the assumption necessary in Tavaré et al. which required the specification of

a fixed ratio for the sampling rates. This subjective assumption was often then criticised

by those who disagreed with their conclusions. For this reason I developed an inference

approach which allowed the sampling fractions to vary independently, and for their value
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to be determined solely by the data.

Throughout this thesis I have tried to highlight the limit of what is possible in terms of

model complexity. For a simple data set such as the primate count data used here, overly

complex models can lead to confounding between parameters and the loss of any clear or

reliable biotic signal. This was the case at various points in the thesis. I also gave a model

of the mass extinction event which took place at the Cretaceous-Cenozoic boundary and

found that this made Cretaceous origins for the primates less likely than under a neutral

model.

Several statistical contributions have been made in this thesis. A hybrid ABC-MCMC

sampler has been developed that allows exact Monte Carlo inference to be used on the

aspects of the model for which it is possible, and Approximate Bayesian Computation to be

used on parts for which it is not. Using Markov Chain Monte Carlo means that successive

outputs from part of the parameter space becomes correlated and consequently more time

is spent by the sampler in regions of high posterior probability. This has the effect of

increasing the speed and efficiency of the computations as less time is spent searching the

tails of the distributions. I also gave an in-depth discussion of the pros and cons of ABC

and gave several toy calculations to show how the error in the approximation scales with

the choice of tolerance. A simulation study was performed to assess the accuracy of the

ABC inference methods for the divergence time problem. The error was acceptable, and

it was found that the accuracy could be improved by performing local-linear regression on

the output as suggested by Beaumont et al. [11].

I have also looked at a possible model selection technique that arises naturally from

the ABC algorithm and used this to show that the primate data are explained better by

logistic growth than exponential or linear growth.

Finally, I have derived the structure of Galton-Watson processes when conditioned on

a birth or death occurring at a specified point in time. These conditioned trees have a

fish-bone like structure with a distinguished spine from the root to the species which died

at the specified time. Along this root the offspring distribution is the size-biased version

of the standard offspring distribution, and the branch lengths of species on the spine have

an inhomogeneous exponential distribution with a different parameter to before. Species

off the spine evolve as usual. I have given a detailed technical proof of this fact based on

the Palm approach to random point measures.

Ultimately, our hope is that this methodology will be built upon by others in the future

and used to date the divergence times of other major clades.
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Future Work

In this thesis I have developed a methodology for inferring divergence times using data

from the fossil record. Applying this to the primates, I found that Cretaceous origins are

feasible and perhaps even likely. Ultimately, however, this question can only be definitively

answered by further fossil discoveries. New discoveries have the ability to instantly change

our understanding of evolutionary history. For example, loris fossil remains found in Egypt

in 2003 doubled the documented geological age of lorisform primates from 20 to 40 My

[80, 108]. Robert Martin summed up the situation [79] when he wrote the following:

The very fact that new fossil discoveries can have such a dramatic impact is

eloquent testimony to the yawning gaps in our knowledge that still remain.

One of the consequences of the early primate divergence time suggested by our work

is that other divergence times, such as the ape-human divergence, may also need to be

revised to an earlier date. A recent corroboration of our approach was provided in Au-

gust 2007 when Suwa et al. [116] published findings of a great ape fossil from the late

Eocene. The human-ape divergence was previously pegged at about 6 My ago. However,

if this discovery is accepted as a genuine ape fossil this finding will push the human-ape

divergence time back to at least 10.5 My ago. This is a stark example of the effect a single

discovery can have.

Fortunately, we may not need to wait too much longer for stronger evidence. Soligo

et al. [113] illustrate the almost exponential growth in the number of new fossil primate

species discovered per decade over the previous century. If a Cretaceous primate fossil is

discovered, then the question will have been resolved. On the other hand, if all new fossil

discoveries are from the Cenozoic it adds weight to the argument that primates originated

in the last 65 million years.

To improve the methodology, there are various areas that should be pursued. The

assumption that the diversity grows logistically is only an approximation. During the

Eocene and again during the Miocene there was an increase in global temperatures which

enabled primates to spread to the northern continents, before dying out in those locations

at the end of these epochs. The population fluctuations, known as the Eocene and Miocene

bulges, could be modelled by using a more general growth curve. However, we are again

likely find that the data set is too meagre to be able to accurately model these fluctuations.

We could also conceivably take into account geographic considerations. The majority of

fossils are from Europe and North America. However, many people believe that primates

originated in either Africa or Asia and only spread to the Northern continents during

warmer climatic conditions. A two state model, with states representing the well sampled

northern continents and the less well sampled southern continents, could perhaps better

account for the structure of the data.
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Another extension would be to take more of the data structure into account by dating

three split points simultaneously. In order to do this, however, considerable increases in

the speed of the simulations would be required. A massive improvement could be achieved

if we could efficiently simulate Galton-Watson trees conditioned on non-extinction. It is

not currently known how to do this, other than by simulating standard Galton-Watson

trees and rejecting those which become extinct. This approach means that we reject about

95% of the simulations, as we require not only that each side of the main primate tree

survives, but also that each side of the subtree survives. Oliver Will used an approach in

his PhD thesis which involved simulating trees backwards in time [125]. The model begins

at the present time with a number of species equal to the modern diversity, and then runs

backwards in time until only one species remains. This has the advantage of naturally

taking into account the modern primate diversity and means that we do not need to check

for non-extinction. Unfortunately the computational requirements of this approach are

large, making inference for this model too costly to perform for the situations of interest

studied here.

I have discussed the main areas of future work for the Approximate Bayesian Computa-

tion method in Chapter 3. But to recap briefly, before ABC can become a more popular

inference tool, a methodology for selecting and assessing good summary statistics needs

to be developed, as well as an assessment of the general accuracy of ABC methods.

A feasible and achievable improvement in the accuracy of our estimates of divergence

times could be achieved by taking into account the number of times each species had

been preserved in the fossil record. This would improve the estimates of the sampling

rates for each epoch, and as it is these estimates that are key to estimating divergence

times, a potentially large improvement could be made. Wang and Dobson 2006 [121] used

an abundance-based coverage estimator to estimate the completeness(2) of the dinosaur

fossil record. For a given completeness, the expected number of species found in the

fossil record once, twice, thrice etc., can be computed and then compared with the known

abundances, and adjusted until they are close, giving an estimate of the true completeness.

Approximately 40% of primate fossil species are known from only a single fossil sample

(personal communication with Robert Martin and Christophe Soligo). A simple change

to our model so that each species in the tree could be sampled numerous times would,

with the addition of a term to the metric to take this into account, enable us to improve

the accuracy of the inferences. At present, however, the data concerning the frequency of

fossil finds is unavailable.

I believe that the most critical improvement that could be made to improve the estimates

of divergence times is to utilise more of the available information. The grand aim must

be to develop a unified approach to estimation that combines the direct information given

(2)The percentage of species preserved in the fossil record
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by the fossil record and the indirect information given by the DNA of modern primates.

There may also be possibilities for exploiting the known phylogenetic relationships between

extant species. It is not yet clear how this might be achieved.
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