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Three active learning schemes are used to generate training data for Gaussian pro-

cess interpolation of intermolecular potential energy surfaces. These schemes aim to

achieve the lowest predictive error using the fewest points and therefore act as an

alternative to the status quo methods involving grid-based sampling or space-filling

designs like Latin hypercubes (LHC). Results are presented for three molecular sys-

tems: CO2−Ne, CO2−H2 and Ar3. For each system, two of the active learning

schemes proposed notably outperform LHC designs of comparable size, and in two

of the systems, produce an error value an order of magnitude lower than the one

produced by the LHC method. The procedures can be used to select a subset of

points from a large pre-existing data set, to select points to generate data de-novo,

or to supplement an existing data set to improve accuracy.
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I. INTRODUCTION

Potential energy surfaces (PES) are a central concept in physical chemistry and are

used extensively in silico to obtain relevant information about the structural, spectral and

dynamical properties of different molecular systems. Since the quantitative accuracy of the

information extracted from applications depends directly on the quantitative accuracy of

the potential energy, a lot of research has been devoted into developing novel methods of

generating high quality ab initio potential energy surfaces without suffering an excessive

computational penalty.

Recently, the methods adopted by the scientific community have focussed on the use

of machine learning techniques to generate global potential surfaces through simple data

mapping approaches1. The adoption of machine learning models in the quantum chemistry

domain marks a change in the nature of the proposed solution, stepping away from the

previous heavy reliance on chemical and physical knowledge of the molecular system being

modelled, and instead trying to map the input-output space as accurately as possible given

pre-existing data known as the training set.

For any given model, the choice of training set dictates both the overall predictive accu-

racy of the model and the total amount of points needed to reach a certain error threshold.

With the computational cost of calculating potential energies increasing with both the size

of the basis set and the complexity of the system, generating an optimal choice of points

that yields the lowest overall error using the small data set possible becomes more and more

imperative, the longer each single point calculation takes to run.

One possible way to achieve an optimal training set is through the use of active learning

- a family of machine learning methods with a strong anchoring in information theory that

has been applied to domains such as chemoinformatics2, financial crime detection3 and

speech recognition problems4. The overall aim of active learning is to make models more

economical and time-efficient (in terms of data use and generation) by allowing the model

to make queries as to where to add more training data rather than remaining passive to

the data acquisition process. In the context of regression-based machine learning models,

active learning (alternatively known as sequential design, online fitting or adaptive fitting),

is the process of using previously learned information obtained during the training phase, to

guide the process of new point placement through iterative methods that add points either
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one-by-one or in batches.

Active learning (AL), in the domain of PES generation, is an alternative to the current

status quo of relying on either grid-based sampling5 (where points are sampled in intervals

between a range of values of each geometric variable, also known as factorial design) or space

filling designs6 (where points are spread out across design space to get approximate uniform

coverage) to produce training data. This work applies active learning to Gaussian processes

(GPs), which are a flexible non-parametric family of models capable of approximating func-

tions using relatively small data sets. Gaussian processes have been successfully applied

to model the PES of several systems, including the generation of a reactive PES for the

lowest triplet state of SH2
7, a ground state global PES for N4

6, and numerous bimolecular

Van der Waals complexes including CO2−Ne, CO2−H2, HF−HF, CH4−N2, CO2−CO8 and

CO2−N2
9. In all these instances, however, training data were generated using space filling

designs (usually Latin hypercube sampling), which despite surpassing grid-based sampling

methods for GPs, does not achieve an optimal trade-off between accuracy and computational

cost.

Relative to batch designs (where batch design is a broad term encompassing experimental

designs that are produced in bulk, rather than sequentially), there are numerous potential

benefits of active learning that make it an attractive prospect in the pursuit of optimal

training sets:

1. A design might not be able to achieve the required level of accuracy for a given

number of data points, so additional points may be needed to reduce the error of

predictions. Since some information has already been gained, it follows naturally that

active learning of subsequent points will lead to the best improvement in predictive

accuracy relative to a non-adaptive data point selection.

2. AL offers the potential to build functional non-stationarity into the experimental de-

sign, by including more points in regions of space where there is a greater functional

variation, which is hard to do a priori as is needed for batch design.

3. AL offers a way to reduce a large pre- existing data set to a smaller subset of training

points while retaining a controlled level of prediction accuracy.

4. When working with a model with over-specified variables, finding optimal space-filling
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designs is nontrivial. Specifically, it can be difficult to propose space-filling designs

for which all points lie in the configuration subspace that corresponds to physically

valid molecular geometries. In contrast the AL strategies presented herein choose new

points from a set of candidate points already in the physically valid subspace.

For general non-GP active learning problems, there have been many heuristics to guide

point selection, including selection of points where there is a lack of data10, low confidence11,

the biggest expected change in the model12 and where there has been previous selection of

data that has resulted in learning13.

Gaussian process regression models give probabilistic predictions (i.e. a best guess and the

uncertainty about that guess), making them ideal candidates for sequential design method-

ology. The use of variance in Gaussian process sequential design tasks was first introduced

by McKay14, who proposed a method that aims to maximize the expected information gain

about the parameter values of the model by choosing data with the highest predictive vari-

ance. This was then later expanded on by Cohn12, who proposed a method which aimed

to maximize the expected information gain about the parameter values of the model by

selecting points that lead to the biggest reduction in average variance instead of just finding

the highest single-point predictive variance.

Although there has been some prior research dedicated to active learning in the context

of both Gaussian process regression and general computer emulation tasks, there has been

relatively little work done on the use of active learning techniques in the generation of

intermolecular potentials for different molecular systems. Active learning techniques in

the field of PES generation have so far been most prominent in instances of ‘on the fly’

molecular dynamics, where the data points are generated over the course of the sampling.

Rupp et al.15 used an adaptive learning scheme alongside a hybrid quantum mechanics and

machine learning method based on Gaussian process regression to run molecular dynamics

simulations of the complex natural product Archazolid A, and found that using the model’s

inherent predictive variance to decide whether to carry out additional electronic structure

calculations led to a reduction of the amount of calculations carried out by 40%. Research

was also done by Podryabinkin et al.16 on linearly parametrized interatomic potentials. An

active learning scheme based on a D-optimality criterion was applied to moment tensor

potentials, querying whether the machine learning value at the sampled configuration was
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expected to be a good enough estimate or whether new ab initio data needed to be generated

instead. The results were then compared to the classical on-the-fly method proposed by De

Vita et al17. The classical method has a general framework of starting with an initial short

AIMD trajectory (a few picoseconds long) and then adding on new ab initio points after

a fixed number of steps have been taken. The simulations by Podryabinkin et al.16 were

terminated if they produced unphysically low atomic separations. The failure time was the

time after which half of the trajectories had terminated. Hence, they used failure time as

a measure of PES accuracy. It was found that whereas the classical method increased the

failure time from 15ps to 150ps following the addition of 1500 ab initio points, the active

learning method increased simulation time to 0.5µs following the addition of only 50 new

points.

Although these methods are promising in the domain of molecular dynamics, there has

still been little work done on active learning of global intermolecular potentials. Since

one of the main factors underpinning the predictive power of the model is training point

location, finding a way to select an optimal selection of data points is a critical step in

generating chemically useful potential energy surfaces at a fraction of the computational

cost of extensive ab initio calculations. Recently, Zhang et al.18 used predictive variances

(weighted to bias lower energy point selection) to generate training data for H3 and two

prototypical reactive systems. Although this lays out the first framework for sequential

design of global potentials, only methods involving predictive variance were considered, and

the active learning scheme was not compared to space filling design methods of equal size.

II. GAUSSIAN PROCESS MODELLING

Gaussian processes are flexible non-parametric models of functions. They are used widely

in machine learning and statistics as they form a closed family of models under Bayesian up-

dating, so that a Gaussian process conditioned upon observations is still a Gaussian process,

making them a convenient tractable family of models to use. Like neural networks, they are

capable of fitting highly flexible functions without relying on theory-based fits of complex

data sets. In comparison to neural networks however, GPs are mathematically tractable and

interpretable, and allow for prior information (such as symmetry, differentiability, and condi-

tioning on derivative information) to be directly incorporated into the model itself. Gaussian
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processes are called non-parametric as although they may have parameterised components

(typically the mean and covariance functions - see below), the dimension of the ‘parameter’

that defines a GP model grows with the size of the training set. In this sense, GPs ‘carry

the training data’ with them.

A GP model of an unknown function f(x) is fully defined by its mean function m(x) :=

E(f(x)), which is often set to zero, and a covariance function k(x,x′) := Cov(f(x), f(x′)).

Training data, consisting of observations of f at different values of x, i.e. pairs (xi, f(xi)),

can be used to update the prior mean and covariance functions to produce a posterior

model (i.e. posterior mean and covariance functions) which can be used to predict f(x)

for any value of x. The computational cost of evaluating the mean of the GP (i.e. the

prediction for f(x)) is proportional to the size of the training set. The covariance function

is the key component of Gaussian process learning, as it defines the space of functions

from which we choose, i.e., the covariance function encodes functional properties such as

continuity, stationarity and differentiability. Both the mean and covariance functions may

be parametrised by ‘hyper-parameters’ of fixed dimension. These can be estimated using

any standard procedure, such as maximum likelihood, Bayes, or cross-validation. A more

detailed overview of Gaussian processes can be found in the seminal book by Rasmussen

and Williams19, which also presents different theoretical ways to conceptualise them and a

more extensive background on covariance and mean functions.

III. METHODOLOGY

A. Molecular systems

Three molecular systems are investigated: CO2−Ne, CO2−H2 and Ar3. The two CO2

systems are chosen because they produced impressive benchmark results in previous work8

using exclusively a batch design strategy, namely Latin hypercube (LHC) sampling. Thus

any further improvements in the root mean square error (RMSE) would be a significant

result. The Ar3 system was chosen in order to test the algorithms on a non-additive potential,

which are generally harder to fit due to greater functional variation.

The intermolecular interaction energies of these complexes are calculated as a function of

their configurational geometry. All molecules are approximated as linear rigid rotors in their
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vibrational ground state, with fixed bond lengths, although the interpolation method can

be extended straightforwardly to non-rigid molecules. Energy calculations are carried out

in Molpro20 using second-order Møller-Plesset (MP2) perturbation theory for the two CO2

systems and CCSD(T) perturbation theory for Ar3. In all cases the augmented correlation-

consistent triple-zeta (aug-cc-pVTZ) basis set is used and basis set superposition errors are

accounted for by the counterpoise correction technique.

B. Data sets

The data sets contain a number of cluster geometries, along with their corresponding

intermolecular interaction energies. The method considers two types of data set, training

sets and reference sets. The training set is used to train the GP. The reference set serves

two purposes: to provide candidate data points to be added to the training set during the

active learning, and to compute the root mean square error (RMSE) of the GP.

C. Co-ordinates

TABLE I. Co-ordinates for the reference data (grid or LHC) for each system.

System Coordinate Range Spacing Reference points

CO2−Ne r 1.5-10 Å 0.116 Å 1122

cos θ 0-1 0.05

CO2−H2 r 1.5-10 Å 0.5 Å 12844

cos θ1 0-1 0.111

cos θ2 0-1 0.111

φ 0-180◦ 20◦

Ar3 r12, r13, r23 2.88-9.0Å LHC 5476

All reference data are generated using the distance and angular coordinates presented in

Table I. In all binary cases r is the distance between the molecular centres. For CO2−Ne,

θ is the angle between r and the CO2 axis. For CO2−H2, θ1 is the angle between r and the

CO2 axis, θ2 is the angle between r and the H2 axis, and φ is the torsional angle of the H2

axis. For Ar3, rij is the distance between Ar atoms i and j. For CO2−Ne and CO2−H2, the
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reference data are positioned on an evenly spaced grid, as generated for previous work8 and

with the co-ordinates detailed in table I. The Ar3 reference data are newly generated from

a LHC design strategy, using an LHC algorithm8, with adaptions described in Appendix A.

For the dimer systems energy points above the high energy cut off (0.005 Eh) are excluded

from the reference set. For the three body system, Ar3, the non-additive energy is not used

to exclude points. Instead points are excluded if the pairwise interaction potential between

any of the 3 pairs of atoms exceeds the high energy cut off. The most straightforward way

to impose this high energy cut off is to pre-calculate the reference data set and exclude

points above the cut off, as is done here. However, this pre-calculation can be avoided, in

principle, if a reliable way of accounting for the high energy barrier can produced. Such a

method is straightforward for non-additive interactions if a PES is available for all dimers

in the system.

D. Active learning and GP training

During active learning, points are removed sequentially from the reference set and added

to the training set in accordance with an acquisition rule. Each method starts with a small

initial set of data points and adds one point at a time, updating the model between each

addition. The following three acquisition rules for selecting new training points are each

tested in each of the three physical systems:

• Highest variance search, which adds points on the basis of the highest predictive

variance over a pool of input data, as detailed in section III D 1. (Method A).

• Absolute highest error search, which uses the reference data and adds points with the

highest absolute error iteratively, as detailed in section III D 1. (Method B)

• Two set search, which uses two different GPs, each trained on different training sets.

The test point with the largest discrepancy between the two model predictions is then

added into the training set, as detailed in section III D 2. (Method C)

Note that method B is not a genuine active learning approach as it requires the outputs,

and thus defeats the purpose of AL. It is included purely for comparison purposes. GP

learning is carried out using the GPy Python package21, modified to include symmetric co-

variance functions. The co-ordinates in table I are converted to inverse interatomic distances
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and these are used as over-specified covariates in the GP. The covariance function, a sym-

metrised squared exponential function, is used alongside a zero mean function. Zero-mean

Gaussian observation error, with standard deviation σn, is assumed on the function outputs,

which is often known as a nugget term. All of these approaches are identical to previous

work8. After each new training point the RMSE is computed against the reference data.

Points that have been moved from the reference to the training set no longer contribute to

the RMSE.

1. Highest variance and absolute highest error search

One data point is chosen at random from the reference set, and used as the initial training

set. Predictions are made over the reference set. One point is added to the training set

on the basis of the highest predictive variance (Method A) or the highest absolute error

of the predictions (Method B). The point is removed from the reference set and the GP

hyperparameters are re-optimised (using 20 random restarts of the optimizer). The process

is iterated until the desired number of points is reached.

2. Two set search

The two set search method utilises two training data sets. These two training sets are

each initialised with a single point, chosen randomly from the reference set. The starting

point is different for each set and both points are removed from the reference set. To add a

new point, each training set is used to train a GP. The predictions for both GPs are then

made over the reference data and the discrepancy between the predictions of the two GPs

is calculated at each point. The point with the biggest absolute discrepancy in energy value

is then removed from the reference data and is inserted into both training sets. Further

points are added by repeating this process until the desired number of training points has

been reached. Note that, in this algorithm, as in Method A, it is not essential to pre-

compute the reference data. Instead, computations of the intermolecular interaction energy

can be performed sequentially as new points are added. Thus these potentially expensive

calculations need only be performed for the much smaller training set.

To understand the rationale for this method, note its similarity to using a jackknife
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estimate of the variability. A known problem with GP models, particularly when the hyper-

parameters are estimated and then fixed, is that they often under-estimate uncertainty22.

The jackknife or bootstrap23 can be used to get more accurate estimates of the prediction

uncertainty22. They work by training multiple GPs on multiple different subsets of the data,

and then averaging predictions across these different GP models. Method C is not quite

a jackknife approach (but could be made so by using more than two training sets) but is

motivated by it. It adds points to the training set in places where the mean prediction from

the different GPs differs most. This is the region in our parameter space most sensitive to

the choice of hyper-parameters, and where interpolation is least reliable. See the work by

Kleijnen et al.24 for a related approach.

E. Comparison to a batch space-filling design

The effectiveness of these three acquisition rules in an active learning scheme is assessed

by comparing the resulting RMSE of the models for each method against a model trained

on data generated by a non-active approach8. These non-active results are obtained by

training GPs to independently generated ‘maximin’ Latin hypercube data of increasing size,

based on the co-ordinates in table I. For the two CO2 systems the series of LHC data sets

generated previously8 is used. For Ar3 a new series of LHC training sets is generated using

an LHC algorithm8, with adaptions described in Appendix A.

IV. RESULTS

For CO2−H2 and Ar3, the predictive performance is measured using the root mean square

error (RMSE) of the GPs on the reference set. Equal weighting is used for all data points,

including positive interaction energies up to the potential energy cut off. Since the reference

set is the data set from which new points are selected during the active learning algorithms,

any points that have been added to the actively learned set are discarded from the reference

set prior to the RMSE calculation. For fair comparison with the batch design method based

on Latin hypercubes, the same reduced test set is consequently used to calculate the error

of the LHC of equal size to the actively learned set. In the CO2−Ne case, the RMSE is

calculated using a new 2095-point Latin hypercube set, using the same algorithm, geometric
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constraint and energy cut off as our previous work8. Since this test set is completely inde-

pendent of the set from which points are added, only points above the energy cut off are

removed during error calculation.

FIG. 1. RMSE against training set size for CO2−Ne. The lowest and highest energies in the

reference data are −2.90×10−4 Eh and 0.005 Eh and the root mean square over the reference data

is 6.24 × 10−4 Eh

The results for CO2−Ne are shown in figure 1 (Eh is the Hartree energy). The graphs show

the RMSE of all three active learning methods and the error produced by the non-active

Latin hypercube method. The data sets generated using active learning outperform the

Latin hypercube sets until around the 90 point mark, after which the LHC produces RMSE

similar to both the highest actual error and the two set methodology. Although the highest

variance method performs well with small training set sizes, producing the best RMSE in

three cases, it plateaus at ∼ 10−6 Eh despite the addition of many new data points. This

may be due to an accumulation of different factors. As mean variance approaches the value

of the nugget term, the algorithm may act more erratically in its point addition process. The

highest variance algorithm also tends to bundle points around the border, which have higher

uncertainty than central points. This bundling of points produces a high density coverage

of a region where such point density is not needed, hence not producing the improvement

in accuracy expected for a large addition of points, and causing numerical problems for the
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optimiser in its search for the best hyperparameter due to points being too close to each

other making the covariance matrix ill-conditioned.

Figure 2 shows results for CO2−H2. When the number of points is very low, there is no

clear advantage of the active learning over the LHC in terms of predictive accuracy. However

after the addition of about 30 points, all three of the active learning methods outperform

the LHC sets. The error of the highest variance method again plateaus around 10−6 Eh,

similar to the error of the large LHC sets, whereas the RMSE of the two set and the highest

absolute error method keep reducing towards ∼ 10−7 Eh and significantly outperforms the

LHC design. Since the two set method adds points based on mean discrepancy and does

not require energy data for the entire reference set, the fact that it performs the best is a

significant result. Note that the LHC has been transformed to account for the fact that a

greater density of points at short range will improve the result, so the actively learned data

is being compared to an already somewhat ‘intelligent’ design that allocates more points in

subregions of space that have more variation.

FIG. 2. RMSE against training set size for CO2−H2. The lowest and highest energies in the

reference data are −8.25×10−4 Eh and 0.005 Eh and the root mean square over the reference data

is 7.54 × 10−4 Eh.

Results for the three body non-additive potential of argon are presented in figure 3. The

two set and the highest absolute error method outperform the space filling design, especially
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for training sets with a large number of design points where the AL methods produce errors

an order of magnitude lower. The highest variance method performs erratically and is the

worst out of all the models.

FIG. 3. RMSE against training size for Ar3. The lowest and highest energies in the reference

data are −2.10× 10−4 Eh and 5.31× 10−5 Eh and the root mean square over the reference data is

1.28 × 10−5 Eh.

In all 3 cases our GP approach captures very well the interaction data within the geometric

constraint. However, our GPs are not ideally suited to extrapolate to low energies at long

distances, outside our geometric constraint. For long distances we suggest the use of a long-

range asymptotic expansion function, obtained from intermolecular perturbation theory, as

in our previous work8.

Highest absolute error relies on having a complete set of calculated energy points prior

to conducting active learning, so it is limited exclusively to producing an optimal smaller

subset of points from a large pre-existing data set. The other two methods, the highest

variance and the two set learning, can both be expanded to generating data sets de-novo if a

way of accounting for the high energy region can be introduced to prevent the active learning

algorithm adding points that are then excluded by the high energy cut-off. One possible

way of doing this is to use an initial smaller Latin hypercube to train a GP and in the

active learning, only add points predicted to be below the high energy threshold. Another
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possible way of excluding the high energy points is by using a classifier that gets more

accurate as the number of points increases, allowing for a complete ’de novo’ generation of

data and a more refined high energy boundary. An additional consideration when modifying

the algorithm to produce training sets de novo is to automate the energy point generation

and the insertion of the point back into the GPy model for re-training. This may create

computational inefficiency, as new data points need to be calculated one at a time.

V. FUTURE WORK

There is a large scope for work that builds on these results. An obvious extension is

the application of the algorithms to larger chemical systems, where the need for smaller

data sets becomes more imperative due to the computational unfeasibility of carrying out

extensive calculations at different geometries. All of our methods could be applied to larger

chemical systems, to some extent. For particularly large systems generating the LHC will

become computationally impractical. Here, method C has a particular advantage as it does

not require a large LHC reference set and needs only the generation of the training data.

Increasing computational cost per point also motivates work producing data sets completely

de novo, using iterative design alongside a classifier that aims to predict high energy points

and exclude them from the search over the course of the active learning algorithm. The

algorithms that we have used rely on a random point selection for the initial training point,

and one possible way of improving the robustness of the algorithm is by devising a more

systematic way to choose the location of the starting point.

VI. CONCLUSIONS

Active learning of training data in the field of potential energy surface interpolation is a

promising development, as it allows for the production of more time-efficient global poten-

tial energy surfaces that can be systematically improved until the desired level of accuracy

has been achieved. Since the main appeal of potential energy surfaces is their consequent

application in different techniques to extract macroscopic and atomistic properties of differ-

ent molecules, subregions of space where the model fared badly due to point sparsity may

cause problems in the methodology of Monte Carlo and molecular dynamics simulations.
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This can be rectified by the use of active learning, where the goal is to place points in the

most problematic areas, and hence can be used to identify these subregions of space and

fill them with additional data prior to application. A further advantage of the sequential

design methodology is that, having selected N points, the data points for all n ≤ N designs

are also given and are subsets of the N data points. This is useful in applications to allow a

convenient trade-off of accuracy and computational expense by selecting a suitable n. Of the

three methods presented, the highest error search (method B) and two set search (method

C) produced the lowest RMSEs for a given number of training points, with these two meth-

ods producing very similar RMSE values. Method B is preferable if the large reference LHC

dataset can be computed (or already exists), as this method always returns an RMSE value.

However, if the cost of computing the interaction potential prohibits the generation of a

large reference set then method C must be used as it does not rely upon an initial reference

set. Since the ultimate aim of machine learning methods in potential energy surface genera-

tion is to produce high-accuracy potentials at the lowest possible computational cost, active

learning based methods of experimental design are a promising tool in achieving optimality

in smaller training sets.

ACKNOWLEDGEMENTS

The authors are grateful to the EPSRC for the award of a studentship to EU, and to the

University of Nottingham for the use of the ‘Minerva’ high-performance computing facility.

Appendix A: LHC generation for Ar3

The method for generating Ar3 LHC data is similar to our previous work8, with the

following clarifications. The trimer system is described by three distances (r12, r13, r23).

These distances must obey the triangle constraint r12 + r13 + r23 ≥ 2max(r12, r13, r23). Also,

as the atoms are identical, the following symmetry constraint is used to restrict the size of the

space: r12 ≤ r13 ≤ r23. LHC data are generated via a 3-dimensional unit LHC and scaling

this to a LHC on (1/r12, 1/r13, 1/r23) using the ranges in table I. These are converted to

(r12, r13, r23) and geometries that disobey the triangle or symmetry constraint are rejected.

Taking 2.88Å as the minimum value for the rij ensure that no pairwise interaction exceeds
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the high energy cut off. If a LHC rejects more than the mean number of rejected geometries

then the entire LHC is rejected. The minimum distance within a LHC is calculated as in

our previous work and a long series of candidate LHC is generated by this algorithm.

The LHC with the largest minimum distance is returned as the ‘best’ LHC. The test

LHC data for Ar3 are generated on 1/r as above. However, the training LHCs are generated

using 1/r2 as previous work showed that this scaling gave a slightly improved RMSE for the

CO2−CO dimer.
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