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This chapter is concerned with how to calibrate a computetehtm observational
data when the model produces multivariate output and isresipeto run. The sig-
nificance of considering models with long run times is thaythan be run only at
a limited number of different inputs, ruling out a brutedeiMonte Carlo approach.
Consequently, all inference must be done with a limited erde of model runs. In
this chapter we use this ensemble to train a meta-model afdhgutersimulator,
which we refer to as aemulator(Sackset al. 1989). The emulator provides a prob-
abilistic description of our beliefs about the computer eaahd can be used as a
cheap surrogate for the simulator in the calibration predesr any input configura-
tion not in the original ensemble of model runs, the emulptowides a probability
distribution describing our uncertainty about the modeligput.

The Bayesian approach to calibration of computer experisngsing emulators
was described by Kennedy and O’Hagan (2001). Their appreastfor univariate
computer models, and in this chapter we show how those meitentbe extended
to deal with multivariate models. We use principal compdmealysis to project the
multivariate model output onto a lower dimensional spaog, then use Gaussian
processes to emulate the map from the input space to the timensional space.
We can then reconstruct from the subspace to the originalsfice. This gives a
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way of bypassing the expensive multivariate computer madtl a combination
of dimension reduction and emulation in order to performdhkbration. Figure 4
shows a schematic diagram of the emulation process.

The result of a probabilistic calibration is a posteriortidigition over the input
space which represents our uncertainty about the bestwthe model input given
the observational data and the computer model. It is impowéden calibrating to
distinguish between measurement error on the data and raodein the computer
simulator predictions and in Section 0.1 we describe hovh lzain and must be
included in order to produce a fair analysis. A Bayesiandi@etwork showing the
statistical aspects of the calibration process is showngarg 1.

The layout of this chapter is as follows. In Section 0.1 weaddtice the prob-
lem and describe the calibration framework. In Section Og2imtroduce the idea
of emulation and describe the principal component emukatdrin Section 0.3 we
give details of how to use this approach to calibrate muiiiata models. To illustrate
the methodology we use the University of Victoria internageicomplexity climate
model, which we will calibrate to observational data caketthroughout the latter
half of the twentieth century. The model is introduced atehd of Section 0.1 and
is returned to at the end of each subsequent section.

0.1 Calibration of computer experiments

In statistics,calibrationis the term used to describe the inverse process of fitting a
model to data, although it is also referred to as parametenason or simply as
inference. Here, we consider the problem in which we havenapcter model of
a physical system along with observations of that systene. dim is to combine
the science captured by the computer model with the physlzsdrvations to learn
about parameter values and initial conditions for the madlel want to incorporate

1. the computer modetn(-),
2. field observations of the physical systefq,

3. any other background information.

We consider each of these sources in turn.

The computer model

The computer modeln(-), is considered to be a map from the input spéceo

the output spac® C R™. The input paramete® € © are the calibration param-
eters that we wish to estimate. They may be physical corss(atthough care is
needed when identifying model parameters with physicaktaons; see Section
0.1.2), context-specific constants, or tuning parameteesied to make the model
perform well. These are parameters that would not need tpdafed if we were

doing a physical experiment. Models also often have cop@ohmeters which act



as context indicators or as switches between scenariogl&ity, we ignore these
inputs, but note that the approach presented here can hedext¢o deal with this
case by considering the input space tode 7, where7 is a space of control
variables.

Later in the chapter we will be concerned with models whiadpice multivari-
ate output, typically with values of a variable reportedtsal locations or over a
range of times, or perhaps both. We could, if we chose topdluice an index vari-
able to the inputs in order to reduce these models to havialgrseutputs, allowing
us to use methods for univariate models. For example, a nprddicting the tem-
perature on a grid of locations could be considered as gegithe temperature at
a single location, where that locations is specified by amingriable in the inputs.
We choose not to do this here because this limits the coniplekthe problem we
can analyze (as well as presenting some conceptual chafiewith the emulation)
and because the dimension reduction techniques appearkdetber when outputs
are highly correlated as they usually are if the output isaiaptemporal field. We
write m(6@) for the multivariate model output run &t and refer to elements in the
output through an indek so thatm, () is the model output at location/timte

The focus in this chapter is on calibrating computer moddl€kvhave long run
times. A consequence of this cost will be that we will haveyanlimited ensemble
of model runs available to us. In other words, there will betaos N design points
D ={0,:i=1,..., N} for which we know the output of the modB\;,, = {y; =
m(6;) :i=1,..., N}, all of the information about the model will come solely from
this ensemble. The question of how to choose design ppigsliscussed in Section
0.2.1, and we shall assume throughout that we are providdgdawvell designed
ensembleDy;,,, for use in the analysis.

Field observations

We assume that we have observations of the physical sy€gm, that directly
correspond to outputs from the computer model. We(letepresent reality at,
wheret is an index variable such as time or location, and assumeftbdield data
is a measurement of reality atvith independent Gaussian error. That is

Diela(t) = G + € (1)

wheree; ~ N (¢, 02). It will usually be the case that, = 0 for all ¢, and often the
case that we have homoscedastic errors sodhat o2 for all ¢, however neither

of these assumptions is necessary for the analysis. Wentiede| error as separate
from measurement error for reasons specified in Sectio2.00ne of the benefits

of this is thate then genuinely represents measurement error. As the aetefar
most instrumentation is known, and will usually be repométh the measurements,
we assume:; ando, are known constants throughout. If this is not the case, it is
possible to learn these these parameters along with thesothe



Other background information

Calibration is primarily about combining the physics in thedel with field obser-
vations of the system to produce estimates of parameteesatiowever, there will
often be additional expert knowledge that has not been imtidltthe model. Part of
this knowledge will be prior information about the likely giénput values, gained
through previous experiments and reading the literature véll be represented by
prior distribution(#). The modellers may also know something about how accu-
rately the simulator represents the system. As explainetbire detail below, when
calibrating a model it is important to account for any digenecy between the model
and reality. Model builders are often able to provide infatimn about how and
where the model may be wrong. They may, for example, have camédence in
some of the model outputs than others, or they may have mitiérfahe predictions
in some contexts than in others. This information can all bi& mto the analysis.
Ideally, information should be elicited from the expertsdre they observe either
the ensemble of model runs or the field data, however, in igethis will often
not be the case. Garthwag¢al. (2005) give an introduction to elicitation of expert
beliefs.

0.1.1 Statistical calibration framework

The calibration method presented here is based on the appgdaen by Kennedy
and O’Hagan (2001) and uses the concept beat-input(Goldstein and Rougier
2009). The approach assumes that there is a single ‘beag @b, which we label
0, such that the model run atgives the most accurate representation of the system.
Note thatd is the best value here only in the sense of most accuratetgsepting
the data according to the specified error structure, andrasnemted later, the value
found ford need not coincide with the true physical valuefofa consequence of
this assumption is that the model run at its best input is@afft for the model in the
calibration, in the sense that once we kneu#é) we can not learn anything further
about reality from the simulator.

A common and incorrect assumption in calibration is to asstirat we observe
the simulator prediction plus independent random noisthdfcomputer simulator
is not a perfect representation of reality, this assumpsomrong and may lead to
serious errors in the analysis and in future predictionsrdier to relate the simulator
prediction to reality we must account for the existence ofleierror. We can do this
with an additive error term and state that reafiig the best simulator prediction plus
a model errop:

¢ =m(f) + 4. )

Equations (1) and (2) completely describe the structunahfassumed in the
calibration. Combing the two equations gives

Diieta = m(0) + 6 + € 3
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Figure 1 A Bayesian belief network showing the dependengseen the different
components in the statistical model. Note that reality ssga the model prediction
m(é) from the observation®g.q and from the model discrepandy See Pearl

(2000) for an introduction to belief networks.

where all quantities in this equation are vectors. A consaga of the best input
approach is thann(é) is independent of allowing us to specify beliefs about each
term without reference to the other. A schematic representaf the conditional
independence structure assumed for the calibration isrsio®igure 1.

In later sections, distributional assumptions are disetider all terms on the
right hand side of Equation (3), but before then we brieflysider the inferential
process. Calibration is the process of judging which in@lti@s are consistent with
the field data, the model and any prior beliefs. The Bayeginaach to calibration
is to find the posterior distribution of the best input partangiven these three
sources of information; namely, we aim to find

W(élpsima Dﬁelda E)7

whereFE represents the background informati@h;,,, the ensemble of model runs,
andDgeq the field observations. The posterior gives relative weigbtall§ € O,
and represents our beliefs about the best input in the lifytiteoavailable informa-
tion.

To calculate the posterior distribution, we use Bayes t@oto find that the
posterior ofg is proportional to its likelihood multiplied by its prior stribution:

7(0|Dsim, Detd, E)  7(Dsim, Dsierald, E)m(0|E). (4)

Often, the hardest part of any calibration is specificatidthelikelihoodr (Dgiy,, Dﬁeld|é, E),
as once we have the prior and the likelihood, finding the pimstdistribution is in

theory just an integral calculation. In practice, howetkis will usually require
careful application of a numerical integration techniquersas a Markov Chain
Monte Carlo (MCMC) algorithm. Once we have made distribngilbassumptions

aboutd, e and possiblyn(6), the structure shown in Figure 1 allows us to calculate
the likelihood function for the data.



0.1.2 Model error

There are a large variety of reasons why simulators are ynebsays imperfect
representations of the physical system they were designprktict. For example,
modellers’ understanding of the system may be flawed, orgperhot all physical
processes were included in the analysis, or perhaps thereiarerical inaccuracies
in the solver used on the underlying model equations, anahst we wish to make
accurate predictions it is important to account for thioeras otherwise we may
have an unrealistic level of confidence in our predictions.

If we choose not to use a model error term we make the assumtpib obser-
vations are the best simulator prediction plus white naise,

Dgela = m(é) + €

wheree, is independent of ; for ¢ # s. It will often be found that the magnitude of
the measurement error associated with the measuremeniigsit is insufficient to
account for the variability observed in the system, leadingoor model fit in the
calibration. One solution might be to inflate the error vac& to account for this
missing variability, however, this will also cause probkewith the confidence level

in the predictions. In contrast to the white error structofre, the model error term

o will usually have a much richer structure, usually withhighly correlated with

05 for t close tos. By using correlated errors a better degree of accuracy ean b
achieved.

A consequence of using an imperfect simulator in the caitmais that model
parameters may not correspond to their physical namesa&esxample, in a sim-
ulator of ocean circulation we may have a parameter calledogity and it may
be possible to conduct an experiment to measure the physikad of the viscos-
ity in a laboratory. However, because the simulator is aneirfget representation
of the system, we may find that using the physical value of ikeosity leads to
poorer predictions than when using a value determined bgtstital calibration.
For this reason, careful thought needs to be taken whendenisgy which parame-
ters to include in the calibration. The fact that model paeters may not be physical
parameters should be strongly stressed to the experts ibitimg the prior distri-
bution (| E) required in Equation (4).

The question of how to choose a suitable modebfar an area of active statis-
tical research, and the approach taken depends on the aofodetta available. In
situations where data is plentiful, data driven approachesbe used with an unin-
formative prior specification fof. So for example, in weather prediction, each day
a forecast is made and the following day data is collectec¢hvban be used to val-
idate the previous days prediction. In situations such iastbnnedy and O’'Hagan
(2001) suggest the use of a Gaussian process feith uninformative priors on any
parameters i.

If the data available is limited, then expert judgement lbeesimportant. Gold-
stein and Rougier (2009) introduce the idea of a reified midalthought experi-
ment designed to help elicit beliefs about the model errbe feified model is the



version of the model we would run if we had unlimited compgtiasources. So for
example, in global climate models the earth’s surface i ispd a grid of cells and
the computation assumes each cell is homogeneous. If @fininputing resources
were available we could let the grid size tend to zero, gidrgpntinuum of points
across the globe. While clearly an impossibility, thinkialgout the reified model
helps us to break down the model error into more manageahblekshwe can con-
sider the difference between the actual computer modellandetfied model, and
then the difference between the reified model and realitis djpproach may provide
a way to help the modellers think more carefully ab&(}. Murphy et al. (2007)
take a different approach and use an ensemble of modelsIddiegt the calibrated
predictions from a collection of different climate modetslaise these to assess what
the model error might be for their model.

0.1.3 Code uncertainty

If the computer model is quick to run, then we can essentadume that its value
is known for all possible input configurations, as in any iefece procedure we can
simply evaluate the model whenever its value is needed.id¢rctise, calculation of
the calibration posterior

(0| Dgera, m, E) o 7(Dsela, |6, m, E)w(0|E), 5)

wherem represents the computer model, is relatively easy as titeatbn frame-
work (3) gives that

Dierd — m(f) = + €.
Given distributions for the model discrepang€yand measurement errerwe can
calculate the likelihood of the field data, and thus can firedpbsterior distribution.
If the model is not quick running, then the model’s value i&knmwn at all input
values other than those in desigh This uncertainty about the model output at
untried input configurations is commonly calledde uncertaintylf we want to
account for this source of uncertainty in the calibratioartiwe need a statistical
model that describes our beliefs about the output for albjdes input values. We
introduce the idea of emulation after the following example

Example 0.1.1 (UVic Climate Model) In order to demonstrate the methodology we
introduce an example from climate science which we predengawith the theory.
We use the University of Victoria Earth System Climate M@dsfic ESCM) cou-
pled with a dynamic vegetation and terrestrial carbon cyahel an inorganic ocean
carbon cycle (Meissner et al. 2003). The model was built deoto study potential
feedbacks in the terrestrial carbon cycle and to see howetlaéfect future climate
predictions. We present a simplified analysis here, withdietails available in Ric-
ciuto et al. We consider the model to have just two inpgl{g,and K ., and to output

a time-series of atmospheric G®@alues. Input), controls the temperature depen-
dence of respiration and can be considered as controllingrdan source, whereas
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Figure 2 Ensemble of 47 model runs of the UVic climate modebfdesign on two
inputs@19 and K .. The output (black lines) gives the atmospheric,@@edictions
for 1800-1999, and the 57 field observations are shown aesivath error bars of
two standard deviations.

K. is the Michaelis—Menton constant for G@nd controls the sensitivity of photo-
synthesis and can be considered to control a carbon sinkairhes calibrate these
two parameters to the Keeling and Whorf (2005) sequencenodgtheric carbon
dioxide measurements. Each model run takes approximatelyweeks of computer
time and we have an ensemble of 47 model runs with which torpethe analysis.
The model output and the field observations are shown in Eigur

0.2 Principal component emulation

0.2.1 Emulation

If the simulatoryn(-), is expensive to evaluate, then its value is unknown at piitin
values except those in a small ensemble of model runs. Wenasthat the code
has been runV times for all inputs in a space-filling desigh = {0, € © : i =
1,..., N} to produce outpuDg;,,, = {m(f;) e R":i=1,...,N}, and that fur-
ther model runs are not available. The importance of thegdebi for computer
experiments has been stressed by many authors (Morris atotiédi1995; Sacks
et al. 1989) and there are numerous strategies available. A conaimois to find a
space filling design that both sufficiently spans the inpatcspand that does so in
a way so that any possibtein the input space will not be too far from a point in
the design. Popular space filling designs include maximimtiaypercubes (Morris



and Mitchell 1995) which maximize the minimum distance besw points spread-
ing them as far as possible, and low discrepancy sequenclessiBobol sequences
(Morokoff and Caflisch 1994), which have an advantage ovéinttaypercubes of
being generated sequentially so that extra points can bedaall required. For the
purpose of emulation, a Monte Carlo sample from the inputspall nearly always
perform more poorly than a carefully selected design of #messize.

For anyfd ¢ D we are uncertain about the value of the simulator for thisiinp
However, if we believe that the model is a smooth continuouastion of the inputs,
then we can learn about(6) by looking at ensemble members with inputs close to
6. We could, for example, choose to predictd) by linearly interpolating from the
closest ensemble members. The function used to interpatateextrapolat®g;,,,
to other input values is commonly called amulator and there is extensive litera-
ture on emulation (sometimes called meta-modelling) fongoter experiments (see
Santneeet al. (2003) for references).

We use a Bayesian approach to build an emulator which captwre beliefs
about the model. We can elicit prior distributions about shape of the function,
e.g., do we expect linear, quadratic or sinusoidal outmd,about the smoothness
and variation of the output, e.g., over what kind of lengtales do we expect the
function to vary. A convenient and flexible semi-parametaimily that is widely
used to build emulators are Gaussian processes (Stein. M8%gyf(-) is a Gaus-
sian process with mean functigfr) and covariance functios(-, -) and writef(-) ~
GP(g(-),c(-,-)) ifforany collection of inputgx, ..., z,) the vectol( f (z1), ..., f(zn))
has a multivariate Gaussian distribution with méat,), ..., g(z,)) and covari-
ance matrixt whereX;; = c(z;, z;). Gaussian process emulators can be used to
predict the simulator’s value at any input, giving predias in the form of Gaussian
probability distributions over the output space. They aaorporate prior beliefs
about both the prior mean structure and the covariancetstejcboth of which
affect the behaviour when interpolating and extrapolatiogh design points. They
are a popular alternative to the use of neural networks (Rasem and Williams
2006) because they include with any estimate a measure @fleane in that pre-
diction. The conditioning to update from the prior proces$he posterior process
after observing the ensemble of model runs is possible #daoally, and both the
prior and posterior process are simple to simulate from.favariate computer
models we write

m()lﬁa A, o ~ GP(Q()? 0.20(.’ ))

whereg() = 57 h(0) is a prior mean function which is usually taken to be a linear
combination of a set of regressor functions;), and where3 represents a vector
of coefficients. The prior variance is assumed here to bmstaty across the input
range and is written as the product of a prior at-a-pointaraes? = Var(m(6)),
and a correlation functiof€orr(m(6,), m(62)) = ¢(01,62). Common choices for
the correlation function include the Matérn function ahe £xponential correla-
tion functions (Abrahamsen 1997), such as the commonly sgedred exponential
family

0(91, 6‘2) = exp [—(91 — 92)TA(91 — 6‘2)] . (6)



Here,A = diag(\1, ..., A,) is a diagonal matrix containing the roughness parame-
ters. The\; represent how quickly we believe the output varies as a fomcif the
input, and can be thought of as a measure of the roughness fafrthtion.

Once we observe the ensemble of model s, , we update the prior beliefs to
find the posterior distribution. If we choose a conjugatepdistribution forg such
as an uninformative improper distributiati3) « 1, or a Gaussian distribution, then
we can integrate oud to find the posterior

m()|Dsim, A, 0% ~ GP(g*(-),0%c* (-, )

for modified functiong*(-) andc*(+, -). Modified functiong* andc* are the updated
mean and covariance function of the Gaussian process aftditmning on observ-
ing the ensembl®y;,,,. Expressions foy* andc* are given later by Equations (7)
and (8) and details of the calculation can be found in Rasemessd Williams (2006)
and many other texts. It is not possible to find a conjugater glistribution for the
roughness parameters, so we take an empirical Bayes appi©asella 1985) and
give each); a prior distribution and then find its maximum a posteriofieaand
fix \; at this value, approximating(m(-)| Dsim, 02) by 7(m(-)| Dsim, A, 02). If we
give o2 an inverse chi-squared distribution it is possible to irdég it out analyti-
cally, however, this leads to a t-process distributionsfgfr) which is inconvenient
later, and so we leawe? and use MCMC to integrate it out numerically later in the
analysis. An example of how a simple univariate Gaussiange®can be used as an
emulator is shown in Figure 3.

The Gaussian process emulator approach described abaovaiisifariate mod-
els. For multivariate outputs we could build separate irael@ent emulators for each
output, although this ignores the correlations betweerotiiputs and will gener-
ally perform poorly if the size of the ensemble is small (asasme throwing away
valuable information). Conti and O’Hagan (2007) providesatension of the above
approach which allows us to model a small number of multataroutputs captur-
ing the correlations between them, and Rougier (2008) descan outer product
emulator which factorizes the covariance matrix in a way #tlaws computational
efficiency and so can be used on a larger number of dimendimesdre prepared to
make some fairly general assumptions about the form of tyessors and the cor-
relations. Both of these approaches require careful thioaigbut what correlations
are expected between output dimensions. This can be diffacthink about, espe-
cially with modellers who may not have much experience withez probability or
statistics. Both methods are also limited by the size of jgmlthat can be tackled,
although Rougier (2008) made advances on this front. Foretsatith hundreds or
thousands of outputs a direct emulation approach may natdmlfle, and so here
we use a data reduction method to reduce the size of the pndblsomething more
manageable.



Unconditioned Gaussian process Conditioned Gaussiaegsoc

Figure 3 The left hand plots shows random draws from a Gaugpstcess with con-
stant mean functiory(#) = ¢ for all ) and covariance function given by Equation
(6). These are realizations from the our prior belief abbatrhodel behaviour. The
right hand plot shows draws from the Gaussian process aifténdp conditioned on
four data points (shown as solid black points), i.e., drawwsnfour posterior belief
aboutm(-). The posterior mean of the Gaussian progggs) is shown as a thick
solid line. Note that at the data points, there is no unaettaibout the value of the
process.
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Figure 4 Schematic plot of the idea behind principal comporeulation© is the
input space)’ the output space, and(-) the computer model. We lef<(-) denote
the Gaussian process emulator frénto principal subspacg®©.

0.2.2 Principal component emulation

We take an approach here similar to Higadal. (2008), and use a dimension reduc-
tion technique to project the output from the computer maad a subspace with
a smaller number of dimensions and then build emulatorseofithp from the input
space to the reduced output space. The only requirement diiension reduction
is that there is a method for reconstruction to the origindgpat space. We use prin-
cipal component analysis here (also known as the method pirigiad orthogonal
functions), as the projection is then guaranteed to be thienaplinear projection,
in terms of minimizing the average reconstruction errahalgh we could use any
other dimension reduction technique as long as there is hadetf reconstruction.
A schematic plot of this idea is shown in Figure 4. The compuotedelm(-) is a
function from input spac® to output spac@’. Principal component analysis pro-
vides a map from full output space to reduced spacg?c. We build Gaussian
process emulators to map fro@nto YP¢ and then use the inverse of the original
projection (also a linear projection) to move fr@#ic to ). This gives a computa-
tionally cheap map from the input spa@eto the output spac® which does not use
the modeln(-). This cheap surrogate, or emulator, approximately intetpe all the
points in the ensemble (it is approximate due to the errdréptrincipal component
reconstruction) and gives probability distributions foe model output for any value
of the input.

Principal component analysis is a linear projection of tlatadonto a lower
dimensional subspace (the principal subspace) such thatatiance of the pro-
jected data is maximized. It is commonly done via an eigaeresdecomposition of
the correlation matrix, but for reasons of computationéitiefncy, we will use a
singular value decomposition of the data here.Yealenote anV x n matrix with
row i thei*” run of the computer modeY;. = m(6;) (recall that the model output
is n dimensional and that there afé runs in the ensembl®y;,,). The dimension



reduction algorithm can then be described as follows:

1. Centre the matrix. Lai denote the row vector of column means,¥étbe the
matrix Y with u subtracted from each row’( = Y — ) so that the mean of
each column ol is zero. We might also choose to scale the matrix, so that
the variance of each column is one.

2. Calculate the singular value decomposition
Y' =UTV*.

V' is ann x n unitary matrix containing the principal components (thgee-
vectors) and’* denotes its complex conjugate transpasis.anN x n diag-
onal matrix containing the principal values (the eigenea)and is ordered so
that the magnitude of the diagonal entries decreases abmsesatrix.U is an
N x N matrix containing the left singular values.

3. Decide on the dimension of the principal subspacesay @* < n). An
orthonormal basis for the principal subspace is then giverthle first n*
columns ofV (the leading:* eigenvectors) which we denote®s(ann x n*
matrix). LetV; denote the matrix containing the remaining column¥ of

4. ProjectY”’ onto the principal subspace. The coordinates in the subgjlae
factor scores) are found by projecting onta

YPe =Y'V.

The it row of Y?¢ then denotes the coordinate of tHé ensemble member
in the spacé»<.

Some comments:

¢ Note that the principal component analysis is done acr@ssdlumns of the
matrix rather than across the rows as is usual. The restliishe eigenvalues
are of the same dimension as the original output with theihggeigenvalue
often taking the general form of the output.

e Although principal component analysis (PCA) is a lineajj@cton, this method
can be used on highly non-linear models. The linear aspeBGX is the
projection of the output spagg onto a smaller output spagé’. The map
from the input spac® to the reduced outpyt?c can still be non-linear, and
will be unaffected by any linear assumption used in the dsi@nreduction.
The main requirement for the use of this method, is that tfeegeconsistent
covariance structure amongst the outputs. The projectioto dhe principal
components is essentially assuming that the true numbeegrkeds of free-
dom is less tham. If the outputs are all independent then PCA will not work
as a dimension reduction technique.



e Thereis no established method for deciding on the dimensiari the princi-

pal subspace. The percentage of variance explained (sura obtresponding
eigenvalues i) is often used as a heuristic, with the stated aim being to
explain 95% or 99% of the variance. We must also decide whichponents

to include inV;. It may be found that components which only explain a small
amount of the variance (small eigenvalues) are importadiptively, as was
found in principal component regression (Jolliffe 2002he0nethod of com-
ponent selection is through the use of diagnostic plots plaied below.

This leaves us with the coordinates of the ensemble in theipal subspace
Yyre, with each row corresponding to the same row in the origiraighD. Gaussian
processes can now be used to emulate this map. Usually, Weawdn* > 1, and so
we still need to use a multivariate emulator such as thatqweg by Rougier (2008).
However, emulating the reduced map withindependent Gaussian processes often
performs as well as using a fully multivariate emulator,ezsally if the size of the
ensembleV is large compared with*. Another computational aid that helps with
the emulation is to scale the matrix of scores so that eaehmoohas variance one.
This helps with tuning the MCMC sampler for tlaé parameters in the Gaussian
process covariance function, as it makesshedimensions comparable with each
other.

To reconstruct from the subspapé© to the full spacé) is also a linear transfor-
mation. We can post-multiply the scores By to give a deterministic reconstruc-
tion Y = Y?°VI'. However, this does not account for the fact that by prajecti
into an*-dimensional subspace, we have discarded informationardiimension
reduction. To account for this lost information we add ramdmultiples of the
eigenvectors which describe the discarded dimensionselydrh. We model these
random multiples as zero-mean Gaussian distributionswaittances corresponding
to the relevant eigenvalues. This gives a stochastic réthera deterministic recon-
struction, which accounts for the error in the dimensiorugidn. In summary, we
reconstruct as

Y// _ chvlT + (I)‘/QT

where® is an N x (n — n*) matrix with 7* column containingV draws from a
N(0,T i n=+q) distribution. We then must add the column meang’ofo each
row of Y to complete the emulator.

A useful diagnostic tool when building emulators are leane-out cross vali-
dation plots. These are obtained by holding back one of\hteaining runs in the
ensemble, training the emulator with the remainMg- 1 runs, and then predicting
the held back values. Plotting the predicted values, with @5edibility intervals,
against the true values for each output dimension givesatidufeedback on how
the emulator is performing and allows us to validate the amoul These plots can
be used to choose the dimension of the principal subspace/hicti components
to include. They are also useful for choosing which regrefistctions to use in the
specification of the mean structure. Once we have validdtec&mulator, we can
then proceed to use it to calibrate the model.
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Figure 5 Leave-one-out cross validation plots for a sedectf four of the 200

outputs. The error bars show 95% credibility intervals om pnedictions. The two
outliers seen in each plots are for model runs with inputsheretge of the design.
These points are predictions where we extrapolate ratlaerititerpolate from the
other model runs.

Example 0.2.1 (UVic continued) We use principal component emulation to build a
cheap surrogate for the UVic climate model introduced earRRecall that the output
of the model is a time-series of 200 atmospheric, @@dictions. Figure 5 shows
the leave-one-out cross-validation plots for a selectidrionr of the 200 output
points. The emulation was done by projecting the time-seno a 10-dimensional
principal subspace and then emulating each map with indépenGaussian pro-
cesses before reconstructing the data back up to the ofligipace of 200 values.
A quadratic prior mean structure was useédg;, 02) = (1,601, 02,0%,0%,0,0,)7, as
the cross-validation plots showed that this gave superesfgrmance over a linear
or constant mean structure, with only negligible furtheirgapossible by including
higher order terms. The plots show that the emulator is aatmly able to predict
the held back runs and that the uncertainty in our predictigshown by the 95%
credibility intervals) provide a reasonable measure of emcertainty (with 91%
coverage on average).

0.3 Multivariate calibration

Recall that our aim is to find the distribution éfgiven the observations and the
model runs, namely

7T(éltl)ﬁelda Dsim) X 7T-(,Z)ﬁeld|,Z)sima é)ﬂ-(éu)sim)

X T(Dse1d| Psim, 0)7(0)

where we have notgd tha(Dsim|é) = w(Dsin}) and so can be ignored in the pos-
terior distribution ofd, leaving7 (Dsge1a|Dsim, #) t0 be specified in order to find the
posterior. The calibration framework given by Equation¢8itains three different

terms,m(6), 6 ande, which we need to model. The best input approach ensures that



parameted is chosen so as to make(é) and ¢ independent for alt (Kennedy
and O’Hagan 2001), and the measurement eri®also independent of both terms.
This allows us to specify the distribution of each part of Etpn (3) in turn, and
then calculate the distribution of the sum of the three comepds. If all three parts
have a Gaussian distribution, the sum will also be GausBiatributional choices
for e andd will be specific to each individual problem, but often measnent errors
are assumed to be zero-mean Gaussian random variabledly wgitla variances
reported with the data. Kennedy and O’Hagan recommend #efuSaussian pro-
cess priors for the discrepancy functi@rwhile this is convenient mathematically,
sensible forms for the discrepancy will need to be decideti thie modellers in
each case separately. If some non-Gaussian form is usethérermay be difficulty
calculating the likelihood in Equation (5). For ease of esifion, we assumé has a
Gaussian process distribution here.

Finally, we must find the distribution ah(é, t) using the principal component
emulator. Before considering the map fréto ), we must first consider the distri-
bution of the emulaton?<(-) from © to Y¢. Using independent Gaussian processes
to model the map from the input space to each dimension ofriheipal subspace
(i.e.,nPc = (ni,...,nt%)), we have that the prior distribution fgf“(-) is

nfc(')lﬁivoizv)‘i ~ Gp(gi(')vaizci('a ))

If we give ; a uniform improper priotr(3;) « 1, we can then condition 0Py,
and integrate ous; to find

nfc('”DSimv 01’27 Ai ~ GP(Q:F()v UQC?('? ))

i

where
g7 (6) = 6"h(9) + t(6)" AN (YIS — HP) (7)
c(0,0) =c(0,0) —t(@T AT HO) + (h(O) —t@T AT HYHT AT H) !
x (h(6)" —1(@)" AT H)T (8)
and

Bi=(HTA™'H)'HT A~y
£(0) = (c(0,61), . ..,c(0,0x))
{Ai}jr = {ci(05,01)}jk=1,..N
HT = (h(6,),...,h(0nN))

assuming the regressorsg;), are the same for each dimension. H&rfg; denotes
thei'” column of matrixy’?¢, andé,, . . . , v are the points in desigh. The recon-
struction to the full spacey(-) = n*¢(-)ViT + @V, then has posterior distribution

7°(0)| Dsim, 0%, A ~ N(g*(0)V,T, a2c* (0, )Vi ViT + Vo' VT



whereg* = (g7, ..., g5 ) andl” = diagly+1.n*+1, - - -, I'n.n). An empirical Bayes
approach can be used for the roughness parameters by fixaéng dh their maxi-
mum likelihood estimates. We do not integrat& out analytically for reasons of
tractability, but leave them in the calculation and use MCMGntegrate them out
numerically later.

If all three parts of Equation (3) are Gaussian then we catewlown the likeli-
hood of the field data conditional on the parameters:

W(Dﬁeld |Dsim7 027 97 ’75)

wherey; are parameters required for the discrepancy @&tn We elicit prior dis-
tributions foré and~s from the modellers and decide upon priors é8rourselves
(emulators parameters are the responsibility of the pgrediorming the emulation).
We then use a Markov Chain Monte Carlo algorithm to find thetqriee distribu-
tions. It is possible to write down a Metropolis-within-@algorithm to speed up
the MCMC calculations, although we do not give the detailehe

Example 0.3.1 (UVic continued) Figure 6 shows the marginal posterior distribu-
tions from calibrating the UVic model to the Keeling and Wh@&O005) observa-
tions. We use an autoregressive process of order one foriticeegpancy term with
8t = pdi—1 + U whereU ~ N(0,03%). We givep a I'(5,1) prior truncated at one,
ando? aI'(4,0.6) prior distribution. The Markov chains were run for 1,000000
iterations. The first 200,000 samples were discarded as-buand the remaining
samples were thinned to every tenth value leaving 80,00@lesmUniform prior
distributions were used fof)1o and K. (Q10 ~ U[1,4] and K. ~ U[0.25,1.75]),
andTI'(1.5,6) priors were used for each of the emulator varianeés Tests were
done to check the sensitivity of the results to choice ofrptistribution, and the
analysis was robust to changes in priors fot and s, but not to changes in the
priors for Q19 and K.

This will not usually be the end of the calibration procesise Tesults will be
returned to the modellers, who may decide to use them to iraglee model, before
another calibration is performed. For details of this prebi, and of the Metropolis-
within-Gibbs algorithm, see Ricciuto et al.

0.4 Summary

In this chapter we have shown how to extend the calibratiganagzh of Kennedy
and O’Hagan (2001) to enable the calibration of computeretwdith multivariate
outputs. The approach is based around the idea of emulatieduzed dimension
version of the model, thus bypassing the need to repeatidilyate from an expen-
sive model. The method requires a well-designed ensembheodtel evaluations
Dsim, Mmeasurements of the systéPy. 4, and expert beliefs about the measurement
errore and possibly also the model errér The method can then be broken down
into three steps.
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Figure 6 Marginal posterior distributions for two of theibaation parameters) o
and K., in the UVic climate model. The two plots on the leading diagloshow
the individual marginal plots. The bottom left plot shows fairwise marginal dis-
tribution, and the top right box shows the posterior cotretebetweend,, and
K..



The first step is to build a cheap surrogate for the simulatase in its place. We
project the output from the true model onto a lower dimersiset of basis vectors
using principal component analysis, before training Giamsgrocess emulators to
map from the inputs to this new space. We then reconstru¢te@tiginal output
space by using the inverse projection and account for datallg using Gaussian
multiples of the discarded basis vectors. The second stateeispecification of
distributions in accordance with the conditional indepamzk structure shown in
Figure 1, with prior distributions needed for the caliboatiand error parameters.
Decisions about how to modélneed to be based on each specific simulator, but
Gaussian processes are a flexible form that have been folmeduseful in previous
applications. Finally, we must perform the inference usirigonte Carlo technique
such as Markov chain Monte Carlo. This calibration methodgltakes account of
measurement error, code uncertainty, reconstructiom and model discrepancy,
giving posterior distributions which incorporate experolwledge as well as the
model runs and field data.

The limitations of this method are primarily the limitat®of the Gaussian pro-
cess emulator technology. The use of a dimension reduamique requires that
the outputs are correlated (as they usually are in spatiaporal fields) and some
simulators will not be represented adequately in a loweedisional space, but this
will be detected when looking at the reconstruction errarother potential lim-
itation is that emulators are built on the premise thdtc + h) will be close to
m(z) for smallh. If this is not the case, as in chaotic systems, then emuslatom-
not be used. For such simulators, there is no alternativepeatedly evaluating
the model. Gaussian process emulators are also limitedebgitle of the ensem-
ble they can handle, due to numerical instabilities in tivelision of the covariance
matrix, although methods are being developed to improwe(trreret al. 2006).
There exists a range of validation and diagnostic tools t(aand O’Hagan 2009)
designed to detect and correct problems in emulators, ame $orm of validation
should always be done when using emulators. Finally, it khbe stressed that the
resulting posteriors do not necessarily give estimatet@ftue value of physical
parameters, but rather give values which lead the modeldbexplain the data. In
order to estimate the true physical value of parametersntitel discrepancy must
be very carefully specified. This is still a new area of reskea@and much remains to
be done in the area of modelling discrepancy functions.
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