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This chapter is concerned with how to calibrate a computer model to observational
data when the model produces multivariate output and is expensive to run. The sig-
nificance of considering models with long run times is that they can be run only at
a limited number of different inputs, ruling out a brute-force Monte Carlo approach.
Consequently, all inference must be done with a limited ensemble of model runs. In
this chapter we use this ensemble to train a meta-model of thecomputersimulator,
which we refer to as anemulator(Sackset al.1989). The emulator provides a prob-
abilistic description of our beliefs about the computer model and can be used as a
cheap surrogate for the simulator in the calibration process. For any input configura-
tion not in the original ensemble of model runs, the emulatorprovides a probability
distribution describing our uncertainty about the model’soutput.

The Bayesian approach to calibration of computer experiments using emulators
was described by Kennedy and O’Hagan (2001). Their approachwas for univariate
computer models, and in this chapter we show how those methods can be extended
to deal with multivariate models. We use principal component analysis to project the
multivariate model output onto a lower dimensional space, and then use Gaussian
processes to emulate the map from the input space to the lowerdimensional space.
We can then reconstruct from the subspace to the original data space. This gives a
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way of bypassing the expensive multivariate computer modelwith a combination
of dimension reduction and emulation in order to perform thecalibration. Figure 4
shows a schematic diagram of the emulation process.

The result of a probabilistic calibration is a posterior distribution over the input
space which represents our uncertainty about the best valueof the model input given
the observational data and the computer model. It is important when calibrating to
distinguish between measurement error on the data and modelerror in the computer
simulator predictions and in Section 0.1 we describe how both can and must be
included in order to produce a fair analysis. A Bayesian belief network showing the
statistical aspects of the calibration process is shown in Figure 1.

The layout of this chapter is as follows. In Section 0.1 we introduce the prob-
lem and describe the calibration framework. In Section 0.2 we introduce the idea
of emulation and describe the principal component emulatorand in Section 0.3 we
give details of how to use this approach to calibrate multivariate models. To illustrate
the methodology we use the University of Victoria intermediate complexity climate
model, which we will calibrate to observational data collected throughout the latter
half of the twentieth century. The model is introduced at theend of Section 0.1 and
is returned to at the end of each subsequent section.

0.1 Calibration of computer experiments

In statistics,calibration is the term used to describe the inverse process of fitting a
model to data, although it is also referred to as parameter estimation or simply as
inference. Here, we consider the problem in which we have a computer model of
a physical system along with observations of that system. The aim is to combine
the science captured by the computer model with the physicalobservations to learn
about parameter values and initial conditions for the model. We want to incorporate

1. the computer model,m(·),

2. field observations of the physical system,Dfield,

3. any other background information.

We consider each of these sources in turn.

The computer model

The computer model,m(·), is considered to be a map from the input spaceΘ, to
the output spaceY ⊂ Rn. The input parametersθ ∈ Θ are the calibration param-
eters that we wish to estimate. They may be physical constants (although care is
needed when identifying model parameters with physical constants; see Section
0.1.2), context-specific constants, or tuning parameters needed to make the model
perform well. These are parameters that would not need to be specified if we were
doing a physical experiment. Models also often have controlparameters which act



as context indicators or as switches between scenarios. Forclarity, we ignore these
inputs, but note that the approach presented here can be extended to deal with this
case by considering the input space to beΘ × T , whereT is a space of control
variables.

Later in the chapter we will be concerned with models which produce multivari-
ate output, typically with values of a variable reported at spatial locations or over a
range of times, or perhaps both. We could, if we chose to, introduce an index vari-
able to the inputs in order to reduce these models to having scalar outputs, allowing
us to use methods for univariate models. For example, a modelpredicting the tem-
perature on a grid of locations could be considered as predicting the temperature at
a single location, where that locations is specified by an index variable in the inputs.
We choose not to do this here because this limits the complexity of the problem we
can analyze (as well as presenting some conceptual challenges with the emulation)
and because the dimension reduction techniques appear to work better when outputs
are highly correlated as they usually are if the output is a spatial-temporal field. We
write m(θ) for the multivariate model output run atθ, and refer to elements in the
output through an indext, so thatmt(θ) is the model output at location/timet.

The focus in this chapter is on calibrating computer models which have long run
times. A consequence of this cost will be that we will have only a limited ensemble
of model runs available to us. In other words, there will be a set ofN design points
D = {θi : i = 1, . . . , N} for which we know the output of the modelDsim = {yi =
m(θi) : i = 1, . . . , N}; all of the information about the model will come solely from
this ensemble. The question of how to choose design pointsD is discussed in Section
0.2.1, and we shall assume throughout that we are provided with a well designed
ensembleDsim for use in the analysis.

Field observations

We assume that we have observations of the physical system,Dfield, that directly
correspond to outputs from the computer model. We letζt represent reality att,
wheret is an index variable such as time or location, and assume thatthe field data
is a measurement of reality att with independent Gaussian error. That is

Dfield(t) = ζt + ǫt (1)

whereǫt ∼ N(µt, σ
2
t ). It will usually be the case thatµt = 0 for all t, and often the

case that we have homoscedastic errors so thatσ2
t = σ2 for all t, however neither

of these assumptions is necessary for the analysis. We treatmodel error as separate
from measurement error for reasons specified in Section 0.1.2. One of the benefits
of this is thatǫ then genuinely represents measurement error. As the error rate for
most instrumentation is known, and will usually be reportedwith the measurements,
we assumeµt andσt are known constants throughout. If this is not the case, it is
possible to learn these these parameters along with the others.



Other background information

Calibration is primarily about combining the physics in themodel with field obser-
vations of the system to produce estimates of parameter values. However, there will
often be additional expert knowledge that has not been builtinto the model. Part of
this knowledge will be prior information about the likely best input values, gained
through previous experiments and reading the literature, and will be represented by
prior distributionπ(θ). The modellers may also know something about how accu-
rately the simulator represents the system. As explained inmore detail below, when
calibrating a model it is important to account for any discrepancy between the model
and reality. Model builders are often able to provide information about how and
where the model may be wrong. They may, for example, have moreconfidence in
some of the model outputs than others, or they may have more faith in the predictions
in some contexts than in others. This information can all be built into the analysis.
Ideally, information should be elicited from the experts before they observe either
the ensemble of model runs or the field data, however, in practice this will often
not be the case. Garthwaiteet al. (2005) give an introduction to elicitation of expert
beliefs.

0.1.1 Statistical calibration framework

The calibration method presented here is based on the approach given by Kennedy
and O’Hagan (2001) and uses the concept of abest-input(Goldstein and Rougier
2009). The approach assumes that there is a single ‘best’ value ofθ, which we label
θ̂, such that the model run atθ̂ gives the most accurate representation of the system.
Note thatθ̂ is the best value here only in the sense of most accurately representing
the data according to the specified error structure, and as commented later, the value
found for θ̂ need not coincide with the true physical value ofθ. A consequence of
this assumption is that the model run at its best input is sufficient for the model in the
calibration, in the sense that once we knowm(θ̂) we can not learn anything further
about reality from the simulator.

A common and incorrect assumption in calibration is to assume that we observe
the simulator prediction plus independent random noise. Ifthe computer simulator
is not a perfect representation of reality, this assumptionis wrong and may lead to
serious errors in the analysis and in future predictions. Inorder to relate the simulator
prediction to reality we must account for the existence of model error. We can do this
with an additive error term and state that realityζ is the best simulator prediction plus
a model errorδ:

ζ = m(θ̂) + δ. (2)

Equations (1) and (2) completely describe the structural form assumed in the
calibration. Combing the two equations gives

Dfield = m(θ̂) + δ + ǫ (3)
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Figure 1 A Bayesian belief network showing the dependenciesbetween the different
components in the statistical model. Note that reality separates the model prediction
m(θ̂) from the observationsDfield and from the model discrepancyδ. See Pearl
(2000) for an introduction to belief networks.

where all quantities in this equation are vectors. A consequence of the best input
approach is thatm(θ̂) is independent ofδ allowing us to specify beliefs about each
term without reference to the other. A schematic representation of the conditional
independence structure assumed for the calibration is shown in Figure 1.

In later sections, distributional assumptions are discussed for all terms on the
right hand side of Equation (3), but before then we briefly consider the inferential
process. Calibration is the process of judging which input values are consistent with
the field data, the model and any prior beliefs. The Bayesian approach to calibration
is to find the posterior distribution of the best input parameter given these three
sources of information; namely, we aim to find

π(θ̂|Dsim,Dfield, E),

whereE represents the background information,Dsim the ensemble of model runs,
andDfield the field observations. The posterior gives relative weights to all θ ∈ Θ,
and represents our beliefs about the best input in the light of the available informa-
tion.

To calculate the posterior distribution, we use Bayes theorem to find that the
posterior ofθ̂ is proportional to its likelihood multiplied by its prior distribution:

π(θ̂|Dsim,Dfield, E) ∝ π(Dsim,Dfield|θ̂, E)π(θ̂|E). (4)

Often, the hardest part of any calibration is specification of the likelihoodπ(Dsim,Dfield|θ̂, E),
as once we have the prior and the likelihood, finding the posterior distribution is in
theory just an integral calculation. In practice, however,this will usually require
careful application of a numerical integration technique such as a Markov Chain
Monte Carlo (MCMC) algorithm. Once we have made distributional assumptions
aboutδ, ǫ and possiblym(θ̂), the structure shown in Figure 1 allows us to calculate
the likelihood function for the data.



0.1.2 Model error

There are a large variety of reasons why simulators are nearly always imperfect
representations of the physical system they were designed to predict. For example,
modellers’ understanding of the system may be flawed, or perhaps not all physical
processes were included in the analysis, or perhaps there are numerical inaccuracies
in the solver used on the underlying model equations, and so on. If we wish to make
accurate predictions it is important to account for this error, as otherwise we may
have an unrealistic level of confidence in our predictions.

If we choose not to use a model error term we make the assumption that obser-
vations are the best simulator prediction plus white noise,i.e.,

Dfield = m(θ̂) + ǫ

whereǫt is independent ofǫs for t 6= s. It will often be found that the magnitude of
the measurement error associated with the measurement instrument is insufficient to
account for the variability observed in the system, leadingto poor model fit in the
calibration. One solution might be to inflate the error variance to account for this
missing variability, however, this will also cause problems with the confidence level
in the predictions. In contrast to the white error structureof ǫ, the model error term
δ will usually have a much richer structure, usually withδt highly correlated with
δs for t close tos. By using correlated errors a better degree of accuracy can be
achieved.

A consequence of using an imperfect simulator in the calibration, is that model
parameters may not correspond to their physical namesakes.For example, in a sim-
ulator of ocean circulation we may have a parameter called viscosity and it may
be possible to conduct an experiment to measure the physicalvalue of the viscos-
ity in a laboratory. However, because the simulator is an imperfect representation
of the system, we may find that using the physical value of the viscosity leads to
poorer predictions than when using a value determined by a statistical calibration.
For this reason, careful thought needs to be taken when considering which parame-
ters to include in the calibration. The fact that model parameters may not be physical
parameters should be strongly stressed to the experts when eliciting the prior distri-
butionπ(θ̂|E) required in Equation (4).

The question of how to choose a suitable model forδ is an area of active statis-
tical research, and the approach taken depends on the amountof data available. In
situations where data is plentiful, data driven approachescan be used with an unin-
formative prior specification forδ. So for example, in weather prediction, each day
a forecast is made and the following day data is collected which can be used to val-
idate the previous days prediction. In situations such as this Kennedy and O’Hagan
(2001) suggest the use of a Gaussian process forδ, with uninformative priors on any
parameters inδ.

If the data available is limited, then expert judgement becomes important. Gold-
stein and Rougier (2009) introduce the idea of a reified modelin a thought experi-
ment designed to help elicit beliefs about the model error. The reified model is the



version of the model we would run if we had unlimited computing resources. So for
example, in global climate models the earth’s surface is split into a grid of cells and
the computation assumes each cell is homogeneous. If infinite computing resources
were available we could let the grid size tend to zero, givinga continuum of points
across the globe. While clearly an impossibility, thinkingabout the reified model
helps us to break down the model error into more manageable chunks; we can con-
sider the difference between the actual computer model and the reified model, and
then the difference between the reified model and reality. This approach may provide
a way to help the modellers think more carefully aboutδ(·). Murphy et al. (2007)
take a different approach and use an ensemble of models. Theylook at the calibrated
predictions from a collection of different climate models and use these to assess what
the model error might be for their model.

0.1.3 Code uncertainty

If the computer model is quick to run, then we can essentiallyassume that its value
is known for all possible input configurations, as in any inference procedure we can
simply evaluate the model whenever its value is needed. In this case, calculation of
the calibration posterior

π(θ|Dfield, m, E) ∝ π(Dfield, |θ, m, E)π(θ|E), (5)

wherem represents the computer model, is relatively easy as the calibration frame-
work (3) gives that

Dfield − m(θ̂) = δ + ǫ.

Given distributions for the model discrepancyδ and measurement errorǫ we can
calculate the likelihood of the field data, and thus can find the posterior distribution.
If the model is not quick running, then the model’s value is unknown at all input
values other than those in designD. This uncertainty about the model output at
untried input configurations is commonly calledcode uncertainty. If we want to
account for this source of uncertainty in the calibration then we need a statistical
model that describes our beliefs about the output for all possible input values. We
introduce the idea of emulation after the following example.

Example 0.1.1 (UVic Climate Model) In order to demonstrate the methodology we
introduce an example from climate science which we present along with the theory.
We use the University of Victoria Earth System Climate Model(UVic ESCM) cou-
pled with a dynamic vegetation and terrestrial carbon cycleand an inorganic ocean
carbon cycle (Meissner et al. 2003). The model was built in order to study potential
feedbacks in the terrestrial carbon cycle and to see how these affect future climate
predictions. We present a simplified analysis here, with full details available in Ric-
ciuto et al. We consider the model to have just two inputs,Q10 andKc, and to output
a time-series of atmospheric CO2 values. InputQ10 controls the temperature depen-
dence of respiration and can be considered as controlling a carbon source, whereas
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Figure 2 Ensemble of 47 model runs of the UVic climate model for a design on two
inputsQ10 andKc. The output (black lines) gives the atmospheric CO2 predictions
for 1800-1999, and the 57 field observations are shown as circles with error bars of
two standard deviations.

Kc is the Michaelis–Menton constant for CO2 and controls the sensitivity of photo-
synthesis and can be considered to control a carbon sink. Theaim is calibrate these
two parameters to the Keeling and Whorf (2005) sequence of atmospheric carbon
dioxide measurements. Each model run takes approximately two weeks of computer
time and we have an ensemble of 47 model runs with which to perform the analysis.
The model output and the field observations are shown in Figure 2.

0.2 Principal component emulation

0.2.1 Emulation

If the simulator,m(·), is expensive to evaluate, then its value is unknown at all input
values except those in a small ensemble of model runs. We assume that the code
has been runN times for all inputs in a space-filling designD = {θi ∈ Θ : i =
1, . . . , N} to produce outputDsim = {m(θi) ∈ Rn : i = 1, . . . , N}, and that fur-
ther model runs are not available. The importance of the design D for computer
experiments has been stressed by many authors (Morris and Mitchell 1995; Sacks
et al.1989) and there are numerous strategies available. A commonaim is to find a
space filling design that both sufficiently spans the input space and that does so in
a way so that any possibleθ in the input space will not be too far from a point in
the design. Popular space filling designs include maximin Latin-hypercubes (Morris



and Mitchell 1995) which maximize the minimum distance between points spread-
ing them as far as possible, and low discrepancy sequences such as Sobol sequences
(Morokoff and Caflisch 1994), which have an advantage over Latin-hypercubes of
being generated sequentially so that extra points can be added as required. For the
purpose of emulation, a Monte Carlo sample from the input space will nearly always
perform more poorly than a carefully selected design of the same size.

For anyθ 6∈ D we are uncertain about the value of the simulator for this input.
However, if we believe that the model is a smooth continuous function of the inputs,
then we can learn aboutm(θ) by looking at ensemble members with inputs close to
θ. We could, for example, choose to predictm(θ) by linearly interpolating from the
closest ensemble members. The function used to interpolateand extrapolateDsim

to other input values is commonly called anemulator, and there is extensive litera-
ture on emulation (sometimes called meta-modelling) for computer experiments (see
Santneret al. (2003) for references).

We use a Bayesian approach to build an emulator which captures our beliefs
about the model. We can elicit prior distributions about theshape of the function,
e.g., do we expect linear, quadratic or sinusoidal output, and about the smoothness
and variation of the output, e.g., over what kind of length scales do we expect the
function to vary. A convenient and flexible semi-parametricfamily that is widely
used to build emulators are Gaussian processes (Stein 1999). We sayf(·) is a Gaus-
sian process with mean functiong(·) and covariance functionc(·, ·) and writef(·) ∼
GP (g(·), c(·, ·)) if for any collection of inputs(x1, . . . , xn) the vector(f(x1), . . . , f(xn))
has a multivariate Gaussian distribution with mean(g(x1), . . . , g(xn)) and covari-
ance matrixΣ whereΣij = c(xi, xj). Gaussian process emulators can be used to
predict the simulator’s value at any input, giving predictions in the form of Gaussian
probability distributions over the output space. They can incorporate prior beliefs
about both the prior mean structure and the covariance structure, both of which
affect the behaviour when interpolating and extrapolatingfrom design points. They
are a popular alternative to the use of neural networks (Rasmussen and Williams
2006) because they include with any estimate a measure of confidence in that pre-
diction. The conditioning to update from the prior process to the posterior process
after observing the ensemble of model runs is possible analytically, and both the
prior and posterior process are simple to simulate from. Forunivariate computer
models we write

m(·)|β, λ, σ2 ∼ GP (g(·), σ2c(·, ·))

whereg(θ) = βT h(θ) is a prior mean function which is usually taken to be a linear
combination of a set of regressor functions,h(·), and whereβ represents a vector
of coefficients. The prior variance is assumed here to be stationary across the input
range and is written as the product of a prior at-a-point varianceσ2 = Var(m(θ)),
and a correlation functionCorr(m(θ1), m(θ2)) = c(θ1, θ2). Common choices for
the correlation function include the Matérn function and the exponential correla-
tion functions (Abrahamsen 1997), such as the commonly usedsquared exponential
family

c(θ1, θ2) = exp
[

−(θ1 − θ2)
T Λ(θ1 − θ2)

]

. (6)



Here,Λ = diag(λ1, . . . , λn) is a diagonal matrix containing the roughness parame-
ters. Theλi represent how quickly we believe the output varies as a function of the
input, and can be thought of as a measure of the roughness of the function.

Once we observe the ensemble of model runsDsim, we update the prior beliefs to
find the posterior distribution. If we choose a conjugate prior distribution forβ such
as an uninformative improper distributionπ(β) ∝ 1, or a Gaussian distribution, then
we can integrate outβ to find the posterior

m(·)|Dsim, λ, σ2 ∼ GP (g∗(·), σ2c∗(·, ·))

for modified functionsg∗(·) andc∗(·, ·). Modified functiong∗ andc∗ are the updated
mean and covariance function of the Gaussian process after conditioning on observ-
ing the ensembleDsim. Expressions forg∗ andc∗ are given later by Equations (7)
and (8) and details of the calculation can be found in Rasmussen and Williams (2006)
and many other texts. It is not possible to find a conjugate prior distribution for the
roughness parameters, so we take an empirical Bayes approach (Casella 1985) and
give eachλi a prior distribution and then find its maximum a posteriori value and
fix λi at this value, approximatingπ(m(·)|Dsim, σ2) by π(m(·)|Dsim, λ̂, σ2). If we
give σ2 an inverse chi-squared distribution it is possible to integrate it out analyti-
cally, however, this leads to a t-process distribution form(·) which is inconvenient
later, and so we leaveσ2 and use MCMC to integrate it out numerically later in the
analysis. An example of how a simple univariate Gaussian process can be used as an
emulator is shown in Figure 3.

The Gaussian process emulator approach described above is for univariate mod-
els. For multivariate outputs we could build separate independent emulators for each
output, although this ignores the correlations between theoutputs and will gener-
ally perform poorly if the size of the ensemble is small (as weare throwing away
valuable information). Conti and O’Hagan (2007) provide anextension of the above
approach which allows us to model a small number of multivariate outputs captur-
ing the correlations between them, and Rougier (2008) describes an outer product
emulator which factorizes the covariance matrix in a way that allows computational
efficiency and so can be used on a larger number of dimensions if we are prepared to
make some fairly general assumptions about the form of the regressors and the cor-
relations. Both of these approaches require careful thought about what correlations
are expected between output dimensions. This can be difficult to think about, espe-
cially with modellers who may not have much experience with either probability or
statistics. Both methods are also limited by the size of problem that can be tackled,
although Rougier (2008) made advances on this front. For models with hundreds or
thousands of outputs a direct emulation approach may not be feasible, and so here
we use a data reduction method to reduce the size of the problem to something more
manageable.
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Figure 3 The left hand plots shows random draws from a Gaussian process with con-
stant mean function (g(θ) = c for all θ) and covariance function given by Equation
(6). These are realizations from the our prior belief about the model behaviour. The
right hand plot shows draws from the Gaussian process after having conditioned on
four data points (shown as solid black points), i.e., draws from our posterior belief
aboutm(·). The posterior mean of the Gaussian processg∗(·) is shown as a thick
solid line. Note that at the data points, there is no uncertainty about the value of the
process.
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Figure 4 Schematic plot of the idea behind principal component emulation.Θ is the
input space,Y the output space, andm(·) the computer model. We letηpc(·) denote
the Gaussian process emulator fromΘ to principal subspaceYpc.

0.2.2 Principal component emulation

We take an approach here similar to Higdonet al.(2008), and use a dimension reduc-
tion technique to project the output from the computer modelonto a subspace with
a smaller number of dimensions and then build emulators of the map from the input
space to the reduced output space. The only requirement of the dimension reduction
is that there is a method for reconstruction to the original output space. We use prin-
cipal component analysis here (also known as the method of empirical orthogonal
functions), as the projection is then guaranteed to be the optimal linear projection,
in terms of minimizing the average reconstruction error, although we could use any
other dimension reduction technique as long as there is a method of reconstruction.
A schematic plot of this idea is shown in Figure 4. The computer modelm(·) is a
function from input spaceΘ to output spaceY. Principal component analysis pro-
vides a map from full output spaceY to reduced spaceYpc. We build Gaussian
process emulators to map fromΘ to Ypc and then use the inverse of the original
projection (also a linear projection) to move fromYpc to Y. This gives a computa-
tionally cheap map from the input spaceΘ to the output spaceY which does not use
the modelm(·). This cheap surrogate, or emulator, approximately interpolates all the
points in the ensemble (it is approximate due to the error in the principal component
reconstruction) and gives probability distributions for the model output for any value
of the input.

Principal component analysis is a linear projection of the data onto a lower
dimensional subspace (the principal subspace) such that the variance of the pro-
jected data is maximized. It is commonly done via an eigenvalue decomposition of
the correlation matrix, but for reasons of computational efficiency, we will use a
singular value decomposition of the data here. LetY denote anN × n matrix with
row i the ith run of the computer model,Yi· = m(θi) (recall that the model output
is n dimensional and that there areN runs in the ensembleDsim). The dimension



reduction algorithm can then be described as follows:

1. Centre the matrix. Letµ denote the row vector of column means, letY ′ be the
matrixY with µ subtracted from each row (Y ′ = Y − µ) so that the mean of
each column ofY ′ is zero. We might also choose to scale the matrix, so that
the variance of each column is one.

2. Calculate the singular value decomposition

Y ′ = UΓV ∗.

V is ann × n unitary matrix containing the principal components (the eigen-
vectors) andV ∗ denotes its complex conjugate transpose.Γ is anN × n diag-
onal matrix containing the principal values (the eigenvalues) and is ordered so
that the magnitude of the diagonal entries decreases acrossthe matrix.U is an
N × N matrix containing the left singular values.

3. Decide on the dimension of the principal subspace,n∗ say (n∗ < n). An
orthonormal basis for the principal subspace is then given by the first n∗

columns ofV (the leadingn∗ eigenvectors) which we denote asV1 (ann × n∗

matrix). LetV2 denote the matrix containing the remaining columns ofV .

4. ProjectY ′ onto the principal subspace. The coordinates in the subspace (the
factor scores) are found by projecting ontoV1:

Y pc = Y ′V1.

The ith row of Y pc then denotes the coordinate of theith ensemble member
in the spaceYpc.

Some comments:

• Note that the principal component analysis is done across the columns of the
matrix rather than across the rows as is usual. The result is that the eigenvalues
are of the same dimension as the original output with the leading eigenvalue
often taking the general form of the output.

• Although principal component analysis (PCA) is a linear projection, this method
can be used on highly non-linear models. The linear aspect ofPCA is the
projection of the output spaceY onto a smaller output spaceYpc. The map
from the input spaceΘ to the reduced outputYpc can still be non-linear, and
will be unaffected by any linear assumption used in the dimension reduction.
The main requirement for the use of this method, is that thereis a consistent
covariance structure amongst the outputs. The projection on to the principal
components is essentially assuming that the true number of degrees of free-
dom is less thann. If the outputs are all independent then PCA will not work
as a dimension reduction technique.



• There is no established method for deciding on the dimensionn∗ of the princi-
pal subspace. The percentage of variance explained (sum of the corresponding
eigenvalues inΓ) is often used as a heuristic, with the stated aim being to
explain 95% or 99% of the variance. We must also decide which components
to include inV1. It may be found that components which only explain a small
amount of the variance (small eigenvalues) are important predictively, as was
found in principal component regression (Jolliffe 2002). One method of com-
ponent selection is through the use of diagnostic plots as explained below.

This leaves us with the coordinates of the ensemble in the principal subspace
Ypc, with each row corresponding to the same row in the original designD. Gaussian
processes can now be used to emulate this map. Usually, we will haven∗ > 1, and so
we still need to use a multivariate emulator such as that proposed by Rougier (2008).
However, emulating the reduced map withn∗ independent Gaussian processes often
performs as well as using a fully multivariate emulator, especially if the size of the
ensembleN is large compared withn∗. Another computational aid that helps with
the emulation is to scale the matrix of scores so that each column has variance one.
This helps with tuning the MCMC sampler for theσ2 parameters in the Gaussian
process covariance function, as it makes then∗ dimensions comparable with each
other.

To reconstruct from the subspaceYpc to the full spaceY is also a linear transfor-
mation. We can post-multiply the scores byV T

1 to give a deterministic reconstruc-
tion Y ′′ = Y pcV T

1 . However, this does not account for the fact that by projecting
into a n∗-dimensional subspace, we have discarded information in the dimension
reduction. To account for this lost information we add random multiples of the
eigenvectors which describe the discarded dimensions, namely V2. We model these
random multiples as zero-mean Gaussian distributions withvariances corresponding
to the relevant eigenvalues. This gives a stochastic ratherthan a deterministic recon-
struction, which accounts for the error in the dimension reduction. In summary, we
reconstruct as

Y ′′ = Y pcV T
1 + ΦV T

2

whereΦ is anN × (n − n∗) matrix with ith column containingN draws from a
N(0, Γn∗+i,n∗+i) distribution. We then must add the column means ofY to each
row of Y ′′ to complete the emulator.

A useful diagnostic tool when building emulators are leave-one-out cross vali-
dation plots. These are obtained by holding back one of theN training runs in the
ensemble, training the emulator with the remainingN − 1 runs, and then predicting
the held back values. Plotting the predicted values, with 95% credibility intervals,
against the true values for each output dimension gives valuable feedback on how
the emulator is performing and allows us to validate the emulator. These plots can
be used to choose the dimension of the principal subspace andwhich components
to include. They are also useful for choosing which regressor functions to use in the
specification of the mean structure. Once we have validated the emulator, we can
then proceed to use it to calibrate the model.
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Figure 5 Leave-one-out cross validation plots for a selection of four of the 200
outputs. The error bars show 95% credibility intervals on the predictions. The two
outliers seen in each plots are for model runs with inputs on the edge of the design.
These points are predictions where we extrapolate rather than interpolate from the
other model runs.

Example 0.2.1 (UVic continued)We use principal component emulation to build a
cheap surrogate for the UVic climate model introduced earlier. Recall that the output
of the model is a time-series of 200 atmospheric CO2 predictions. Figure 5 shows
the leave-one-out cross-validation plots for a selection of four of the 200 output
points. The emulation was done by projecting the time-series onto a 10-dimensional
principal subspace and then emulating each map with independent Gaussian pro-
cesses before reconstructing the data back up to the original space of 200 values.
A quadratic prior mean structure was used,h(θ1, θ2) = (1, θ1, θ2, θ

2
1, θ

2
2 , θ1θ2)

T , as
the cross-validation plots showed that this gave superior performance over a linear
or constant mean structure, with only negligible further gains possible by including
higher order terms. The plots show that the emulator is accurately able to predict
the held back runs and that the uncertainty in our predictions (shown by the 95%
credibility intervals) provide a reasonable measure of ouruncertainty (with 91%
coverage on average).

0.3 Multivariate calibration

Recall that our aim is to find the distribution ofθ̂ given the observations and the
model runs, namely

π(θ̂|Dfield,Dsim) ∝ π(Dfield|Dsim, θ̂)π(θ̂|Dsim)

∝ π(Dfield|Dsim, θ̂)π(θ̂)

where we have noted thatπ(Dsim|θ̂) = π(Dsim) and so can be ignored in the pos-
terior distribution ofθ̂, leavingπ(Dfield|Dsim, θ̂) to be specified in order to find the
posterior. The calibration framework given by Equation (3)contains three different
terms,m(θ̂), δ andǫ, which we need to model. The best input approach ensures that



parameter̂θ is chosen so as to makem(θ̂) andδ independent for allt (Kennedy
and O’Hagan 2001), and the measurement errorǫ is also independent of both terms.
This allows us to specify the distribution of each part of Equation (3) in turn, and
then calculate the distribution of the sum of the three components. If all three parts
have a Gaussian distribution, the sum will also be Gaussian.Distributional choices
for ǫ andδ will be specific to each individual problem, but often measurement errors
are assumed to be zero-mean Gaussian random variables, usually with variances
reported with the data. Kennedy and O’Hagan recommend the use of Gaussian pro-
cess priors for the discrepancy functionδ. While this is convenient mathematically,
sensible forms for the discrepancy will need to be decided with the modellers in
each case separately. If some non-Gaussian form is used thenthere may be difficulty
calculating the likelihood in Equation (5). For ease of exposition, we assumeδ has a
Gaussian process distribution here.

Finally, we must find the distribution ofm(θ̂, t) using the principal component
emulator. Before considering the map fromΘ toY, we must first consider the distri-
bution of the emulatorηpc(·) from Θ toYpc. Using independent Gaussian processes
to model the map from the input space to each dimension of the principal subspace
(i.e.,ηpc = (ηpc

1 , . . . , η
pc
n∗)), we have that the prior distribution forηpc

i (·) is

η
pc
i (·)|βi, σ

2
i , λi ∼ GP (gi(·), σ

2
i ci(·, ·)).

If we give βi a uniform improper priorπ(βi) ∝ 1, we can then condition onDsim

and integrate outβi to find

η
pc
i (·)|Dsim, σ2

i , λi ∼ GP (g∗i (·), σ2
i c∗i (·, ·))

where

g∗i (θ) = β̂T h(θ) + t(θ)T A−1(Y pc
·i − Hβ̂) (7)

c∗i (θ, θ
′) = c(θ, θ′) − t(θ)T A−1t(θ′) + (h(θ)T − t(θ)T A−1H)(HT A−1H)−1

× (h(θ′)T − t(θ′)T A−1H)T (8)

and

β̂i = (HT A−1H)−1HT A−1Y
pc
·i

t(θ) = (c(θ, θ1), . . . , c(θ, θN ))

{Ai}jk = {ci(θj , θk)}j,k=1,...,N

HT = (h(θ1), . . . , h(θN ))

assuming the regressors,h(·), are the same for each dimension. Here,Y
pc
·i denotes

theith column of matrixY pc, andθ1, . . . , θN are the points in designD. The recon-
struction to the full space,ηe(·) = ηpc(·)V T

1 + ΦV T
2 , then has posterior distribution

ηe(θ)|Dsim, σ2, λ ∼ N(g∗(θ)V T
1 , σ2c∗(θ, θ)V1V

T
1 + V2Γ

′V T
2 )



whereg∗ = (g∗1 , . . . , g∗n∗) andΓ′ = diag(Γn∗+1,n∗+1, . . . , Γn,n). An empirical Bayes
approach can be used for the roughness parameters by fixing them at their maxi-
mum likelihood estimates. We do not integrateσ2 out analytically for reasons of
tractability, but leave them in the calculation and use MCMCto integrate them out
numerically later.

If all three parts of Equation (3) are Gaussian then we can write down the likeli-
hood of the field data conditional on the parameters:

π(Dfield|Dsim, σ2, θ, γδ)

whereγδ are parameters required for the discrepancy termδ(t). We elicit prior dis-
tributions forθ andγδ from the modellers and decide upon priors forσ2 ourselves
(emulators parameters are the responsibility of the personperforming the emulation).
We then use a Markov Chain Monte Carlo algorithm to find the posterior distribu-
tions. It is possible to write down a Metropolis-within-Gibbs algorithm to speed up
the MCMC calculations, although we do not give the details here.

Example 0.3.1 (UVic continued)Figure 6 shows the marginal posterior distribu-
tions from calibrating the UVic model to the Keeling and Whorf (2005) observa-
tions. We use an autoregressive process of order one for the discrepancy term with
δt = ρδt−1 + U whereU ∼ N(0, σ2

δ ). We giveρ a Γ(5, 1) prior truncated at one,
and σ2

δ a Γ(4, 0.6) prior distribution. The Markov chains were run for 1,000,000
iterations. The first 200,000 samples were discarded as burn-in and the remaining
samples were thinned to every tenth value leaving 80,000 samples. Uniform prior
distributions were used forQ10 andKc (Q10 ∼ U [1, 4] andKc ∼ U [0.25, 1.75]),
and Γ(1.5, 6) priors were used for each of the emulator variancesσ2. Tests were
done to check the sensitivity of the results to choice of prior distribution, and the
analysis was robust to changes in priors forσ2 and γδ, but not to changes in the
priors for Q10 andKc.

This will not usually be the end of the calibration process. The results will be
returned to the modellers, who may decide to use them to improve the model, before
another calibration is performed. For details of this problem, and of the Metropolis-
within-Gibbs algorithm, see Ricciuto et al.

0.4 Summary

In this chapter we have shown how to extend the calibration approach of Kennedy
and O’Hagan (2001) to enable the calibration of computer models with multivariate
outputs. The approach is based around the idea of emulating areduced dimension
version of the model, thus bypassing the need to repeatedly simulate from an expen-
sive model. The method requires a well-designed ensemble ofmodel evaluations
Dsim, measurements of the systemDfield, and expert beliefs about the measurement
error ǫ and possibly also the model errorδ. The method can then be broken down
into three steps.
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The first step is to build a cheap surrogate for the simulator to use in its place. We
project the output from the true model onto a lower dimensional set of basis vectors
using principal component analysis, before training Gaussian process emulators to
map from the inputs to this new space. We then reconstruct to the original output
space by using the inverse projection and account for data loss by using Gaussian
multiples of the discarded basis vectors. The second stage is the specification of
distributions in accordance with the conditional independence structure shown in
Figure 1, with prior distributions needed for the calibration and error parameters.
Decisions about how to modelδ need to be based on each specific simulator, but
Gaussian processes are a flexible form that have been found tobe useful in previous
applications. Finally, we must perform the inference usinga Monte Carlo technique
such as Markov chain Monte Carlo. This calibration methodology takes account of
measurement error, code uncertainty, reconstruction error and model discrepancy,
giving posterior distributions which incorporate expert knowledge as well as the
model runs and field data.

The limitations of this method are primarily the limitations of the Gaussian pro-
cess emulator technology. The use of a dimension reduction technique requires that
the outputs are correlated (as they usually are in spatial-temporal fields) and some
simulators will not be represented adequately in a lower dimensional space, but this
will be detected when looking at the reconstruction error. Another potential lim-
itation is that emulators are built on the premise thatm(x + h) will be close to
m(x) for smallh. If this is not the case, as in chaotic systems, then emulators can-
not be used. For such simulators, there is no alternative to repeatedly evaluating
the model. Gaussian process emulators are also limited by the size of the ensem-
ble they can handle, due to numerical instabilities in the inversion of the covariance
matrix, although methods are being developed to improve this (Furreret al. 2006).
There exists a range of validation and diagnostic tools (Bastos and O’Hagan 2009)
designed to detect and correct problems in emulators, and some form of validation
should always be done when using emulators. Finally, it should be stressed that the
resulting posteriors do not necessarily give estimates of the true value of physical
parameters, but rather give values which lead the model to best explain the data. In
order to estimate the true physical value of parameters, themodel discrepancyδ must
be very carefully specified. This is still a new area of research and much remains to
be done in the area of modelling discrepancy functions.
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