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Uncertainty Quantification and inverse problems
Uncertainty Quantification (UQ) ≡ statistics with complex models

Modelling, propagating and updating uncertainties.
Inter-disciplinary

Inverse problems/Calibration/Parameter estimation/...

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .
The inverse-problem: observe data D, estimate parameter values θ
which explain the data.
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Why do we need UQ?
Atrial fibrillation

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.

Affects around 610,000 people in UK.

Catheter ablation removes/isolates pathological tissue that
sustain/initiate AF.

40% of patients subsequently experience atrial tachycardia (AT).

http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg


UQ in Patient Specific Cardiac Models
With Richard Clayton, Steve Neiderer, Jeremy Oakley

Aim: predict which AF patients will develop AT following ablation, and
then treat for both in a single procedure.

Use complex electrophysiology
simulation using monodomain
eqn on shell anatomy.

Accurate predictions require
patient specific models, but
clinical data is sparse and
noisy.

We need to

Estimate conduction velocity on the atrium using ECG measurements

Infer tissues properties, including regions of fibrotic material

Predict AT pathways

Aid clinical decision making (accounting for uncertainty)



Tools

The Bayesian approach to the inverse problem: represent all uncertainties
as probability distributions

π(θ|D) =
π(D|θ)π(θ)

π(D)

Approaches/tools

Likelihood-based Monte Carlo

Gaussian process emulation

Approximate Bayesian Computation (ABC) - ’likelihood-free’

Machine learning tools (particular for designing suitable scores)

Applied maths: multi-fidelity methods, reduced order models etc
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What drives the glacial-interglacial cycle?
With Jake Carson, Simon Preston, Michel Crucifix

Eccentricity: orbital departure from a circle, controls duration of the seasons
Obliquity: axial tilt, controls amplitude of seasonal cycle
Precession: variation in Earth’s axis of rotation, affects difference between
seasons



Model selection

Which aspect of the astronomical forcing is of primary importance?

Which models best represent the cycle?

Most models of the [...] glacial cycles have at least four degrees of
freedom [parameters], and some have as many as twelve. Unsurprisingly
[this is...] insufficient to distinguish between the skill of the various models
(Roe and Allen 1999)

Focus is primarily on simple phenomenological models embedded within a
statistical state space model

dXt = g(Xt , θ)dt + F (t, γ)dt + ΣdW

Observe Yt = d + sXt,1 + εt

Xt ∈ Rp is the state of the climate at time t, and typically Xt,1 = ice
volume, and then Xt,2 may, eg, represent CO2, ocean temp, etc, or be
undefined.
Typically these models have 10-15 parameters (θ, γ, s, d ,Σ, σ) to be
estimated.



Data
18O is heavier than 16O, and so its
circulation varies with temperature.

Variation in the ratio δ18O in marine
sediments and ice cores informs us
about historic temperatures.
The raw measurements are of δ18O
as a function of depth in a core: age
must be inferred.

Climate reconstruction

π(X1:T |y1:T , θm,Mm)

Model calibration

π(θm|y1:T ,Mm)

Model selection (model
evidence/Bayes factors)

π(y1:T |Mm)

Progressively more difficult to
calculate as π(Xt+1|Xt , θm,Mm) is
unknown.

Where X1:T = {X1, . . . ,XT}.
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Filtering: Sequential Monte Carlo (SMC) methods are the natural for
π(X1:T |y1:T , θ)

Requires careful proposal design: use Brownian bridge proposals to
nudge Xt towards the data.

Parameter estimation: SMC provides an unbiased estimate of the
marginal likelihood

π(y1:T |θ) = π(y1|θ)
T∏

t=2

π(yt |y1:t−1, θ)

Use these estimates in a pseudo marginal scheme (Andrieu & Roberts
(2009)) to estimate π(θ|y1:T ).

Model selection: SMC2 (Chopin et al. 2011) allows us to also estimate
π(y1:T ). Basic idea:

Introduce M parameter particles θ1, . . . , θM
For t = 1, . . . ,T

I For each θi run a particle filter targeting π(X1:t |y1:t , θi )
I Recalculate all the importance weights and resample if necessary

This takes 3-4 days on a standard server, or 4-6 hours on a GPU.
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Results: ODP677
Carson, Crucifix, Preston, W. 2017

Simulation studies show we can accurately estimate the state, parameters
(including the correct forcing), and choose between competing models.

Strongest evidence found for the true model each time

ODP677 is a marine stack which has been dated by

Lisiecki and Raymo (2005) used orbital tuning

Huybers 2007 used a depth-derived age model (no orbital tuning)

Model Evidence
ODP677: H07(unforced) ODP677: LR04(forced)

SM91 Forced 4.0× 1024 1.1× 1028

Unforced 3.5× 1026 1.6× 1018

T06 Forced 3.3× 1025 4.5× 1029

Unforced 1.7× 1028 3.3× 1021

PP12 Forced 1.5× 1022 1.8× 1034

The dating method applied changes the answer - theory laden data!
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Age model
Carson, Crucifix, Preston, W. (in submission)

Can we also quantify chronological uncertainty?

Target π(θk ,T1:N ,X1:N ,Mk |y1:N)

where T1:N are the times of the observation y1:N (previously assumed).

Propose a simple age model for sediment accumulation. Let H be the
depth in the core, with HN = 0 at TN = 0

dH = −µsdT + σdW

Slices are then taken through the core at specific depths H1, . . . ,HN .

Age Model

Begin by considering a simple model for sediment (S) accumulation:

dS = µsdT + �sdW

mean sediment rate is constant, stochastic contributions account for periods of errosion
etc. We assume that a sediment core is constructed from this model. To model time
variation according to core depth we also need to consider how a core is sampled:

200 202 204 206 208 210
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D
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Figure 1: Demonstration of core sampling. Line represesents change in sediment over
time, horizontal lines are sampling depths, and vertical lines are the sampled times.

Firstly, we know that the top of the core (which we will assume is the final observation)
is sampled in the present, such that TM = 0 at HM = 0 (where depth is represented by
H). The change in depth is the negative of the change in sediment accumulation:

dH = �µsdT + �sdW

Slices are then taken through the core at specific depths. According to our depth model
there may have been multiple times in the past at which this depth was reached. We are
interested in the most recent time; if sediment accumulated beyond this point before that
time then the information has been eroded away. In other words we have a first passage
time problem, which is solvable for our linear model. Given depth Hm the distribution
of the first passage time of Hm�1 is inverse Gaussian:

Tm�1 ⇠ IG

✓
Tm � Hm�1 � Hm

µs

,
(Hm�1 � Hm)2

�2
s

◆

At this point we should also consider accounting for compaction. Compaction is often
modelled as the expulsion of water due to the load of the above sediment. This can

2

The age of a slice is the

last time that depth was

reached, which we can

convert to a first passage

problem. We also add a

compaction model.
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Simulation study
Data (black line) and estimated 95% HDR intervals (grey). True values in red.
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Simulation study results - parameter estimation
Posterior (solid lines), prior (dashed lines), and true values (vertical lines)

−1.0 0.0 1.0

0
3

β0

−1.5 0.0 1.0 2.0

0.
0

β1

0.0 0.5 1.0 1.5 2.0

0.
0

β2

0.0 0.4 0.8

0
5

δ

0.0 0.4 0.8

0
8

γP

−1.0 0.0 0.5 1.0

0
6

γC

0.0 0.4 0.8

0
8

γE

0.0 0.4 0.8

0
8

σ1

0.0 1.0 2.0 3.0

0.
0

σ2

0.00 0.10 0.20

0
40

σY

3.0 3.5 4.0 4.5 5.0

0
12

D

0.5 1.0 1.5 2.0

0
4

C

0e+00 4e−05 8e−05

0

µs

0.000 0.004 0.008

0

σs

0 10 30 50

0.
00

α

0.0 0.4 0.8

0
6

φ0

0.000 0.002 0.004

0

c
Simultaneous inference of the choice between 5 models, 17 parameters,
800 ages, 1600 climate variables, using just 800 observations.



Results for ODP846 - age vs depth (trend removed)
Blue: LR04 reconstruction, Red: H07 reconstruction, Grey: 95% HDR
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Expensive and high dimensional simulators
Louise Sime (BAS)

Climate models (GCMs) are expensive, complex, and use high dimensional
inputs and give high dimensional outputs
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How can we infer the shape of the ice-sheet at the last glacial maximum?



Computationally expensive: Gaussian process emulators
If the model is expensive, we can build a surrogate/emulator of it.
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How do we find emulators that obey physical constraints ( fugacity,
symmetry etc) and have the correct asymptotic behaviour?

Uteva, Graham, W., & Wheatley (2017), Cresswell, Wheatley, W., &
Graham (2016)

How do we deal with high dimensional inputs and outputs?

Holden, Edwards, Ridgwell, Wilkinson, . . . (under revision) show that
limiting warming to < 1.6◦C is still achievable with 50% probability
under rapid decarbonisation.



Carbon capture and storage (CCS)
With Andrew Cliffe, Henry Power

Knowledge of the physical problem is encoded in a simulator f

∇·u = 0, u = −K

µ
(∇P +ρgez), φ

∂C

∂t
+u ·∇C = φ∇· (D∇C )−γcC

Inputs:
Permeability field, K
(2d field)

y
f (K )y

Outputs:
Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),
...
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Emulating simulators with high dimensional input
Crevillén-Garca, W., Shah, & Power (2017), Tian, W., Yang, Power, Fargerlund, &
Niemi(2017)

The permeability field needs to be known at a large (but finite) number of
locations, eg, if solver grid is 100× 100, dimK = 104

Impossible to directly model f : R10,000 → R

Instead, use a Karhunen-Loève (KL) expansion of K to reduce dimension:

K (x) = exp(Z (x)) where Z (·) ∼ GP(m(·),C (·, ·))

Z can be represented as

Z (·) =
∞∑

i=1

λiξiφi (·)

where λi and φi (·) are eigen-pairs of the Hilbert-Schmidt integral
operator of the covariance function, and ξi ∼ N(0, 1).

By truncating
K (x) ≈ exp

(
n∑

i=1

λiξiφi (x)

)

we reduce the modelling problem to one of modelling f : Rn → R
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Emulating from fields to fields
W. (2011), Holden, Edwards, Garthwaite & W (2015), Bounceur, Crucifix, & W. (2015)

Now consider emulating the stream
function and concentration field
outputs (also 100× 100 matrices).

We can use the singular value
decomposition (SVD) to reduce the
output dimension.

True streamfield
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Form the SVD of Y = LDRT

Form a reduced rank approximation to Y by ignoring all but the first
k eigenvectors:

Y ≈ L∗D∗RT
∗

If RT
∗ = (t1, . . . , tN), where each ti is a vector of length k , then

L∗D∗t1 ≈ y1

To build an emulator from x to y we can build k separate emulators from
x to each element in the vector t.



Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield
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Emulating the stream function and concentration fields
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Other decompositionsToy example
Physical dimension
reduction With Tony
Ryan, industrial support
from SC Johnson,
Thermogravimetric
analysis

Calibration focused dimension reduction Emulation typically finds a
global approximation. SVD/KL dimension reduction is unsupervised.
Instead, can we do optimal model/dimension reduction when focussed on
the calibration problem?

Solved for linear Gaussian systems. Aim to use RKHS methods to
solve for non-linear problems.

PhD studentship provided by .
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Stochastic intractable models
Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).

ABC methods are popular in biological disciplines, particularly genetics.
They are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied



Rejection ABC

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).

Rejection sampling is inefficient, but we can adapt other MC samplers
such as MCMC and SMC.

Simple → Popular with non-statisticians
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ε = 7.5
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ε = 5
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ε = 2.5
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ABC as a probability model
W. (2013)

We wanted to solve the inverse problem

D = f (θ)

but instead ABC solves
D = f (θ) + e.

ABC gives ‘exact’ inference under a different model!

We can show that

Proposition

If ρ(D,X ) = |D − X |, then ABC samples from the posterior distribution
of θ given D where we assume D = f (θ) + e and that

e ∼ U[−ε, ε]
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Accelerating ABC

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee is costly and can require more simulation than is possible.

However,

Most methods sample naively - they don’t learn from previous
simulations.

They don’t exploit known properties of the likelihood function, such
as continuity

They sample randomly, rather than using careful design.

We can use methods that don’t suffer in this way, but at the cost of
losing the guarantee of success.
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Surrogate ABC

Wilkinson 2014

Meeds and Welling 2014

Gutmann and Corander 2015

Strathmann, Sejdinovic, Livingstone, Szabo, Gretton 2015
...

With obvious influence from emulator community (e.g. Sacks, Welch,
Mitchell, and Wynn 1989, Craig et al. 2001, Kennedy and O’Hagan 2001)

Can lead to orders of magnitude speed up in computation.

Constituent elements:

Target of approximation

Aim of inference and inference scheme

Choice of surrogate/emulator

Training/acquisition rule
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Building surrogates through history-matching waves
Craig et al. (1997), W. (2014)

The ABC log-likelihood l(θ) = log L(θ) typical ranges across a wide range
of values. Consequently, it is hard to approximate l(θ) accurately for all θ.

But we only need to make good predictions near θ̂

Introduce a sequence of surrogates, cf. waves of history matching.

In each wave, build a GP model that can rule out regions of space as
implausible according to some heuristic.

For example, decide that θ is implausible if

P(l̃(θ) > max
θi

l(θi )− T ) ≤ 0.001

where l̃(θ) is the GP model of l(θ)

Choose T so that if l(θ̂)− l(θ) > T then π(θ|y) ≈ 0.

Ruling θ to be implausible is to set π(θ|y) = 0
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Active learning for history-matching/GP-ABC
With James Hensman

Sequential design is the key to further reducing computational burden.

Given our current knowledge, where should we next run the simulator
to most improve our knowledge?

One option is to minimise the expected average entropy of the history
match

Any GP emulator allows us to calculate a probabilistic classification

p(θ) = P(θ implausible)

The entropy of our belief at θ is

E (θ) = −p log p − (1− p) log(1− p)

and the average entropy is

E =

∫
E (θ)dθ

Choose the next design point to minimise the expected value of E .
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Challenges: Inference under discrepancy

How should we do inference if the model is imperfect?

Data generating process
y ∼ G

Model (complex simulator, finite dimensional parameter)

F = {Fθ : θ ∈ Θ}

If G = Fθ0 ∈ F then we know what to do1.

How should we proceed if
G 6∈ F

Interest lies in inference of θ not calibrated prediction.

Modelling our way out of trouble has proven to be unsuccessful.

1Even if we can’t agree about it!
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History matching
ABC was proposed as a method of last resort, but there is evidence it
works particularly well for mis-specified models.

History matching was designed for inference in mis-specified models. It
seeks to find a NROY set

Pθ = {θ : SHM(F̂θ, y) ≤ 3}

where

SHM(Fθ, y) =
|EFθ

(Y )− y |√
VarFθ

(Y )

ABC approximates the posterior as

πε(θ) ∝ π(θ)E(IS(F̂θ,y)≤ε)

for some choice of S (typically S(F̂θ, y) = ρ(η(y), η(y ′)) where y ′ ∼ Fθ)
and ε.

They have thresholding of a score in common and are algorithmically
comparable (thresholding).
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History matching and ABC

These methods (anecdotally) seem to work better in mis-specified
situations.

Why?

They differ from likelihood based approaches in that

They only use some aspect of the simulator output

I Typically we hand pick which simulator outputs to compare, and
weight them on a case by case basis.

Potentially use generalised scores/loss-functions

The thresholding type nature potentially makes them somewhat
conservative

I Bayes/Max-likelihood estimates usually concentrate asymptotically. If
G 6∈ F can we hope to learn precisely about θ?
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Conclusions

The challenge for a statistician is to be involved in several fields of
application and to use that to motivate theoretical contributions.

Uncertainty quantification (UQ) has grown in importance as a field,
and has penetrated the scientific and industrial consciousness.

UQ is a blend of statistics (and increasingly machine learning),
applied maths, and application knowledge.

One of the key challenges is understanding the errors, deciding which
are important, and thus where to spend our time and energy.

Thank you for listening!



Conclusions

The challenge for a statistician is to be involved in several fields of
application and to use that to motivate theoretical contributions.

Uncertainty quantification (UQ) has grown in importance as a field,
and has penetrated the scientific and industrial consciousness.

UQ is a blend of statistics (and increasingly machine learning),
applied maths, and application knowledge.

One of the key challenges is understanding the errors, deciding which
are important, and thus where to spend our time and energy.

Thank you for listening!


