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Motivation

Expensive stochastic simulators exist
E.g. Cellular Potts model for a human colon crypt

agent-based models, with proliferation, differentiation and migration
of cells

stem cells generate a compartment of transient amplifying cells that
produce colon cells.

each simulation runs MCMC of Hamiltonian dynamics

want to infer number of stem cells by comparing patterns with real
data

Each simulation takes about an hour, and is stochastic.

Efficient algorithms can take us only so far...

We will continue face situations in which we are limited by computer
power.



Outline

Probabilistic numerics

Surrogate ABC
I Target of approximation
I Aim of inference
I Surrogate model
I Acquisition rule



Uncertainty quantification and Probabilistic numerics

Numerical algorithms, e.g. integration, solving O/PDEs, optimization,
estimate some unknown quantity on the basis of function evaluations, ie,
they are inference problems.

“PN focusses on the computations used to solve a particular
problem: what is the uncertainty added by performing the
computation approximately?”

“PN offers the attractive potential of performing
management of systems of probabilistic numerical algorithms.
That is, PN could be used to select which part of a numerical
pipeline to refine, that is, to decide when to stop a numerical
algorithm achieving accuracy you don’t need.”

“Monte Carlo is fundamentally unsound” O’Hagan 1987



If in doubt, use a Gaussian process

Bayesian quadrature: Diaconis 1988, O’Hagan 1991,∫
f (x)dx

Replace f by a GP - the integral is then Gaussian.

Bayesian optimization: find arg max f (x) with a minimum number of
function calls.
Model f as a GP and add new design points/function queries using
some acquisition rule such as expected improvement.



Bayesian inference for computer experiments
Emulation/surrogate modelling/meta-modelling

Sacks et al. 1989 introduce the idea of an emulator

if f (x) is an expensive simulator, approximate it by a cheaper
surrogate model (if in doubt...)

Kennedy and O’Hagan 2001 consider using emulators for a Bayesian
inference problem

Others have done uncertainty analysis, sensitivity analysis, design, error
estimation etc.



MCMC

Rasmussen 2003 introduces the idea of using GPs in Hamiltonian Monte
Carlo.

artifical dynamics based on the derivative of

Epot(θ) ∝ − log p(θ|D)

model Epot(θ) as a GP. Because the derivative of a GP is also a GP,
we are able to generate cheap candidate values of θ

correct proposals with Metropolis acceptance step

Fielding, Nott, Liong 2011, extend this approach to the case of
multi-modal posteriors using tempering.



ABC
Wood 2010 introduced a synthetic likelihood

π(D|θ) = N (θ|µθ,Σθ)

where µθ and Σθ are the mean and covariance of the simulator output
when run at θ, and plugged this into an MCMC sampler.

This suggested modelling dependence on θ to mitigate the cost

[...] the forward model may exhibit regularity in its dependence on
the parameters of interest[...]. Replacing the forward model with an
approximation or “surrogate” decouples the required number of
forward model evaluations from the length of the MCMC chain, and
thus can vastly reduce the overall cost of interence. Conrad et al. 2015

Some surrogate-model ABC papers

Henderson et al 2009
Meeds and Welling 2014
Wilkinson 2014
Jabot 2014
Gutmann and Corander 2015
+Others (apols)
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GP-ABC

Constituent elements:

Target of approximation

Aim of inference and inference scheme

Choice of surrogate/emulator

Acquisition rule



Target of approximation
What should we approximate with the surrogate model?

Simulator output (Kennedy and O’Hagan 2001, Henderson et al.
2009, Meeds and Welling, 2014), for example, within a synthetic
likelihood approach

µθ = Ef (θ) and Σθ = Varf (θ)

L(θ) = N(D;µθ,Σθ) and model

µθ ∼ GP(·, ·) Σθ ∼ GP(·, ·)

I often easy to work with
I hard if S(X ) is high dimensional
I Often assume Σθ = diag(Σθ) and build independent surrogates
I requires a global approximation, i.e., need to predict f (θ) at all θ of

interest.
I Gaussian likelihood (either of the GP or the synthetic likelihood) often

a poor choice for stochastic simulators
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Target of approximation

What should we approximate with the surrogate model?

(ABC) Likelihood function (Wilkinson 2014), for example

LABC (θ) = EX |θKε[ρ(S(D), S(X ))] ≡ EX |θπε(D|X )

I 1 dimensional output surface
I allows us to focus on the data, i.e., predict log L(θ) at all θ. The data

D is fixed
I interpretable as a statistical model, i.e., D = X + e where e ∼ Kε(·)
I hard to model
I hard to gain physical insights - primarily useful for calibration
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Target of approximation

What should we approximate with the surrogate model?

Discrepancy function (Gutmann and Corander, 2015), for example

J(θ) = Eρ(S(D),S(X ))

I Also 1d, and focused on data
I Doesn’t depend upon kernel, bandwidth/tolerance etc
I Lack of interpretability of output distributions - lose any statistical

model interpretation
I No longer targeting a posterior distribution - what are we doing?



S ∼ N(2(θ + 2)θ(θ − 2), 0.1 + θ
2)

Synthetic likelihood:

ABC likelihood and
discrepancy:
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The importance of being Bayesian?

Bayesian statistics is sometimes known as inverse probability:

Unknowns (θ) are given distributions; link to observables using
forwards models X = f (θ), and we use Bayes theorem (inverse
probability) to find θ|X .

E.g., for linear models

y = ax + b + N(0, σ2)

to learn x given yobs , we give a prior to x and then infer π(x |y)

Surrogate model approaches aim to preserve this interpretability.



The importance of being Bayesian?
Inverse modelling, as opposed to inverse probability, directly models from
observable to unknown:

x = a′y + b′ + N(0, σ
′2)

and predict x at yobs as a′yobs + b′

Beaumont et al. 2003, Blum and Francois 2010, . . . Marin et al.
2016? build a model from S to θ
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How much do we care about the B in ABC? Is there anything wrong with
an inverse modelling approach?

interpretability of uncertainties?



Choice of surrogate model

If in doubt...

Conrad et al. 2015, Jabot 2014 use local-linear regression. Find
some advantages in terms of tractable error analysis and
computational tractability for no degradation in performance. Can’t
be used in an active learning.

Sherlock et al. 2014 use k-nearest neighbour



Aim of the inference

Probabilistic calibration
Find the posterior distribution

πABC (θ|D) ∝ π(θ)π(D|θ)

for likelihood function

πABC (D|θ) =

∫
πε(D|X )π(X |θ)dX

History matching
Find the plausible parameter set

Pθ = {θ : f (θ) ∈ PD}

where PD is some plausible set of
simulation outcomes consistent
with the data and errors

PD = {X : |D −X | ≤ 3(σe + σε)}

Calibration finds a distribution representing plausible parameter values;
History matching classifies parameter space as plausible or implausible.
Other approaches such as Gutmann and Corander 2015 minimize the
discrepancy to find good parameters, with less(?) of a focus on
uncertainty.
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History matching waves
Wilkinson 2014

The ABC log-likelihood l(θ) = log L(θ) typical ranges across a wide range
of values, consequently, most models struggle to accurately approximate
the log-likelihood across the entire parameter space.

Introduce waves of history matching.

In each wave, build a GP model that can rule out regions of space as
implausible.

We decide that θ is implausible if

P(l̃(θ) > max
θi

l(θi )− T ) ≤ 0.001

where l̃(θ) is the GP model of log π(D|θ)

Choose T so that if l(θ̂)− l(θ) > T then π(θ|y) ≈ 0.

Ruling θ to be implausible is to set π(θ|y) = 0

Equivalent to doing inference with log-likelihood L(θ)Il(θ̂)−l(θ)<T

Choice of T is problem specific; start conservatively with T large and
decrease
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Example: Ricker Model
Wood 2010

The Ricker model is one of the prototypic ecological models.

used to model the fluctuation of the observed number of animals in
some population over time

It has complex dynamics and likelihood, despite its simple
mathematical form.

Ricker Model

Let Nt denote the number of animals at time t.

Nt+1 = rNte
−Nt+er

where et are independent N(0, σ2
e ) process noise

Assume we observe counts yt where

yt ∼ Po(φNt)



Results - Design 1 - 128 pts



Diagnostics for GP 1 modelling log(− log l(θ))
Threshold = 5.6



Results - Design 2 - 314 pts - 38% of space implausible



Diagnostics for GP 2 modelling log l(θ)
threshold = -21.8



Design 3 - 149 pts - 62% of space implausible



Diagnostics for GP 3 modelling log l(θ)
Threshold = -20.7



Design 4 - 400 pts - 95% of space implausible



Diagnostics for GP 4 modelling log l(θ)
Threshold = -16.4



MCMC Results
Comparison with Wood 2010, synthetic likelihood approach
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The Wood MCMC method used 105 × 500 simulator runs
The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs



Acquisition rules

The key determinant of emulator accuracy is the design used to train the
GP

Dn = {θi , f (θi )}Ni=1

Usual design choices are space-filling designs

Maximin latin hypercubes, Sobol sequences

Calibration doesn’t need a global approximation to the simulator - this is
wasteful.

Instead build a sequential design θ1, θ2, . . . using our current surrogate
model to guide the choice of design points according to some acquisition
rule.

In practice, batch strategies are necessary if they are to be used in
realistic scenarios.
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For Bayesian optimization, expected improvement is a sensible
choice, i.e., to maximize g(x) choose x to maximize

H(x) = E(max(0, g(x)− gmax))

where E is with respect to the surrogate model for g .

Gutmann and Corander use the lower confidence bound selection
criterion

Conrad et al. let the MCMC algorithm decide whether the current
approximation is sufficiently accurate and do further simulation runs
if not.

If focus is on history matching then this is a question of level set
estimation...



Entropy-based acquisition

When using emulators for history-matching the aim is to accurately
classify space as plausible or implausible by estimating the probability

p(θ) = P(θ ∈ Pθ)

where Pθ = {θ : f (θ) ∈ PD}

The entropy of the classification surface is

E (θ) = −p(θ) log p(θ)− (1− p(θ)) log(1− p(θ))

We could choose the next design point where we are most uncertain.

θn+1 = arg maxE (θ)

This is numerically simple, but the additional design points tend to
accumulate on the edge of the plausible region
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Expected average entropy
Chevalier et al. 2014, Holden, et al. 2015

Instead, we can find the average entropy of the classification surface

En =

∫
E (θ)dθ

Choose θn+1 to minimise the expected average entropy

θn+1 = arg min Jn(θ)

where
Jn(θ) = E(En+1|θn+1 = θ)

This is computationally costly, but we can use an additional Bayesian
optimization step to minimize J(θ).



History match
Can we learn the following plausible set?

A sample from a GP on R2.
Find x s.t. −2 < f (x) < 0



Iteration 10
Left=p(θ), middle= E(θ), right = J̃(θ)
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Iteration 10
Left=p(θ), middle= E(θ), right = J̃(θ)



Iteration 15
Left=p(θ), middle= E(θ), right = J̃(θ)



Iterations 20 and 24

Video

http://youtu.be/FF3KhKh6NHg


EPm: climate model, Holden et al. 2016
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If we care about the posterior, what should we use?

History matching waves with a calibration polish with a space filling
design (Williamson and Vernon 2015)?



Inference

Kennedy and O’Hagan 2001 used the surrogate to calculate the
posterior - over-utilizes the surrogate, sacrificing exact sampling.

Rasmussen 2003 corrected for the use of a surrogate in a HMC
scheme using a Metropolis step, which requires simulator evaluations
at every stage - under-utilizes the surrogate, sacrificing speed-up

Sherlock et al. 2015 use delayed-acceptance MCMC which also
requires one sim run per accepted value.

Conrad et al. 2015 use local approximations to produce a MC sampler
that asymptotically samples from the exact posterior.

experimental design combines guidance from MCMC and local space
filling heuristics, triggered by random refinement and local error
indicators of model quality.

I proposes new θ - if uncertainty in surrogate prediction is such that it is
unclear whether to accept or reject, then rerun simulator, else trust
surrogate.

Allows for rigorous error analysis.
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Inference scheme

Is it really necessary to correct for the surrogate in the inference?

George Box 1976

All models are wrong but some are useful

It is inappropriate to be concerned about mice when there
are tigers abroad

We are missing an understanding of what is importantly wrong

Model error

sampling errors

simulator variance

ABC approximation

summaries



Variance-tolerance trade-off

Suppose X1, . . . ,Xn ∼ N(µ, σ2), known variance σ2, µ ∼ U[a, b].
In this case, if we use ρ(D,X) = |D̄− X̄| in ABC with a uniform kernel,
then calculation of πABC (µ) and π(µ|D) is possible.

We can show that

VarABC (µ) ≈ σ2

n
+

1

3
ε2

dTV (πABC (µ), π(µ|D)) ≈ cnε2

σ2
+ o(ε2)

The tolerance required for a given accuracy depends on the size of the
posterior variance σ2/n.

Can we include the model error and surrogate model variance in this
calculation?



My problems

Error analysis: we don’t want to spend too long achieving accuracy
we don’t need. Given the model error, MC error, stochastic variance
of the simulator, how much effort should we spend on refining the
surrogate?

Design/acquisition: need a batch acquisition rule that accounts for
likelihood-estimate errors and surrogate errors.

Simulator discrepancy: for deterministic sims quantification is hard
with little methodological development. For stochastic simulators???

Rules of thumb: how costly does the simulator need to be to make
surrogate modelling worthwhile? what are good preliminary values
for number of design points, number of simulator replicates etc?



Conclusions

For complex models, surrogate-modelling approaches are often
necessary

Target of approximation: discrepancy vs likelihood vs simulator
output

Good design can lead to substantial improvements in accuracy
I Design needs to be specific to the task required - Space-filling designs

are inefficient for calibration

Still much to do...

Thank you for listening!
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