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Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality? (model error)

how do we estimate tunable parameters? (calibration)

how do we deal with computational constraints? (stat. comp.)

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors? (UQ)

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.
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Representation of uncertainty

Probability can be used to represent uncertainty.

Given minimal assumptions, probability can be shown to be the only
rational way to represent uncertainty.

Probability is subjective probability - distributions represent degrees
of belief of individuals.

All uncertainty quantities θ can be given distributions π(θ) that
represent our uncertainty about the value

I unknown functions will be described by probability distributions across
a class of unknown functions
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Uncertainty quantification motivation
1 Uncertainty analysis

I What is the distribition of f (θ) given uncertainty about θ
2 Sensitivity analysis

I Assign uncertainty in our predictions (Varf (θ)) to various
uncertainties in the inputs (Var(θ))?

I Useful for understanding the simulator response, designing future
measurements (what should we measure to most decrease our
uncertainty?)

3 Estimating model discrepancy
4 Parameter estimation/calibration

I Estimating boundary conditions and unknowns
5 Calibrated prediction

I Suppose we wish to predict Df given Dp, taking account of parametric
uncertainty:

π(Df | Dp) =

∫
π(Df | θ)π(θ | Dp)dθ

I Includes hindcasting/reconstructions...



Code uncertainty

For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , η(θi ))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of η(θ).

If θ is multidimensional, then even short run times can rule out brute
force approaches

dim(θ) ∈ R10 then 1000 simulator runs is only enough for one point
in each corner of the design space.
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Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this a meta-model/surrogate/emulator/reduced-order model of
the simulator f .

Try to find η(θ) such that

η(θ) ≈ f (θ) ∀ θ ∈ I ⊂ R

An emulator should come with an assessment of its accuracy

rather than just predicting η(θ) it should predict π(η(θ)|Dsim) - our
uncertainty about the simulator value given the ensemble Dsim.
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Gaussian Process Emulators

Gaussian processes (GPs) provide a flexible nonparametric family of
functions:

η(·) ∼ GP(m(·), σ2c(·, ·))

where m(·) is a prior mean function, and c(·, ·) is the prior covariance
function (semi-definite).

Definition If f (·) ∼ GP(m(·), c(·, ·)) then for any collection of inputs
x1, . . . , xn the vector

(f (x1), . . . , f (xn))T ∼ MVN(m(x), σ2Σ)

where Σij = c(xi , xj).

Family includes cubic splines and Brownian motion.
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Meta-modelling
Gaussian Process Emulators

Gaussian processes are invariant under Bayesian updating.

If we observe the ensemble of model runs Dsim, then update our prior
belief about η in light of the ensemble of model runs:

η(·)|Dsim ∼ GP(m∗(·), σ2c∗(·, ·))

where m∗ and c∗ are the updated mean and covariance functions.

We can also condition on any linear transformation of η (eg knowledge of
the derivative, integral), symmetry, monotonicity,....
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Gaussian Process prior for unknown functions
Prior belief about f

GPs can be understood as prior distributions over functions. Their
properties, such as the smoothness and differentiability are controlled by
the choice of mean and covariance functions, and the hyper-parameters.



Gaussian Process prior for unknown functions
y = f (x) = 1 + x + x sin(4x) - 10 data points
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Once we observe the data D = {(xi , yi )}, we can update our prior belief
about the unknown function f (x)



Gaussian Process emulation - posterior beliefs about f (·)
y = 1 + x + x sin(4x) - 10 data points
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Perverse example: we can spot errors using cross-validation → More data
required.



Gaussian Process emulation
y = 1 + x + x sin(4x) - 15 data points
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The covariance function is key. There are a small number of common
choices, e.g., squared exponential (RBF/Gaussian), Matern, neural-net



Gaussian Process emulation
y = 1 + x + x sin(4x) - 20 data points

−4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

True function (black), GP mean and sd (red), samples (green)

We can add, multiply and transform any covariance function to obtain a
new valid covariance function.



High dimensional problems
Carbon capture and storage

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field) y

f (K )y
Outputs:

Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),
...
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Uncertainty quantification (UQ) for CCS

The simulator maps from permeability field K to outputs such as the
surface flux S. Let f (K ) denote this mapping

f : K → S

For most problems the permeability K is unknown.

If we assume a distribution for K ∼ π(K ), we can quantify our
uncertainty about S = f (K ).

e.g., by finding the cumulative distribution function (CDF) of S:

F (s) = P(f (K ) ≤ s)
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UQ for complex computer models

Gold standard approach: Monte Carlo simulation

Draw K1, . . . ,KN ∼ π(K ), and
evaluate the simulator at each
giving fluxes
s1 = f (K1), . . . , sN = f (KN)

Estimate the empirical CDF

F̂ (s) =
1

N

N∑
i=1

Isi≤s
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ECDF obtained with 57 simulator runs

Note that N = 103 is not large if we want quantiles in the tail of the
distribution
However the cost of the simulator means we are limited to ∼100
evaluations.
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Multivariate Emulation
Wilkinson 2010

How can we deal with multivariate ouput?

Build independent or separable multivariate emulators,
Linear model of coregionalization?

Instead, if the outputs are highly correlated we can reduce the dimension
of the data by projecting the data into some lower dimensional space Ypc ,
i.e., assume

y = Wypc + e

where dim(y) >> dim(ypc)
Emulate from Θ to the reduced dimensional output space Ypc

We can then emulate the function that maps the input space Θ to the
reduced dimensional output space Ypc , i.e., ηpc(·) : Θ → Ypc

Θ Y

Ypc

η(·)

PCA
PCA−1ηpc(·)

R.D. Wilkinson (University of Sheffield) MUCM Manchester 2009 11 / 24

Any dimension reduction scheme can be used, as long as we can
reconstruct from Ypc (and quantify the reconstruction error).
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Principal Component Emulation (EOF)

1 Centre and scale the data Dsim (scaling prior specification simpler).

2 Find the singular value decomposition of Dsim.

Dsim = UΓV ∗.

Γ contains the singular values (eigenvalues), and V the principal
components (eigenvectors).

3 Decide on the dimension of the principal subspace, n∗ say, and throw
away all but the n∗ leading principal components. An orthonormal
basis for the principal subspace is given by the first n∗ columns of V ,
denoted V1. Let V2 be the matrix of discarded columns.

4 Project Dsim onto the principal subspace to find Dpc
sim = DsimV1



PCA emulation

We then emulate the reduced dimension model

ηpc(·) = (η1
pc(·), . . . , ηn∗pc (·)).

Each component ηipc will be uncorrelated (in the ensemble) but not
necessarily independent. We use independent Gaussian processes for
each component.

The output can be reconstructed (accounting for reconstruction
error) by modelling the discarded components as Gaussian noise with
variance equal to the corresponding eigenvalue:

η(θ) = V1ηpc(θ) + V2diag(Λ)

where Λi ∼ N(0, Γii ) (Γii = i th eigenvalue).



Comments

This approach (PCA emulation) requires that the outputs are highly
correlated.

We are assuming that the output Dsim is really a linear combination
of a smaller number of variables,

η(θ) = v1η
1
pc(θ) + . . .+ vn∗η

n∗
pc (θ)

which may be a reasonable assumption in many situations, eg,
temporal spatial fields.

Although PCA is a linear method, the method can be used on highly
non-linear models as we are still using non-linear Gaussian processes
to map from Θ to Ypc – the linear assumption applies only to the
dimension reduction (and can be generalised).

This method accounts for the reconstruction error from reducing the
dimension of the data.



Emulating simulators with high dimensional input
For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,

e.g. if we use a 100× 100 grid in the solver, K contains 104 entries

Impossible to directly model f : R10,000 → R

We can use the same idea to reduce the dimension of the inputs.
However, because we know the distribution of K , it is more efficient to
use the Karhunen-Loève (KL) expansion of K (rather than learn it
empirically as in PCA)

K = exp(Z ) where Z ∼ GP(m,C )

Z can be represented as

Z (·) =
∞∑
i=1

λiξiφi (·)

where λi and φi are the eigenvalues and eigenfunctions of the
covariance function of Z and ξi ∼ N(0, 1).
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Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0
Emulated streamfield

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

True concfield

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Emulated concfield

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.
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Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.
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Predictive performance vs n = no. of KL components

We can assess the accuracy of the
emulator by examining the prediction
error on a held-out test set. Plotting
predicted vs true value indicates the
accuracy the GP emulator.

We can also choose the number of KL components to retain using
numerical scores



CCS simulator results - 20 simulator training runs

Blue line = CDF from using 103 Monte Carlo samples from the simulator
Red line = CDF obtained using emulator (trained with 20 simulator runs,
rational quadratic covariance function)



PLASIM-ENTS
Holden, Edwards, Garthwaite, Wilkinson 2015

Planet Simulator coupled to the terrestrial carbon model ENTS

Inputs are eccentricity, obliquity, precession describing Earth’s orbit
around the sun.

Model climate (annual average surface temperature and rainfall) and
vegetation (annual average vegetation carbon density) spatial fields
(on a 64× 32) grid.

We used an ensemble of 50 simulations



Principal components



Leave-one-out cross validation of the emulator
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We can then use the PC-emulator to do sensitivity analysis.



Calibration
The inverse problem

Most models are forwards models, i.e., specify parameters θ and i.c.s and
the model η(·) generates output D. Often, we are interested in the
inverse-problem, i.e., observe data, want to estimate parameter values.
Different terminology:

Calibration

Data assimilation

Parameter
estimation

Inverse-problem

Bayesian
inference



Calibration requires

Statistical model relating simulator to the data
I All models are wrong etc.... but how do we characterize the error?
I The aim of inference should influence your approach. Is the aim

parameter estimation or calibrated prediction?

Inferential framework
I Maximum likelihood or some other optimization approach
I Bayesian
I History matching

Computational inference scheme
I MCMC, emulators, etc



Bayesian calibration
Kennedy and O’Hagan 2001

The calibration framework used is:

D = η(θ) + δ + ε

All quantities are multidimensional (e.g. time-series, spatial fields)

ε represents measurement error
I Often ε ∼ N(0,Σ)

δ represents simulator discrepancy
I Standard approach is to assume δ(·) ∼ GP(m(·), c(·, ·))

Statistical specification is complete once all unknowns (θ,m, c ,Σ etc)
have prior distributions specified.



Bayesian calibration
Kennedy and O’Hagan 2001

We then aim to find the posterior
distribution

π(θ | D) =
π(θ)π(D | θ)

π(D)

For all but the simplest problems, this
calculation is hard!

Strength of the approach is that it combines all available sources of
information

Weakness is that it can be hard to specify priors and a statistical
model for the discrepancy

Also the are identifiability issues between θ and δ (Brynjarsdóttir and
O’Hagan 2014) (prediction or parameter estimation?)
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History matching
Craig et al. 1997

An alternative to Bayesian calibration is history matching.

Instead of a posterior distribution over parameter space, we aim to
classify parameter space as implausible or (non-im)plausible.

I (θ)2 =
(Eη(θ)− D)2

Var(δ) + Var(ε) + Var(η)

Declare θ implausible if I (θ) > 3

Advantages are that we only need specify variances for δ rather than
a complete statistical model

Conservative approach - aim is to rule out parameter values that are
clearly bad, rather than find a posterior over good values

Disadvantage is that it ignores a lot of information and doesn’t allow
probabilistic predictions.



Emulating ice sheet models
Chang, Haran, Applegate, Pollard 2016

PSU3D-ICE model used to simulate long-term evolution of the West
Antarctic Ice Sheet

I Parametric uncertainty is important source of uncertainty in future
projections of WAIS volume change

They use modern and palaeo data to calibrate the simulator
I Time series of grounding line positions (location of the transition from

grounded ice to ice shelf) along the central flowline in the Amundsen
Sea Embayment (ASE) since the LGM (RAISED consortium 2014)

I Modern binary spatial pattern of presence and absence of grounded ice
in the ASE (Bedmap2 dataset).

Aim to calibrate 4 simulator parameters
I sub-ice-shelf oceanic melt factor (OCFAC)
I calving factor (CALV)
I basal sliding coefficient (CRH)
I asthenospheric relaxation e-folding time (TAU)



Emulating ice sheet models
Chang, Haran, Applegate, Pollard 2016

The used an ensemble of 461 simulator evaluations

Each time series has 1500 points

Spatial map information at 3182 grid points

They use a PCA-emulator (with logit likelihood) and probabilistic
calibration.

Figure 2: Results for two example parameter settings from the leave-out experiment to verify the
performance of the emulator for modern binary patterns (light gray for grounded ice and dark gray
for no grounded ice). Results for other parameter settings are similar to the ones presented here.
In general, the emulator can accurately approximate the binary patterns from the actual model
runs. For comparison we have also included the observed modern binary patten.
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Figure 1: Results for two example parameter settings from the leave-out experiment to verify the
performance of the emulator for past grounding line positions. Results for other parameter settings
are qualitatively similar to the results shown here. In general, the emulated grounding positions are
similar to those from the actual model runs. For comparison we have also added the reconstructed
grounding line position observations.
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Emulating ice sheet models
Chang, Haran, Applegate, Pollard 2016
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(a) Modern Binary Patterns Only
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(b) Modern Binary Patterns and Past Grounding Line Positions

Figure 6: Posterior density for input parameters based on the actual observational data sets (see
Section for details Section 4.2). Using both information sources leads to significantly less uncertainty
in estimating input parameters.
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Figure 7: Predictive distribution for the ice volume change projection based on the real observations
described in Section 4.2. The black solid line shows the predictive distribution based on our
approach using both the past grounding line positions the modern binary patterns and the black
dashed and dotted line represents the result based on only the modern binary patterns. The
gray dashed line shows the projection without calibration. The results show that using the past
grounding line leads to a significantly sharper projection by removing the unrealistic ice volume
increase in the results solely based on the modern observations.
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Emulating ice sheet models
Chang, Haran, Applegate, Pollard 2016
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Figure 8: The mean (solid lines) and point-wise 95% predictoin limits (dashed lines) for projected
ice volume changes based on the modern binary patterns only (gray) and the past grounding line
positions and modern binary patterns (black). Negative values on y-axis indicate the ice volume is
larger than the modern value. The prediction limits based only on modern binary patterns contain
trajectories that start from excessive amount of ice volume and show very fast ice volume decay.
The prediction limits based on both sources of information rule out such unrealistic trajectories.
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Tuning NEMO with history matching
WIlliamson, Blaker, Sinha 2016

Tune the NEMO ORCA2 global ocean model run at 2deg resolution.

Vary 20 ocean parameters

Initial ensemble of 400 simulations

Tune the model to metrics derived from the 1960-1990 climatological
mean depth profiles of global mean temperature and salinity
computed from the EN3 climatology



WIlliamson, Blaker, Sinha 2016observations. We also note that the real ocean has never been in equilibrium and hence a tuning procedure that works by

comparison to observations may not require an equilibrated ocean.
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Figure 1. Global mean potential temperature as a function of depth from: EN3 (red, with error bounds indicated by red dashed lines); all

wave 1 ensemble members (grey); standard ORCA2 (dark blue); World Ocean Atlas (pink, Locarnini et al. (2013)); the initial state (gold);

and GO5 averaged over years 1996-2005 (Megann et al. (2014)) (blue dotted). The left panel shows a vertical zoom of the top 800 m, whilst

the right panel shows the full depth.

3 Tuning with iterative refocussing

The procedure we describe here will be referred to as iterative refocussing. It is most commonly referred to as history matching

(Craig et al., 1996; Vernon et al., 2010; Williamson et al., 2013) and has also been called “history matching and iterative5

refocussing” (Craig et al., 1997) and “precalibration" (Edwards et al., 2011). We prefer to focus on the “iterative refocussing”

term rather than history matching when applying these methods to numerical model tuning in this paper, as we want to highlight

the importance of the iterative nature of the procedure and how it compliments model tuning. The idea is based on running

ensembles in a pre-defined parameter space, using them to train statistical emulators that predict the key metrics from the

model output (reporting with it the uncertainty on the prediction), and then using the emulator to rule out regions of parameter10

space that are “too far” from observations. We formalise the procedure below.

Though history matching has been applied to GCM class models before by Williamson et al. (2013) and Williamson et al.

(2015), they only performed this analysis for 1 “wave” due to their ensemble being one of opportunity. The method is most

6
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WIlliamson, Blaker, Sinha 2016

34.6 34.8 35.0 35.2

−8
00

−6
00

−4
00

−2
00

0

Salinity

De
pth

34.6 34.8 35.0 35.2

−4
00
0

−3
00
0

−2
00
0

−1
00
0

0

Salinity

De
pth

Figure 2. Global mean salinity as a function of depth from: EN3 (red, with error bounds indicated by red dashed lines); all wave 1 ensemble

members (grey); standard ORCA2 (dark blue); World Ocean Atlas (pink, Zweng et al. (2013)); the initial state (gold); and GO5 averaged

over years 1996-2005 (Megann et al. (2014)) (blue dotted). The left panel shows a vertical zoom of the top 800 m, whilst the right panel

shows the full depth.

powerful when refocussing steps are taken. Having cut the parameter space down, a new perturbed physics ensemble is run

within the remaining parameter space, and the procedure is repeated. This is aptly termed refocussing because with each

new ensemble in a reduced space, we increase the density of our ensemble, thus improving the performance of our statistical

emulators and refining the search for potentially good models.

3.1 Selection of metrics5

Typical tuning procedures are examples of optimisation (Yang et al., 2012; Zou et al., 2014; Zhang et al., 2015), where the

goal is to find the setting of the model parameters that represents the model that is somehow “closest" to a set of pre-chosen

observations or metrics. Tuning by iterative refocussing represents a completely different philosophy and approach to the

problem. Instead of looking for the best model, we look to rule out entire regions of parameter space as inconsistent with

reproducing the metrics of interest to within an acceptable tolerance to error. This tolerance to error is certainly subjective,10

in one sense, as tolerance to a model’s ability to reproduce certain metrics will depend on the requirements of the modelling

centre. For example, a centre concerned with forecasting or climate projections for Europe will be far more intolerant to error

in European temperatures and in processes around the North Atlantic than will an Asian modelling centre concerned with

7
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WIlliamson, Blaker, Sinha 2016emulators in this space, allowing models that fail 2 our more of our constraints to be ruled out. This final wave ruled our 75%

of our wave 3 ensemble, leaving our final NROY space at 1.5% of the original parameter space.
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Figure 6. Global mean depth profiles of temperature (left), temperature RMSE (centre), and temperature depth profiles cast as departure

from the EN3 global mean profile in units of �. Colours represent W3 NROY (purple), W2 NROY (yellow), W1 NROY (cyan) and W1 RO

(grey). The standard configuration is shown in solid blue, GO5 (ORCA025) as dotted blue, the initial conditions (magenta), WOA (gold).

We plot the depth profiles for all 3 waves as the left-most panel in Figures 6 and 7, with runs that were ruled out in wave 2

coloured in cyan along with the wave 1 NROY ensemble members, wave 2 NROY ensemble members and wave 3 ruled out

members in yellow and wave 3 NROY in purple. We describe our final NROY space in some detail in the next section. The5

centre panels in Figures 6 and 7 show the root mean square error (RMSE) for temperature and salinity respectively, whilst the

right-most panels of each plot show the global mean temperature/salinity depth profiles standardised by the observation and

structural uncertainties (as given in table 2, so that the observations would lie on the 0 line). The RMSE figures show that

improvements to global mean T and S through each refocussing step do not generally come at the price of large compensating

spatial biases (as these would increase RMSE). The standardised plots show that by wave 3 most ensemble members perform10

reasonably well at most depths, though certain biases near the mixed layer remain difficult to remove.

5 ORCA 2 NROY space

Whilst calibration at each wave was performed against global mean profiles of T and S, global mean root mean square error

(RMSE) provides a sanity check to ensure that plausible global mean values of T and S are not being achieved by averaging
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Figure 7. Global mean depth profiles of salinity (left), salinity RMSE (centre), and salinity depth profiles cast as departure from the EN3

global mean profile in units of �. Colours represent W3 NROY (purple), W2 NROY (yellow), W1 NROY (cyan) and W1 RO (grey). The

standard configuration is shown in solid blue, GO5 (ORCA025) as dotted blue, the initial conditions (magenta), WOA (gold).

large biases of opposite sign (e.g. strong positive biases in the tropics balanced by strong negative biases at high latitudes).

We stress here that the goal is not to achieve zero RMSE. Uncertainty in the observations arising from measurement error and

representativeness error mean that we should accept/expect a certain level of RMSE.

The global mean profiles of temperature and salinity already reveal several interesting features about ORCA2. Starting with

temperature (figure 6), we notice immediately that even within the vast parameter space we are searching it is difficult to5

find models which exhibit a cold bias in the mixed layer (0-300 m depth range). Almost the entire parameter space is biased

warm, and the same bias is visible in the ORCA025 GO5 configuration (Megann et al. (2014)). This warm bias is indicative

of excessive deepening of the mixed layer, with the standard configuration exceeding 8 � warmer than the EN3 climatological

profile at 300 m. The most active parameters for the T emulators in the upper 300 m are rn_ediff, rn_lc, rn_ediss

and rn_ebb, all of which are part of the TKE mixed layer scheme. This may indicate a structural bias in the model which10

could be addressed with improvements in the representation of the mixed layer. Figure 8 provides insight into the structure of

NROY space, and may indicate which elements of the TKE mixed layer scheme could be targeted for improvement. Choosing

values of rn_ediff, rn_lc and rn_ebb towards the lower end of their elicited parameter ranges is more likely to result in

acceptable model solutions. In contrast higher values of rn_ediss are more likely to yield acceptable solutions.
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Conclusions

For complex expensive simulators Gaussian process emulators can
enable UQ approaches that would otherwise be impossible.

For highly correlated multivariate output, principal component
emulation can work well and is computationally cheap and easy to
implement.

A large number of output dimensions can be reduced to a smaller
number of principal component scores which can then be emulated,
accounting for any error in the compression.

Thank you for listening!
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