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Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:

How do we make inferences about the world from a simulation of it?
@ how do we relate simulators to reality? (model error)
@ how do we estimate tunable parameters? (calibration)
@ how do we deal with computational constraints? (stat. comp.)
@ how do we make uncertainty statements about the world that

combine models, data and their corresponding errors? (UQ)

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.
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Representation of uncertainty

Probability can be used to represent uncertainty.

@ Given minimal assumptions, probability can be shown to be the only
rational way to represent uncertainty.

@ Probability is subjective probability - distributions represent degrees
of belief of individuals.

@ All uncertainty quantities 6 can be given distributions 7 () that
represent our uncertainty about the value

» unknown functions will be described by probability distributions across
a class of unknown functions



Uncertainty quantification motivation

© Uncertainty analysis
» What is the distribition of f(6) given uncertainty about ¢
@ Sensitivity analysis

» Assign uncertainty in our predictions (Varf(6)) to various
uncertainties in the inputs (Var(6))?

» Useful for understanding the simulator response, designing future
measurements (what should we measure to most decrease our
uncertainty?)

© Estimating model discrepancy
© Parameter estimation/calibration

» Estimating boundary conditions and unknowns

© Calibrated prediction

» Suppose we wish to predict Dy given D,, taking account of parametric
uncertainty:

7(Df | D) = / 7(Dr | 0)r(0 | D,)do

» Includes hindcasting/reconstructions...
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Code uncertainty

For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.

@ All inference must be done using a finite ensemble of model runs

Dsim = {(0i,m(0:)) }i=1,..n

@ If # is not in the ensemble, then we are uncertainty about the value
of n(8).
If 6 is multidimensional, then even short run times can rule out brute
force approaches

e dim(#) € R then 1000 simulator runs is only enough for one point
in each corner of the design space.



Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this a meta-model/surrogate/emulator/reduced-order model of
the simulator f.

@ Try to find 7(#) such that



Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this a meta-model/surrogate/emulator/reduced-order model of
the simulator f.

@ Try to find 7(#) such that
n@)~fO) V 6delCR

An emulator should come with an assessment of its accuracy

@ rather than just predicting 1(0) it should predict 7(7(0)|Dsim) - our
uncertainty about the simulator value given the ensemble Dyg;p,.



Gaussian Process Emulators

Gaussian processes (GPs) provide a flexible nonparametric family of
functions:

0(-) ~ GP(m(-), o%c(-, "))
where m(-) is a prior mean function, and c(-,-) is the prior covariance
function (semi-definite).



Gaussian Process Emulators

Gaussian processes (GPs) provide a flexible nonparametric family of
functions:

0(-) ~ GP(m(-), o%c(-, "))
where m(-) is a prior mean function, and c(-,-) is the prior covariance
function (semi-definite).

Definition If f(-) ~ GP(m(-), c(-,-)) then for any collection of inputs
X1,...,X, the vector

(f(x)y .- f(x,,))T ~ MVN(m(x), UZZ)

where ¥ = c(x;, x;).

Family includes cubic splines and Brownian motion.



Meta-modelling

Gaussian Process Emulators

Gaussian processes are invariant under Bayesian updating.

If we observe the ensemble of model runs Dg;y,, then update our prior
belief about 7 in light of the ensemble of model runs:
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where m* and c¢* are the updated mean and covariance functions.



Meta-modelling

Gaussian Process Emulators

Gaussian processes are invariant under Bayesian updating.

If we observe the ensemble of model runs Dg;y,, then update our prior
belief about 7 in light of the ensemble of model runs:

77(')|Dsim ~ GP(m*()a U2C*('> ))
where m* and c¢* are the updated mean and covariance functions.

We can also condition on any linear transformation of 7 (eg knowledge of
the derivative, integral), symmetry, monotonicity,....



Gaussian Process prior for unknown functions
Prior belief about f

Prior Beliefs

GPs can be understood as prior distributions over functions. Their
properties, such as the smoothness and differentiability are controlled by
the choice of mean and covariance functions, and the hyper-parameters.



Gaussian Process prior for unknown functions
y = f(x) = 1+ x + xsin(4x) - 10 data points

Once we observe the data D = {(xj, y;)}, we can update our prior belief
about the unknown function f(x)



Gaussian Process emulation - posterior beliefs about ()
y =1+ x4+ xsin(4x) - 10 data points

True function (black), GP mean and sd (red), samples (green)
T T T T T T T

Perverse example: we can spot errors using cross-validation — More data
required.



Gaussian Process emulation
y =1+ x4+ xsin(4x) - 15 data points

True function (black), GP mean and sd (red), samples (green)
T T T T T T T

The covariance function is key. There are a small number of common
choices, e.g., squared exponential (RBF/Gaussian), Matern, neural-net



Gaussian Process emulation
y =1+ x4+ xsin(4x) - 20 data points

True function (black), GP meal

n and sd (red), samples (green)
T T T T T

We can add, multiply and transform any covariance function to obtain a
new valid covariance function.



High dimensional problems
Carbon capture and storage

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field)

£(K)

Outputs:
Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),

Surface Flux=6.43, ...



Uncertainty quantification (UQ) for CCS

The simulator maps from permeability field K to outputs such as the
surface flux S. Let f(K) denote this mapping

f:K—S

For most problems the permeability K is unknown.



Uncertainty quantification (UQ) for CCS

The simulator maps from permeability field K to outputs such as the
surface flux S. Let f(K) denote this mapping

f:K—S

For most problems the permeability K is unknown.

If we assume a distribution for K ~ 7(K), we can quantify our
uncertainty about S = f(K).

@ e.g., by finding the cumulative distribution function (CDF) of S:

F(s) = P(f(K) < s)



UQ for complex computer models

Gold standard approach: Monte Carlo simulation

e Draw Ki,...,Ky ~ m(K), and
evaluate the simulator at each

giving fluxes
s1 = f(K1),...,sn = f(Kn)
@ Estimate the empirical CDF
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UQ for complex computer models

Gold standard approach: Monte Carlo simulation

e Draw Ki,...,Ky ~ m(K), and
evaluate the simulator at each
giving fluxes
51 = f(Kl), L. SN = f(KN)

@ Estimate the empirical CDF

. 1
F(s) = N Z]Is,és
i=1

1

ECDF obtained with 57 simulator runs

0.9+

52 54 56 58 6 6.2

6.4

Note that N = 103 is not large if we want quantiles in the tail of the

distribution

However the cost of the simulator means we are limited to ~100

evaluations.
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Wilkinson 2010
How can we deal with multivariate ouput?
@ Build independent or separable multivariate emulators,
@ Linear model of coregionalization?



Multivariate Emulation
Wilkinson 2010
How can we deal with multivariate ouput?
@ Build independent or separable multivariate emulators,
@ Linear model of coregionalization?
Instead, if the outputs are highly correlated we can reduce the dimension
of the data by projecting the data into some lower dimensional space VP,
i.e., assume
y =Wyl +e
where dim(y) >> dim(y®°)
Emulate from © to the reduced dimensional output space )P

o ()

pc(. PCA
n ( ) PCA—I



Principal Component Emulation (EOF)

o
2]

Centre and scale the data Dg;y, (scaling prior specification simpler).

Find the singular value decomposition of Dgjy,.
Dgim = UT'V*,

I" contains the singular values (eigenvalues), and V the principal
components (eigenvectors).

Decide on the dimension of the principal subspace, n* say, and throw
away all but the n* leading principal components. An orthonormal
basis for the principal subspace is given by the first n* columns of V/,
denoted V4. Let V5 be the matrix of discarded columns.

Project Dgim onto the principal subspace to find DP¢ = Dy V4

sim



PCA emulation

We then emulate the reduced dimension model
Mpe() = (Ee(), - - ()

e Each component 77;;«: will be uncorrelated (in the ensemble) but not
necessarily independent. We use independent Gaussian processes for
each component.

@ The output can be reconstructed (accounting for reconstruction
error) by modelling the discarded components as Gaussian noise with
variance equal to the corresponding eigenvalue:

n(0) = Vinpc(0) + Vodiag(A)

where A; ~ N(0,T;) (T;; = i*" eigenvalue).



Comments

@ This approach (PCA emulation) requires that the outputs are highly
correlated.

@ We are assuming that the output Dgiy, is really a linear combination
of a smaller number of variables,

n(0) = vinp(0) + ...+ vpe1pe(0)

which may be a reasonable assumption in many situations, eg,
temporal spatial fields.

@ Although PCA is a linear method, the method can be used on highly
non-linear models as we are still using non-linear Gaussian processes
to map from © to YP€ — the linear assumption applies only to the
dimension reduction (and can be generalised).

@ This method accounts for the reconstruction error from reducing the
dimension of the data.



Emulating simulators with high dimensional input

For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,

e e.g. if we use a 100 x 100 grid in the solver, K contains 10* entries
o Impossible to directly model f : R10:000 4 R



Emulating simulators with high dimensional input

For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,

e e.g. if we use a 100 x 100 grid in the solver, K contains 10* entries
o Impossible to directly model f : R10:000 4 R

We can use the same idea to reduce the dimension of the inputs.
However, because we know the distribution of K, it is more efficient to

use the Karhunen-Loeve (KL) expansion of K (rather than learn it
empirically as in PCA)

e K =exp(Z) where Z ~ GP(m, C)
@ Z can be represented as

Z() = Z Ai&idi(°)
i=1

where \; and ¢; are the eigenvalues and eigenfunctions of the
covariance function of Z and & ~ N(0,1).



Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

Emulated sueamfield
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Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.
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Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.
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Predictive performance vs n = no. of KL components

We can assess the accuracy of the

emulator by examining the prediction s
error on a held-out test set. Plotting 72
predicted vs true value indicates the , .
accuracy the GP emulator. o :

We can also choose the number of KL components to retain using
numerical scores
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CCS simulator results - 20 simulator training runs
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Blue line = CDF from using 103 Monte Carlo samples from the simulator
Red line = CDF obtained using emulator (trained with 20 simulator runs,
rational quadratic covariance function)



PLASIM-ENTS

Holden, Edwards, Garthwaite, Wilkinson 2015

@ Planet Simulator coupled to the terrestrial carbon model ENTS
@ Inputs are eccentricity, obliquity, precession describing Earth’s orbit
around the sun.

@ Model climate (annual average surface temperature and rainfall) and
vegetation (annual average vegetation carbon density) spatial fields
(on a 64 x 32) grid.

We used an ensemble of 50 simulations



Principal components




Leave-one-out cross validation of the emulator

Simulation ID1 Simulation ID50

We can then use the PC-emulator to do sensitivity analysis.



Calibration

The inverse problem

Most models are forwards models, i.e., specify parameters 6 and i.c.s and
the model 7)(-) generates output D. Often, we are interested in the
inverse-problem, i.e., observe data, want to estimate parameter values.
Different terminology:

@ Calibration inoogmng soar ‘m,
nergy
. . . Tl‘anliiﬂ'\ﬁnll:‘m
@ Data assimilation Eadic
Stratus Clouds. stgﬁﬁ?i\%w
@ Parameter Cyrails 3
) . 2
estimation g
=
@ Inverse-problem %
o Bayesian
inference

u]
8
I
i
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Calibration requires

@ Statistical model relating simulator to the data
» All models are wrong etc.... but how do we characterize the error?
» The aim of inference should influence your approach. Is the aim
parameter estimation or calibrated prediction?
@ Inferential framework
» Maximum likelihood or some other optimization approach
» Bayesian
» History matching
@ Computational inference scheme
» MCMC, emulators, etc



Bayesian calibration
Kennedy and O'Hagan 2001

The calibration framework used is:

D=n(@)+d+e

@ All quantities are multidimensional (e.g. time-series, spatial fields)
@ ¢ represents measurement error

» Often e ~ N(0,X)
@ J represents simulator discrepancy

» Standard approach is to assume §(-) ~ GP(m(-), c(+,"))

Statistical specification is complete once all unknowns (6, m, ¢, ¥ etc)
have prior distributions specified.



Bayesian calibration
Kennedy and O'Hagan 2001

We then aim to find the posterior
distribution
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@ Strength of the approach is that it combines all available sources of
information

@ Weakness is that it can be hard to specify priors and a statistical
model for the discrepancy

@ Also the are identifiability issues between 6 and ¢ (Brynjarsdéttir and
O'Hagan 2014) (prediction or parameter estimation?)
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Bayesian calibration
Kennedy and O'Hagan 2001

We then aim to find the posterior
distribution

m(0)n(D | 6) |

w(01P) = "2

For all but the simplest problems, this
calculation is hard! -

@ Strength of the approach is that it combines all available sources of
information

@ Weakness is that it can be hard to specify priors and a statistical
model for the discrepancy

@ Also the are identifiability issues between 6 and ¢ (Brynjarsdéttir and
O'Hagan 2014) (prediction or parameter estimation?)



History matching
Craig et al. 1997

An alternative to Bayesian calibration is history matching.

Instead of a posterior distribution over parameter space, we aim to
classify parameter space as implausible or (non-im)plausible.
I( )2 — (En(e) — D)2
Var(6) + Var(e) + Var(n)
Declare 6 implausible if /(0) > 3

@ Advantages are that we only need specify variances for ¢ rather than
a complete statistical model

@ Conservative approach - aim is to rule out parameter values that are
clearly bad, rather than find a posterior over good values

o Disadvantage is that it ignores a lot of information and doesn't allow
probabilistic predictions.



Emulating ice sheet models
Chang, Haran, Applegate, Pollard 2016

@ PSU3D-ICE model used to simulate long-term evolution of the West
Antarctic Ice Sheet
» Parametric uncertainty is important source of uncertainty in future
projections of WAIS volume change

@ They use modern and palaeo data to calibrate the simulator

» Time series of grounding line positions (location of the transition from
grounded ice to ice shelf) along the central flowline in the Amundsen
Sea Embayment (ASE) since the LGM (RAISED consortium 2014)

» Modern binary spatial pattern of presence and absence of grounded ice
in the ASE (Bedmap?2 dataset).

@ Aim to calibrate 4 simulator parameters

» sub-ice-shelf oceanic melt factor (OCFAC)
calving factor (CALV)

basal sliding coefficient (CRH)

asthenospheric relaxation e-folding time (TAU)

v vy



Emulating ice sheet models
Chang, Haran, Applegate, Pollard 2016

The used an ensemble of 461 simulator evaluations
@ Each time series has 1500 points
@ Spatial map information at 3182 grid points

They use a PCA-emulator (with logit likelihood) and probabilistic
calibration.

Original Output (Example 1) Emulated Output (example 1)

Original Output (Eample 2) Emulated Output (Example 2)

T T T
15000 -10000 -5000 0

time (years from present)
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CALY

CRH

lating ice sheet models
Haran, Applegate, Pollard 2016

2-D Posterior Densities for Input Parameters

(b) Modern Binary Patterns and Past Grounding Line Positio
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Emulating ice sheet models
Chang, Haran, Applegate, Pollard 2016

Hindcast and Forecast for Ice Volume Change
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Tuning NEMO with history matching

Williamson, Blaker, Sinha 2016

@ Tune the NEMO ORCA?2 global ocean model run at 2deg resolution.
@ Vary 20 ocean parameters
o Initial ensemble of 400 simulations

@ Tune the model to metrics derived from the 1960-1990 climatological
mean depth profiles of global mean temperature and salinity
computed from the EN3 climatology



Willliamson, Blaker, Sinha 2016
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Figure 1. Global mean potential temperature as a function of depth from: EN3 (red, with error bounds indicated by red dashed lines); all
wave | ensemble members (grey); standard ORCA?2 (dark blue); World Ocean Atlas (pink, Locarnini et al. (2013)); the initial state (gold);
and GOS5 averaged over years 1996-2005 (Megann et al. (2014)) (blue dotted). The left panel shows a vertical zoom of the top 800 m, whilst
the right panel shows the full depth.
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Figure 2. Global mean salinity as a function of depth from: EN3 (red, with error bounds indicated by red dashed lines); all wave 1 ensemble
members (grey); standard ORCA2 (dark blue); World Ocean Atlas (pink, Zweng et al. (2013)); the initial state (gold); and GO5 averaged
over years 1996-2005 (Megann et al. (2014)) (blue dotted). The left panel shows a vertical zoom of the top 800 m, whilst the right panel
shows the full depth.
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Figure 6. Global mean depth profiles of temperature (left), temperature RMSE (centre), and temperature depth profiles cast as departure
from the EN3 global mean profile in units of o. Colours represent W3 NROY (purple), W2 NROY (yellow), W1 NROY (cyan) and W1 RO
(grey). The standard configuration is shown in solid blue, GO5 (ORCA025) as dotted blue, the initial conditions (magenta), WOA (gold).
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Figure 7. Global mean depth profiles of salinity (left), salinity RMSE (centre), and salinity depth profiles cast as departure from the EN3
global mean profile in units of o. Colours represent W3 NROY (purple), W2 NROY (yellow), W1 NROY (cyan) and W1 RO (grey). The
standard configuration is shown in solid blue, GO5 (ORCA025) as dotted blue, the initial conditions (magenta), WOA (gold).



Conclusions

@ For complex expensive simulators Gaussian process emulators can
enable UQ approaches that would otherwise be impossible.

@ For highly correlated multivariate output, principal component
emulation can work well and is computationally cheap and easy to
implement.

@ A large number of output dimensions can be reduced to a smaller
number of principal component scores which can then be emulated,
accounting for any error in the compression.
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Thank you for listening!



