Approximate Bayesian Computation (ABC): inference for intractable computer models

Richard Wilkinson
Data science @LHC

School of Mathematics and Statistics
University of Sheffield

November 10, 2015

An overview of $A B C$

A taste of several research directions in the $A B C$ community
－Introduction
－Rejection sampling and interpretation
－Efficient algorithms
－Post－hoc regression adjustments
－Surrogate modelling approximations
－Summary statistics
－Model selection

Calibration

- For most simulators we specify parameters θ and i.c.s and the simulator, $f(\theta)$, generates output X.
- The inverse-problem: observe data D, estimate parameter values θ which explain the data.

The Bayesian approach is to find the posterior distribution

$$
\pi(\theta \mid D) \propto \pi(\theta) \pi(D \mid \theta)
$$

posterior \propto
prior \times likelihood

Intractability

$$
\pi(\theta \mid D)=\frac{\pi(D \mid \theta) \pi(\theta)}{\pi(D)}
$$

- usual intractability in Bayesian inference is not knowing $\pi(D)$.

Intractability

$$
\pi(\theta \mid D)=\frac{\pi(D \mid \theta) \pi(\theta)}{\pi(D)}
$$

- usual intractability in Bayesian inference is not knowing $\pi(D)$.
- a problem is doubly intractable if $\pi(D \mid \theta)=c_{\theta} p(D \mid \theta)$ with c_{θ} unknown (cf Murray, Ghahramani and MacKay 2006)

Intractability

$$
\pi(\theta \mid D)=\frac{\pi(D \mid \theta) \pi(\theta)}{\pi(D)}
$$

- usual intractability in Bayesian inference is not knowing $\pi(D)$.
- a problem is doubly intractable if $\pi(D \mid \theta)=c_{\theta} p(D \mid \theta)$ with c_{θ} unknown (cf Murray, Ghahramani and MacKay 2006)
- a problem is completely intractable if $\pi(D \mid \theta)$ is unknown and can't be evaluated (unknown is subjective). l.e., if the analytic distribution of the simulator, $f(\theta)$, run at θ is unknown.
Completely intractable models are where we need to resort to $A B C$ methods

Note that if the lilkelihood is unknown, then we can't find sufficient summary statistics of the data either.

Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian computation) is one of the few approaches we can use to do inference.

Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian computation) is one of the few approaches we can use to do inference.

ABC algorithms are a collection of Monte Carlo methods used for calibrating simulators

- they do not require explicit knowledge of the likelihood function
- inference is done using simulation from the model (they are 'likelihood-free').

Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian computation) is one of the few approaches we can use to do inference.

ABC algorithms are a collection of Monte Carlo methods used for calibrating simulators

- they do not require explicit knowledge of the likelihood function
- inference is done using simulation from the model (they are 'likelihood-free').

ABC methods are popular in biological disciplines. They are

- Simple to implement
- Intuitive
- Embarrassingly parallelizable
- Can usually be applied

ABC methods can be crude but they have an important role to play.

‘Likelihood-Free’ Inference

Rejection Algorithm

- Draw θ from prior $\pi(\cdot)$
- Accept θ with probability $\pi(D \mid \theta)$

Accepted θ are independent draws from the posterior distribution, $\pi(\theta \mid D)$.

‘Likelihood-Free’ Inference

Rejection Algorithm

- Draw θ from prior $\pi(\cdot)$
- Accept θ with probability $\pi(D \mid \theta)$

Accepted θ are independent draws from the posterior distribution, $\pi(\theta \mid D)$.
If the likelihood, $\pi(D \mid \theta)$, is unknown:

'Mechanical' Rejection Algorithm

- Draw θ from $\pi(\cdot)$
- Simulate $X \sim f(\theta)$ from the computer model
- Accept θ if $D=X$, i.e., if computer output equals observation

The acceptance rate is $\int \mathbb{P}(D \mid \theta) \pi(\theta) \mathrm{d} \theta=\mathbb{P}(D)$.

Rejection ABC

If $\mathbb{P}(D)$ is small (or D continuous), we will rarely accept any θ. Instead, there is an approximate version:

Uniform Rejection Algorithm

- Draw θ from $\pi(\theta)$
- Simulate $X \sim f(\theta)$
- Accept θ if $\rho(D, X) \leq \epsilon$

Rejection ABC

If $\mathbb{P}(D)$ is small (or D continuous), we will rarely accept any θ. Instead, there is an approximate version:

Uniform Rejection Algorithm

- Draw θ from $\pi(\theta)$
- Simulate $X \sim f(\theta)$
- Accept θ if $\rho(D, X) \leq \epsilon$
ϵ reflects the tension between computability and accuracy.
- As $\epsilon \rightarrow \infty$, we get observations from the prior, $\pi(\theta)$.
- If $\epsilon=0$, we generate observations from $\pi(\theta \mid D)$.

For reasons that will become clear later, we call this uniform- $A B C$.

$\epsilon=10$

$$
\begin{gathered}
\theta \sim U[-10,10], \quad X \sim N\left(2(\theta+2) \theta(\theta-2), 0.1+\theta^{2}\right) \\
\rho(D, X)=|D-X|, \quad D=2
\end{gathered}
$$

$\epsilon=5$

$\epsilon=2.5$

theta vs D

Density

$\epsilon=1$

theta vs D

Density

Rejection ABC

If the data are too high dimensional we never observe simulations that are 'close' to the field data

Reduce the dimension using summary statistics, $S(D)$.
Approximate Rejection Algorithm With Summaries

- Draw θ from $\pi(\theta)$
- Simulate $X \sim f(\theta)$
- Accept θ if $\rho(S(D), S(X))<\epsilon$

If S is sufficient this is equivalent to the previous algorithm.

Rejection ABC

If the data are too high dimensional we never observe simulations that are 'close' to the field data

Reduce the dimension using summary statistics, $S(D)$.
Approximate Rejection Algorithm With Summaries

- Draw θ from $\pi(\theta)$
- Simulate $X \sim f(\theta)$
- Accept θ if $\rho(S(D), S(X))<\epsilon$

If S is sufficient this is equivalent to the previous algorithm.

Simple \rightarrow Popular with non-statisticians

ABC as a probability model

W．2008／2013
We wanted to solve the inverse problem

$$
D=f(\theta)
$$

but instead ABC solves

$$
D=f(\theta)+e
$$

where the distribution of e depends upon ρ and ϵ ．

ABC as a probability model

W. 2008/2013

We wanted to solve the inverse problem

$$
D=f(\theta)
$$

but instead $A B C$ solves

$$
D=f(\theta)+e
$$

where the distribution of e depends upon ρ and ϵ.
ABC gives 'exact' inference under a different model
We can show that

Proposition

If $\rho(D, X)=|D-X|$, then ABC samples from the posterior distribution of θ given D where we assume $D=f(\theta)+e$ and that

$$
e \sim U[-\epsilon, \epsilon]
$$

Generalized ABC (GABC)

W. 2008, Fearnhead and Prangle 2012

Generalized rejection ABC

$1 \theta \sim \pi(\theta)$ and $X \sim \pi(x \mid \theta)$
2 Accept (θ, X) w.p. $\frac{\pi_{\epsilon}(D \mid X)}{\max _{x} \pi_{\epsilon}(D \mid x)}$
where $\pi_{\epsilon}(D \mid x)$ is a user specified acceptance kernel, i.e., $P($ accept $\theta \mid f(\theta)=x)$.

Generalized ABC (GABC)

W. 2008, Fearnhead and Prangle 2012

Generalized rejection ABC

$1 \theta \sim \pi(\theta)$ and $X \sim \pi(x \mid \theta)$
2 Accept (θ, X) w.p. $\frac{\pi_{\epsilon}(D \mid X)}{\max _{x} \pi_{\epsilon}(D \mid x)}$
where $\pi_{\epsilon}(D \mid x)$ is a user specified acceptance kernel, i.e., $P($ accept $\theta \mid f(\theta)=x)$.
In uniform $A B C$ we take

$$
\pi_{\epsilon}(D \mid X)= \begin{cases}1 & \text { if } \rho(D, X) \leq \epsilon \\ 0 & \text { otherwise }\end{cases}
$$

which recovers the uniform ABC algorithm.
2' Accept θ if $\rho(D, X) \leq \epsilon$

Generalized ABC (GABC)

W. 2008, Fearnhead and Prangle 2012

Generalized rejection ABC

$1 \theta \sim \pi(\theta)$ and $X \sim \pi(x \mid \theta)$
2 Accept (θ, X) w.p. $\frac{\pi_{\epsilon}(D \mid X)}{\max _{x} \pi_{\epsilon}(D \mid x)}$
where $\pi_{\epsilon}(D \mid x)$ is a user specified acceptance kernel, i.e., $P($ accept $\theta \mid f(\theta)=x)$.
In uniform $A B C$ we take

$$
\pi_{\epsilon}(D \mid X)= \begin{cases}1 & \text { if } \rho(D, X) \leq \epsilon \\ 0 & \text { otherwise }\end{cases}
$$

which recovers the uniform ABC algorithm.

$$
2^{\prime} \text { Accept } \theta \text { if } \rho(D, X) \leq \epsilon
$$

We can use $\pi_{\epsilon}(D \mid x)$ to describe the relationship between the simulator and reality, e.g., measurement error and simulator discrepancy.

Efficient Algorithms

References:

- Marjoram et al. 2003
- Sisson et al. 2007
- Beaumont et al. 2008
- Toni et al. 2009
- Del Moral et al. 2011
- Drovandi et al. 2011

Efficient sampling

ABCifying Monte Carlo methods

Rejection is inefficient as it repeatedly samples from prior
More efficient sampling algorithms allow us to spend more time in regions of parameter space likely to lead to accepted values.

- allows us to use smaller values of ϵ, and hence find better approximations

Most Monte Carlo algorithms now have $A B C$ versions for when we don't know the likelihood: IS, MCMC, SMC $(\times n)$, EP etc.

MCMC-ABC

Marjoram et al. 2003, Sisson and Fan 2011, Lee 2012
Target

$$
\pi_{A B C}(\theta, x \mid D) \propto \mathbb{I}_{\rho(D, x) \leq \epsilon} \pi(x \mid \theta) \pi(\theta)
$$

To explore the (θ, x) space, proposals of the form

$$
Q\left((\theta, x),\left(\theta^{\prime}, x^{\prime}\right)\right)=q\left(\theta, \theta^{\prime}\right) \pi\left(x^{\prime} \mid \theta^{\prime}\right)
$$

seem to be inevitable as we need the likelihood to cancel in the Metropolis-Hastings (MH) acceptance probability

$$
\begin{aligned}
r & =\frac{\mathbb{I}_{\rho(D, x) \leq \epsilon} \pi\left(x^{\prime} \mid \theta^{\prime}\right) \pi\left(\theta^{\prime}\right) q\left(\theta^{\prime}, \theta\right) \pi(x \mid \theta)}{\mathbb{I}_{\rho(D, x) \leq \epsilon} \pi(x \mid \theta) \pi(\theta) q\left(\theta, \theta^{\prime}\right) \pi\left(x^{\prime} \mid \theta^{\prime}\right)} \\
& =\frac{\mathbb{I}_{\rho(D, x) \leq \epsilon} q\left(\theta^{\prime}, \theta\right) \pi\left(\theta^{\prime}\right)}{\mathbb{I}_{\rho(D, x) \leq \epsilon} q\left(\theta, \theta^{\prime}\right) \pi(\theta)}
\end{aligned}
$$

MCMC-ABC

Marjoram et al. 2003, Sisson and Fan 2011, Lee 2012
Target

$$
\pi_{A B C}(\theta, x \mid D) \propto \mathbb{I}_{\rho(D, x) \leq \epsilon} \pi(x \mid \theta) \pi(\theta)
$$

To explore the (θ, x) space, proposals of the form

$$
Q\left((\theta, x),\left(\theta^{\prime}, x^{\prime}\right)\right)=q\left(\theta, \theta^{\prime}\right) \pi\left(x^{\prime} \mid \theta^{\prime}\right)
$$

seem to be inevitable as we need the likelihood to cancel in the Metropolis-Hastings (MH) acceptance probability

$$
\begin{aligned}
r & =\frac{\mathbb{I}_{\rho(D, x) \leq \epsilon} \pi\left(x^{\prime} \mid \theta^{\prime}\right) \pi\left(\theta^{\prime}\right) q\left(\theta^{\prime}, \theta\right) \pi(x \mid \theta)}{\mathbb{I}_{\rho(D, x) \leq \epsilon} \pi(x \mid \theta) \pi(\theta) q\left(\theta, \theta^{\prime}\right) \pi\left(x^{\prime} \mid \theta^{\prime}\right)} \\
& =\frac{\mathbb{I}_{\rho(D, x) \leq \epsilon} q\left(\theta^{\prime}, \theta\right) \pi\left(\theta^{\prime}\right)}{\mathbb{I}_{\rho(D, x) \leq \epsilon} q\left(\theta, \theta^{\prime}\right) \pi(\theta)}
\end{aligned}
$$

In practice, this algorithm often gets stuck, as the probability of generating x^{\prime} near D can be tiny if ϵ is small.
Lee 2012 introduced several alternative MCMC kernels that are variance bounding and geometrically ergodic.

Sequential ABC algorithms

Sisson et al．2007，Toni et al．2008，Beaumont et al．2009，Del Moral et al．2011， Drovandi et al．2011，．．．
The most popular efficient $A B C$ algorithms are sequential methods．
Choose upon a sequence of tolerances $\epsilon_{1}>\epsilon_{2}>\ldots>\epsilon_{T}$ and let π_{t} be the ABC approximation when we using tolerance ϵ_{t} ．
We aim to sample N particles successively from

$$
\pi_{1}(\theta), \ldots, \pi_{T}(\theta)=\text { target }
$$

At each stage t, we aim to construct a weighted sample of particles that approximates $\pi_{t}(\theta, x)$.

$$
\left\{\left(z_{t}^{(i)}, W_{t}^{(i)}\right)\right\}_{i=1}^{N} \text { such that } \pi_{t}(z) \approx \sum W_{t}^{(i)} \delta_{z_{t}^{(i)}}(\mathrm{dz})
$$

where $z_{t}^{(i)}=\left(\theta_{t}^{(i)}, x_{t}^{(i)}\right)$.

ϵ_{1}

Population 2
ϵ_{2}

Intermediate Distributions
Population T

$$
\epsilon_{T-1}
$$

$$
\epsilon_{T}
$$

Posterior

Regression Adjustment

References:

- Beaumont et al. 2003
- Blum and Francois 2010
- Blum 2010
- Leuenberger and Wegmann 2010

Post-hoc regression adjustments

Beaumont et al. 2002, Blum and Francois 2010

Consider the relationship between the conditional expectation of θ and s :

$$
\mathbb{E}(\theta \mid s):=m(s)
$$

Think of this as a model for the conditional density $\pi(\theta \mid s)$: for fixed s

$$
\theta_{i}=m(s)+e_{i}
$$

where $\theta_{i} \sim \pi(\theta \mid s)$ and e_{i} are zero-mean and uncorrelated

Post-hoc regression adjustments

Beaumont et al. 2002, Blum and Francois 2010

Consider the relationship between the conditional expectation of θ and s :

$$
\mathbb{E}(\theta \mid s):=m(s)
$$

Think of this as a model for the conditional density $\pi(\theta \mid s)$: for fixed s

$$
\theta_{i}=m(s)+e_{i}
$$

where $\theta_{i} \sim \pi(\theta \mid s)$ and e_{i} are zero-mean and uncorrelated
Suppose we've estimated $m(s)$ by $\widehat{m}(s)$ from samples $\left\{\theta_{i}, s_{i}\right\}$. Estimate the posterior mean by

$$
\mathbb{E}\left(\theta \mid s_{o b s}\right) \approx \widehat{m}\left(s_{o b s}\right)
$$

and form the empirical residuals

$$
\hat{e}_{i}=\theta_{i}-\widehat{m}\left(s_{i}\right)
$$

We can approximate the posterior $\pi\left(\theta \mid s_{o b s}\right)$ by adjusting the parameters

$$
\theta_{i}^{*}=\widehat{m}\left(s_{o b s}\right)+\hat{e}_{i}=\theta_{i}+\left(\widehat{m}\left(s_{o b s}\right)-\widehat{m}\left(s_{i}\right)\right)
$$

$A B C$ and regression adjustment

In rejection $A B C$, the red points are used to approximate the histogram.

ABC and regression adjustment

Using regression-adjustment, we use the estimate of the posterior mean at $s_{o b s}$ and the residuals from the fitted line to form the posterior.

Normal-normal conjugate model, linear regression

Regression-adjusted posterior more confident, as the θ_{i} have been adjusted to account for the discrepancy between s_{i} and $s_{o b s}$

- Allows larger ϵ for same accuracy
- Sequential algorithms can not easily be adapted, thus regression adjustment used with rejection sampling only.

Surrogate/emulator methods

References:

- Kennedy and O'Hagan 2001
- Wilkinson 2014
- Conrad, Marzouk, Pillai, Smith 2014
- Meeds and Welling 2015
- Corrander et al. 2015

Surrogate／emulator approximations

Sacks et al．1989，Kennedy et al．2001，W．2014／15，Meeds et al．2015，Corrander et al． 2015
$A B C$ requires a large number of simulator runs：
－Suppose we can only afford a limited ensemble of simulator evaluations

$$
D=\left\{\theta_{i}, f\left(\theta_{i}\right)\right\}_{i=1}^{n}
$$

－We are uncertain about $f(\theta)$ for θ not in the design

Surrogate/emulator approximations

Sacks et al. 1989, Kennedy et al. 2001, W. 2014/15, Meeds et al. 2015, Corrander et al. 2015
$A B C$ requires a large number of simulator runs:

- Suppose we can only afford a limited ensemble of simulator evaluations

$$
D=\left\{\theta_{i}, f\left(\theta_{i}\right)\right\}_{i=1}^{n}
$$

- We are uncertain about $f(\theta)$ for θ not in the design An emulator is a cheap statistical surrogate $\tilde{f}(\theta)$ which approximates $f(\theta)$. Gaussian processes (GP) are a common choice: $\tilde{f}(\cdot) \sim G P(m(\cdot), c(\cdot, \cdot))$

Posterior beliefs

We can then ${ }^{x}$ use \tilde{f} in place of f in añy analysis.

Likelihood estimation

W. 2013

It can be shown that ABC replaces the true likelihood $L(\theta) \equiv \pi(D \mid \theta)$ by an ABC likelihood

$$
L_{\mathrm{ABC}}(\theta)=\int \mathbb{I}_{\rho(D, X) \leq \epsilon} \pi(X \mid \theta) \mathrm{dX}
$$

We can estimate this using repeated runs from the simulator

$$
\hat{L}_{\mathrm{ABC}}(\theta) \approx \frac{1}{N} \sum \mathbb{I}_{\rho\left(D, X_{i}\right) \leq \epsilon}
$$

where $X_{i} \sim \pi(X \mid \theta)$.

Likelihood estimation

W. 2013

It can be shown that ABC replaces the true likelihood $L(\theta) \equiv \pi(D \mid \theta)$ by an ABC likelihood

$$
L_{\mathrm{ABC}}(\theta)=\int \mathbb{I}_{\rho(D, X) \leq \epsilon} \pi(X \mid \theta) \mathrm{dX}
$$

We can estimate this using repeated runs from the simulator

$$
\hat{L}_{\mathrm{ABC}}(\theta) \approx \frac{1}{N} \sum \mathbb{I}_{\rho\left(D, X_{i}\right) \leq \epsilon}
$$

where $X_{i} \sim \pi(X \mid \theta)$.
For many problems, we believe the likelihood is continuous and smooth, so that $L_{A B C}(\theta)$ is similar to $L_{A B C}\left(\theta^{\prime}\right)$ when $\theta-\theta^{\prime}$ is small

We can model $L_{A B C}(\theta)$ and use the model to find the posterior in place of running the simulator.

Ricker Model

Design 0

Diagnostics Wave 1

Diagnostics Wave 1

Diagnostics Wave 1

Ricker Model

Design 0

It is usually too difficult to model $L(\theta)$ for all θ

- Sufficient to know $L(\theta)$ in regions of high likelihood, and to know that it is small elsewhere.
Use this initial model to rule out large parts of parameter space as implausible using a conservative heuristic.

Ricker Model - third wave

MCMC Results

Comparison with Wood 2010, synthetic likelihood approach

Wood's MCMC posterior

Green $=$ GP posterior

Black $=$ Wood's MCMC

- The Wood 2010 ABC-MCMC method used $10^{5} \times 500$ simulator runs
- The GP code used $(128+314+149+400)=991 \times 500$ simulator runs
- $1 / 100$ th of the number used by Wood's method.

By the final iteration, over 98% of the original input space was ruled out as implausible

- the MCMC sampler does not waste time exploring those regions.

Implausibility

When using emulators for history-matching and ABC , we want to estimate

$$
p(\theta)=\mathbb{P}(\text { Accept } \theta)
$$

based upon a GP model of the simulator or likelihood

$$
f(\theta) \sim G P(m(\cdot), c(\cdot, \cdot))
$$

Implausibility

When using emulators for history-matching and ABC , we want to estimate

$$
p(\theta)=\mathbb{P}(\text { Accept } \theta)
$$

based upon a GP model of the simulator or likelihood

$$
f(\theta) \sim G P(m(\cdot), c(\cdot, \cdot))
$$

The key determinant of emulator accuracy is the design used

$$
D_{n}=\left\{\theta_{i}, f\left(\theta_{i}\right)\right\}_{i=1}^{N}
$$

Usual design choices are space filling designs

- Maximin latin hypercubes, Sobol sequences

Entropic designs

Active learning/sequential design

However, space filling designs are good for global approximations, but wasteful for calibration

- Instead build a sequential design $\theta_{1}, \theta_{2}, \ldots$ using the current classification

$$
p(\theta)=\mathbb{P}\left(\text { Accept } \theta \mid D_{n}\right)
$$

to guide the choice of design points

Entropic designs

Active learning/sequential design

However, space filling designs are good for global approximations, but wasteful for calibration

- Instead build a sequential design $\theta_{1}, \theta_{2}, \ldots$ using the current classification

$$
p(\theta)=\mathbb{P}\left(\text { Accept } \theta \mid D_{n}\right)
$$

to guide the choice of design points
The entropy of the classification surface is

$$
E(\theta)=-p(\theta) \log p(\theta)-(1-p(\theta)) \log (1-p(\theta))
$$

One (unwise) approach is to choose the next design point where we are most uncertain.

$$
\theta_{n+1}=\arg \max E(\theta)
$$

- design points tend to accumulate on the edge of the domain Θ.

Expected average entropy

Chevalier et al. 2014

Instead, we can find the average entropy of the classification surface

$$
E_{n}=\int E(\theta) \mathrm{d} \theta
$$

where n denotes it is based on the current design of size n.

- Choose the next design point, θ_{n+1}, to minimise the expected average entropy

$$
\theta_{n+1}=\arg \min J_{n}(\theta)
$$

where

$$
J_{n}(\theta)=\mathbb{E}\left(E_{n+1} \mid \theta_{n+1}=\theta\right)
$$

Toy 1d example $f(\theta)=\sin \theta$ - Expected entropy

Toy 1d example $f(\theta)=\sin \theta$ - Expected entropy

Toy 1d: min expected entropy vs max entropy

After 10 iterations, choosing the point of maximum entropy

we have found the plausible region to reasonable accuracy.

Summary Statistics

References:

- Blum, Nunes, Prangle and Sisson 2012
- Joyce and Marjoram 2008
- Nunes and Balding 2010
- Fearnhead and Prangle 2012
- Robert et al. 2011

Summary statistic selection：error trade－off

Fearnhead and Prangle 2012，Blum，Nunes，Prangle，Fearnhead 2012
The error in the $A B C$ approximation can be broken into two parts
（1）Choice of summary：

$$
\pi(\theta \mid D) \stackrel{?}{\approx} \pi(\theta \mid S(D))
$$

Summary statistic selection: error trade-off

Fearnhead and Prangle 2012, Blum, Nunes, Prangle, Fearnhead 2012

The error in the $A B C$ approximation can be broken into two parts
(1) Choice of summary:

$$
\pi(\theta \mid D) \stackrel{?}{\approx} \pi(\theta \mid S(D))
$$

(2) Use of ABC acceptance kernel:

$$
\begin{aligned}
\pi\left(\theta \mid s_{o b s}\right) \stackrel{?}{\approx} \pi_{A B C}\left(\theta \mid s_{o b s}\right) & =\int \pi\left(\theta, s \mid s_{o b s}\right) \mathrm{d} s \\
& \propto \int \mathbb{I}_{\rho\left(s_{o b s}, S(X)\right) \leq \epsilon} \pi(x \mid \theta) \pi(\theta) \mathrm{d} x
\end{aligned}
$$

Summary statistic selection: error trade-off

Fearnhead and Prangle 2012, Blum, Nunes, Prangle, Fearnhead 2012

The error in the $A B C$ approximation can be broken into two parts
(1) Choice of summary:

$$
\pi(\theta \mid D) \stackrel{?}{\approx} \pi(\theta \mid S(D))
$$

(2) Use of ABC acceptance kernel:

$$
\begin{aligned}
\pi\left(\theta \mid s_{o b s}\right) \stackrel{?}{\approx} \pi_{A B C}\left(\theta \mid s_{o b s}\right) & =\int \pi\left(\theta, s \mid s_{o b s}\right) \mathrm{ds} \\
& \propto \int \mathbb{I}_{\rho\left(s_{o b s}, S(X)\right) \leq \epsilon} \pi(x \mid \theta) \pi(\theta) \mathrm{d} x
\end{aligned}
$$

The first approximation allows the matching between $S(D)$ and $S(X)$ to be done in a lower dimension. There is a trade-off

- $\operatorname{dim}(S)$ small: $\pi\left(\theta \mid s_{o b s}\right) \approx \pi_{A B C}\left(\theta \mid s_{o b s}\right)$, but $\pi\left(\theta \mid s_{\text {obs }}\right) \not \approx \pi(\theta \mid D)$
- $\operatorname{dim}(S)$ large: $\pi\left(\theta \mid s_{o b s}\right) \approx \pi(\theta \mid D)$ but $\pi\left(\theta \mid s_{o b s}\right) \not \approx \pi_{A B C}\left(\theta \mid s_{o b s}\right)$ as curse of dimensionality forces us to use larger ϵ

Automated summary selection

Blum, Nunes, Prangle and Fearnhead 2012

Suppose we are given a candidate set $\mathcal{S}=\left(s_{1}, \ldots, s_{p}\right)$ of summaries from which to choose.

Methods break down into groups.

- Best subset selection
- Joyce and Marjoram 2008
- Nunes and Balding 2010
- Projection
- Blum and Francois 2010
- Fearnhead and Prangle 2012
- Pudlo, Marin, Estoup, Cornuet, Gautier, Robert 2014.
- Regularisation techniques
- Blum, Nunes, Prangle and Fearnhead 2012

Machine learning type tools increasingly used to find good discriminating summary statistics.

Model selection

Model selection

W. 2007, Grelaud et al. 2009

But often we want to compare models \rightarrow Bayes factors

$$
B_{12}=\frac{\pi\left(D \mid M_{1}\right)}{\pi\left(D \mid M_{2}\right)}
$$

where $\pi\left(D \mid M_{i}\right)=\int \mathbb{I}_{\rho(D, X) \leq \epsilon} \pi\left(x \mid \theta, M_{i}\right) \pi(\theta) \mathrm{d} x \mathrm{~d} \theta$.

Model selection

W．2007，Grelaud et al． 2009

But often we want to compare models \rightarrow Bayes factors

$$
B_{12}=\frac{\pi\left(D \mid M_{1}\right)}{\pi\left(D \mid M_{2}\right)}
$$

where $\pi\left(D \mid M_{i}\right)=\int \mathbb{I}_{\rho(D, X) \leq \epsilon} \pi\left(x \mid \theta, M_{i}\right) \pi(\theta) \mathrm{d} x \mathrm{~d} \theta$ ．
For rejection $A B C$

$$
\pi(D \mid M) \approx \frac{1}{N} \sum \mathbb{I}_{\rho\left(D, X_{i}\right) \leq \epsilon}
$$

where $X_{i} \sim M\left(\theta_{i}\right)$ with $\theta_{i} \sim \pi(\theta)$ ．

Summary statistics for model selection

Didelot et al．2011，Robert et al． 2011
Care needs to be taken with regard summary statistics for model selection． Everything is okay if we target

$$
B_{S}=\frac{\pi\left(S(D) \mid M_{1}\right)}{\pi\left(S(D) \mid M_{2}\right)}
$$

Then the ABC estimator $\hat{B}_{S}^{\epsilon} \rightarrow B_{S}$ as $\epsilon \rightarrow 0, N \rightarrow \infty$（Didelot et al． 2011）．

Summary statistics for model selection

Didelot et al. 2011, Robert et al. 2011
Care needs to be taken with regard summary statistics for model selection. Everything is okay if we target

$$
B_{S}=\frac{\pi\left(S(D) \mid M_{1}\right)}{\pi\left(S(D) \mid M_{2}\right)}
$$

Then the ABC estimator $\hat{B}_{S}^{\epsilon} \rightarrow B_{S}$ as $\epsilon \rightarrow 0, N \rightarrow \infty$ (Didelot et al. 2011).

However,

$$
\frac{\pi\left(S(D) \mid M_{1}\right)}{\pi\left(S(D) \mid M_{2}\right)} \neq \frac{\pi\left(D \mid M_{1}\right)}{\pi\left(D \mid M_{2}\right)}=B_{D}
$$

even if S is a sufficient statistic!
S sufficient for $f_{1}\left(D \mid \theta_{1}\right)$ and $f_{2}\left(D \mid \theta_{2}\right)$ does not imply sufficiency for $\left\{m, f_{m}\left(D \mid \theta_{m}\right)\right\}$. Hence $\hat{B}_{S}^{\epsilon} \nrightarrow B_{D}$.
Not a problem if we view inference as conditional on a carefully chosen S.

Conclusions

ABC allows inference in models for which it would otherwise be impossible．
－not a silver bullet－if likelihood methods possible，use them instead．
The main challenges for $A B C$ are
－finding good summary statistics for high dimensional problems
－dealing with computationally expensive simulators．

Conclusions

ABC allows inference in models for which it would otherwise be impossible．
－not a silver bullet－if likelihood methods possible，use them instead．
The main challenges for $A B C$ are
－finding good summary statistics for high dimensional problems
－dealing with computationally expensive simulators．
Thank you for listening！

