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What is Uncertainty Quantification (UQ)
Uncertainty Quantification (UQ) ≡ statistics with complex models

determining statistical information about the uncertainty in an
output of interest that depends upon the complex model

A ’complex model’ is one that is expensive to evaluate.

Typical tasks

Uncertainty propagation

Parameter estimation

Sensitivity analysis

Design

Prediction

Decision making

UQ should be a synergy between statistics, applied mathematics and
domain sciences
No one trusts a model except the man who wrote it; everyone trusts an
observation except the man who made it, Harlow Shapely.



What is Uncertainty Quantification (UQ)
Uncertainty Quantification (UQ) ≡ statistics with complex models

determining statistical information about the uncertainty in an
output of interest that depends upon the complex model

A ’complex model’ is one that is expensive to evaluate.

Typical tasks

Uncertainty propagation

Parameter estimation

Sensitivity analysis

Design

Prediction

Decision making

UQ should be a synergy between statistics, applied mathematics and
domain sciences

No one trusts a model except the man who wrote it; everyone trusts an
observation except the man who made it, Harlow Shapely.



What is Uncertainty Quantification (UQ)
Uncertainty Quantification (UQ) ≡ statistics with complex models

determining statistical information about the uncertainty in an
output of interest that depends upon the complex model

A ’complex model’ is one that is expensive to evaluate.

Typical tasks

Uncertainty propagation

Parameter estimation

Sensitivity analysis

Design

Prediction

Decision making

UQ should be a synergy between statistics, applied mathematics and
domain sciences
No one trusts a model except the man who wrote it; everyone trusts an
observation except the man who made it, Harlow Shapely.



Why do we need UQ?
Atrial fibrillation

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.

Affects around 610,000 people in UK.

Catheter ablation removes/isolates pathological tissue that
sustain/initiate AF.

40% of patients subsequently experience atrial tachycardia (AT).

http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg


UQ in Patient Specific Cardiac Models
With Richard Clayton, Steve Neiderer, Jeremy Oakley

Aim: predict which AF patients will develop AT following ablation, and
then treat for both in a single procedure.

Use complex electrophysiology
simulation using monodomain
eqn on shell anatomy.

Accurate predictions require
patient specific models, but
clinical data is sparse and
noisy.

We need to

Estimate conduction velocity on the atrium using ECG measurements

Infer tissues properties, including regions of fibrotic material

Predict AT pathways

Aid clinical decision making (accounting for uncertainty)



Recent progress in UQ

A good many times I have been present
at gatherings of [highly-educated] people...
who have with considerable gusto been
expressing their incredulity at the illiteracy
of scientists. Once or twice I have been
provoked and have asked the company how
many of them could describe the Second
Law of Thermodynamics. The response
was cold...Yet I was asking something
which is the scientific equivalent of: Have
you read a work of Shakespeare’s? C.P.
Snow, ‘The Two Cultures’

Statisticians: ‘What about the real world?’

Applied maths: ‘Where is the theory? Error guarantees?’

Machine learning: ‘Why weren’t we invited?’
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Hot topics

Surrogate models

Calibration/parameter estimation

Model discrepancy

Multi-fidelity models

High dimensional problems

Machine learning models

Communicating uncertainty



I: Surrogate models
Code uncertainty

Think of the simulator as a function

f : X → Y

Monte Carlo (brute force) can be used for most tasks if sufficient
computational resource is available. But for long run times, we will only
know the simulator output at a small number of points:

All inference must be done using a finite ensemble of model runs

Dsim = {(xi , f (xi ))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about f (x) -
code uncertainty

X ⊂ R10 then 1000 simulator runs is only enough for one point in
each corner of the design space.
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Surrogate models
If the simulator is expensive, look to approximate it with a surrogate

coarse-grid approximations, projection-based reduced models, and
simplified physics models
Data-fit regression models - primarily Gaussian processes
(www.gpss.cc)

A GP is a random process indexed by x ∈ X say, such that for every finite
set of indices, x1, . . . , xn,

f = (f (x1), . . . , f (xn)) ∼ multivariate Gaussian distribution

Why would we want to use this very restricted model?
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Answer 1
Class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If L is a linear operator, then

Lf ∼ GP(Lm,LkL>)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs
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Answer 2: non-parametric/kernel regression
Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= X>(XX> + σ2I )−1y (the dual form)

We know that we can replace x by a feature vector in linear
regression, e.g., φ(x) = (1 x x2 cos(x))> etc.

For some features, inner product is equivalent to evaluating a kernel

φ(x)>φ(x ′) ≡ k(x , x ′)

where k : X × X → R is a semi-positive definite function.
Kernel trick: lift x into infinite dimensional feature space by
replacing inner products x>x ′ by k(x , x ′), but never evaluate these
features, only the n × n kernel matrix.

ŷ ′ = m(x ′) =
n∑

i=1

αik(x , xi )
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Generally, we don’t think about features, we just choose a kernel. But
choosing a kernel is implicitly choosing features, and our model only
includes functions that are linear combinations of this set of features (the
Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN )2

2λ2 )

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the simulator than any class of models that
contains only a finite number of features.
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Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods1.
If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It can been shown, that the best second-order inference we can do to
update our beliefs about X given Y is

E(X |Y ) = E(X ) + Cov(X ,Y )Var(Y )−1(Y − E(Y ))

which is exactly the Gaussian process update for the posterior mean.

So GPs are in some sense very natural approaches.

1

statistics without probability
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Grey box models: physically obedient GPs
With Nigel Clarke

Black box methods use no knowledge of the underlying equations in the
model
Intrusive methods require complete knowledge

Can we develop ’grey-box’ methods?
E.g. suppose model output is f (x) where f is the solution of

F1
x [f ] = 0

F2
x [f ] = w(x)

...

Can we find GP emulators that obey simpler constraints exactly, and use
data to train to the other constraints?
E.g., guarantee that ∇.f = 0 or ∇× f = 0 etc.
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Grey box models: physically obedient GPs
Jidling et al. 2017

Simple idea: Suppose f = Gx [g ] for some linear operator Gx so that for
any function g , f satisfies Fx [f ] = 0 for linear operator Fx .

e.g. if f : R2 → R2 and

Fx =
(

∂
∂x

∂
∂y

)
ie Fx [f ] = ∇.f

then if

Gx =

(
− ∂
∂y
∂
∂x

)
we have f = Gx [g ] satisfies Fx f = 0 for all functions g : R2 → R.
If g ∼ GP(m(·), k(·, ·)) then

f = Gx [g ] ∼ GP(Gx [m],GxkG′>x )

So we can train emulators of f that satisfy part of the model equations.
To find Gx such that FxGx we look for the null space of the operator
Fx ....
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II: Calibration
Inverse problems/Calibration/Parameter estimation/...

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .

The inverse-problem: observe data D, estimate parameter values θ
which explain the data.
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Major sub-discipline within statistics.



Inference under discrepancy

How should we do inference if the model is imperfect?

Data generating process
y ∼ G

Model (complex simulator, finite dimensional parameter)

F = {Fθ : θ ∈ Θ}

If G = Fθ0 ∈ F then we know what to do.

How should we proceed if
G 6∈ F

Interest lies in inference of θ not calibrated prediction.
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An appealing idea
Kennedy an O’Hagan 2001

Can we expand the class of models by adding a Gaussian process (GP) to
our simulator?

If fθ(x) is our simulator, y the observation, then perhaps we can correct f
by modelling

y = fθ∗(x) + δ(x) where δ ∼ GP

This greatly expands F into a non-parametric world.
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An appealing, but flawed, idea
Kennedy and O’Hagan 2001, Brynjarsdottir and O’Hagan 2014

Simulator Reality

fθ(x) = θx g(x) =
θx

1 + x
a
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An appealing, but flawed, idea
Bolting on a GP can correct your predictions, but won’t necessarily fix
your inference,

e.g.

No discrepancy:

y = fθ(x) + N(0, σ2),

θ ∼ N(0,100), σ2 ∼ Γ−1(0.001, 0.001)

GP discrepancy:

y = fθ(x) + δ(x) + N(0, σ2),

δ(·) ∼ GP(·, ·)
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Dangers of non-parametric model extensions

There are (at least) two problems with this approach:

We may still find G 6∈ F
Identifiability

I A GP is an incredibly complex infinite dimensional model, which is not
necessarily identified even asymptotically. The posterior can
concentrate not on a point, but on some sub manifold of parameter
space, and the projection of the prior on this space continues to
impact the posterior even as more and more data are collected.

ie We never forget the prior, but the prior is too complex to understand
I Brynjarsdottir and O’Hagan 2014 try to model their way out of

trouble with prior information - which is great if you have it.
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We can also have problems finding the true optima for the
hyperparameters, even in 1d problems:

Wong et al 2017 impose identifiability (for δ and θ) by giving up and
identifying

θ∗ = arg min
θ

∫
(ζ(x)− fθ(x))2dπ(x)
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practical performance of the methodology is illustrated through simulation examples and an
application to a computational fluid dynamics model.
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1. Introduction

In many scientific studies, complex mathematical models, implemented as computer code, are
often used to model physical reality (see, for example, Santner et al. (2003) and Fang et al.
(2010)). Such computer codes are also known as computer models and can only be executed
when certain model parameters are prespecified. The goal of computer model calibration is to
find the model parameter values that allow the computer model to reproduce physical reality
best.

In the computer model calibration problem (Kennedy and O’Hagan, 2001), an output y is
observed from physical reality ζ at n locations of a p-variate input x = .x1, : : : , xp/T:

yi = ζ.xi/+ "i, i=1, : : : , n,

where "i is the measurement error for the ith observation. It is assumed that the user can
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Inferential approaches

Maximum likelihood/minimum-distance

Bayes(ish)

History matching (HM)/ABC type methods (thresholding)

How do these approaches behave for well-specified and mis-specified
models?

Try to understand why (at least anecdotally) HM and ABC seem to work
well in mis-specified cases.

What properties would we like our inferential approach to possess?
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Maximum likelihood
Maximum likelihood estimator

θ̂n = arg max
θ

l(y |θ)

If G = Fθ0 ∈ F , then (under some conditions)

θ̂n → θ0 almost surely as n→∞
√
n(θ̂n − θ0)

d
=⇒ N(0, I−1(θ0))

Asymptotic consistency, efficiency, normality.

If G 6∈ F

θ̂n → θ∗ = arg min
θ

DKL(G ,Fθ) almost surely

= arg min
θ

∫
log

dG

dFθ
dG

√
n(θ̂n − θ0)

d
=⇒ N(0,V−1)
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Bayes
Bayesian posterior

π(θ|y) ∝ π(y |θ)π(θ)

If G = Fθ0 ∈ F

π(θ|y)
d

=⇒ N(θ0, I−1(θ0)) as n→∞

Bernstein-von Mises theorem: we forget the prior, and get asymptotic
concentration and normality.
This also requires (a long list of) identifiability conditions to hold.

If G 6∈ F , we still get asymptotic concentration (and possibly normality)
but to θ∗ (the pseudo-true value).

“there is no obvious meaning for Bayesian analysis in this
case”

Often with non-parametric models (eg GPs), we don’t even get this
convergence to the pseudo-true value due to lack of identifiability.
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ABC (Approximate Bayesian computation)

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability ∝ π(y | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).

If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate y ′ ∼ π(y |θ) from the computer model

Accept θ if y = y ′, i.e., if computer output equals observation
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any θ. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate y ′ ∼ π(y |θ)

Accept θ if ρ(y , y ′) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | y).
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ε = 2.5
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History matching and ABC
History matching seeks to find a NROY set

Pθ = {θ : SHM(F̂θ, y) ≤ 3}

where

SHM(Fθ, y) =
|EFθ

(Y )− y |√
VarFθ

(Y )

ABC approximates the posterior as

πε(θ) ∝ π(θ)E(IS(F̂θ,y)≤ε)

for some choice of S and ε, and where F̂θ is estimated from the simulated
y ′.
For ABC, typically S(F̂θ, y) = ρ(η(y), η(y ′)), and η(·) is a lower
dimensional summary.

They have thresholding of a score in common and are algorithmically
comparable.
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History matching and ABC

These methods (anecdotally) seem to work better in mis-specified
situations.

Why?

They differ from likelihood based approaches in that

They only use some aspect of the simulator output

I Typically we hand pick which simulator outputs to compare, and
weight them on a case by case basis.

Potentially use generalised scores/loss-functions

The thresholding type nature potentially makes them somewhat
conservative
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What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?

Consistency?

I I don’t want inconsistency.

Frequency properties?

I I wouldn’t object but seems impossible for subjective priors.

Coherence?

Robustness to small mis-specifications?

Ease of specification?
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III: Multi-fidelity models

Sequence of models, f (i) : X → Y for i = 1, . . . , k of decreasing fidelity

High-fidelity model

fhi = f (1) : X → Y

Accurate(?) and costly

Low-fidelity models

flo = f (i) : X → Y

Less accurate and less costly

The low-fidelity models estimate the same quantity from the same inputs,
but with lower cost and lower accuracy.
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Example: Multi-fidelity Uncertainty Propagation
Control variates

Basic idea:

m an unbiased estimator of µ so that E(m) = µ

t a random variable with E(t) = τ

Then
m∗ = m + c(t − τ)

is also an unbiased estimator of µ for any c .

The optimal choice is c = −Cov(m, t)/Var(t) and then

Var(m∗) = (1− ρ2)Var(m)

where ρ = corr(m, t)

So if we can find an estimator t that is highly correlated with m we can
greatly improve our estimator.
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Example: Multi-fidelity Uncertainty Propagation
Peherstorfer, Willcox, Gunzburger 2016

Target: s = Ef (1)(X )

≈ 1

m

m∑
j=1

f (1)(xj) := ȳ
(1)
m

We create control variates by nesting the evaluation of the low-fidelity
simulators.
We’ll do m1 evaluations of f (1), m2 evaluations of f (2) etc with mi < mi+1

Given random samples X1, . . . ,Xm1 , . . . ,Xm2 , . . . ,Xmk
form estimator

ŝ = ȳ
(1)
m1 +

k∑
i=2

αi (ȳ
(i)
mi − ȳ

(i)
mi−1)

ŝ is obviously unbiased for s.
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Peherstorfer et al. solve the optimization problem

min
m∈Rk ,α2,...,αk∈R

Var(ŝ)

s.t. m1 > 0

mi > mi−1

m>c = budget

for given simulator costs c1, . . . , ck .
The solution is a function of correlations ρ1,i = cor(f (1)(X ), f (i)(X )).
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Fig. 5. Plate model: The plot in (a) shows the variance of the MFMC estimator with two (high-
fidelity f (1), reduced f (2)), three (high-fidelity f (1), reduced f (2), data-fit f (5)), and all six models
f (1), . . . , f (6) (high-fidelity f (1), reduced f (2), f (3), f (4), data-fit f (5), and SVM f (6)). Compared to
the Monte Carlo method with the high-fidelity model only, a variance reduction of about four orders
of magnitude is achieved. This is similar to the speedup obtained with the MFMC estimator shown
in (b).

properties of the model but also how it relates to the models already present in the
MFMC estimator. Figure 5(a) also shows that the variance of the MFMC estimator
that uses all six models f (1), . . . , f (6)—the high-fidelity model, three reduced models,
the data-fit model, and the SVM model—is only slightly lower than the variance of
the MFMC estimator that uses the three models f (1), f (2), f (5). This again confirms
that the contribution of a surrogate models to the variance reduction depends on how
the surrogate model complements the models already present in the MFMC estima-
tor. Note that the variance Var[ŝ] of the MFMC estimator can be estimated without
model evaluations from the sample variances and the sample correlation coe�cients
with (3.6), and thus it is a computationally e�cient guide for adding surrogate mod-
els to the MFMC estimator. The estimated MSE shown in Figure 5(b) confirms the
variance reduction results in Figure 5(a).

Figure 6 reports the relative share of each model in the total number of model
evaluations, i.e., in the total number of samples. The shares of the models vary by
orders of magnitude between the high-fidelity, the reduced, the data-fit, and the SVM
models, reflecting their correlations and costs. Note that the relative shares of the
models are independent of the computational budget p, because all components of
m⇤ scale linearly with p; see Theorem 3.4.

We use the sample variances and the sample correlation coe�cients to determine
the number of model evaluations m and the coe�cients ↵. Table 2 compares sam-
ple variances and sample correlation coe�cients computed from 10, 100, and 1000
samples. The di↵erent number of samples leads to di↵erent estimates. Note that
even though the sample variances �̄i, i = 1, . . . , k, change by a factor of two when
increasing the sample size from 10 to 100, the ratios �̄1/�̄i, i = 1, . . . , k change only
slightly. Since only the ratios �̄1/�̄i, i = 1, . . . , k, enter the computation of the co-
e�cients ↵, the variations in the sample variances have only a minor e↵ect on the
coe�cients ↵. This is confirmed by Figure 7, which shows that the perturbations in
the sample variances and the sample correlation coe�cients have a small e↵ect on the
estimated MSE of the MFMC estimator and on the distribution of the work; see also
the discussion in section 3.4 and Figure 2.
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c1/c2 = 102 and ρ1,2 = 0.99999

Note there are no assumptions
on the surrogate, i.e., no bounds
on

|f (1)(x)− f (i)(x)|

Only require the correlations ρ1,i



Peherstorfer et al. solve the optimization problem

min
m∈Rk ,α2,...,αk∈R

Var(ŝ)

s.t. m1 > 0

mi > mi−1

m>c = budget

for given simulator costs c1, . . . , ck .
The solution is a function of correlations ρ1,i = cor(f (1)(X ), f (i)(X )). 
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Fig. 5. Plate model: The plot in (a) shows the variance of the MFMC estimator with two (high-
fidelity f (1), reduced f (2)), three (high-fidelity f (1), reduced f (2), data-fit f (5)), and all six models
f (1), . . . , f (6) (high-fidelity f (1), reduced f (2), f (3), f (4), data-fit f (5), and SVM f (6)). Compared to
the Monte Carlo method with the high-fidelity model only, a variance reduction of about four orders
of magnitude is achieved. This is similar to the speedup obtained with the MFMC estimator shown
in (b).

properties of the model but also how it relates to the models already present in the
MFMC estimator. Figure 5(a) also shows that the variance of the MFMC estimator
that uses all six models f (1), . . . , f (6)—the high-fidelity model, three reduced models,
the data-fit model, and the SVM model—is only slightly lower than the variance of
the MFMC estimator that uses the three models f (1), f (2), f (5). This again confirms
that the contribution of a surrogate models to the variance reduction depends on how
the surrogate model complements the models already present in the MFMC estima-
tor. Note that the variance Var[ŝ] of the MFMC estimator can be estimated without
model evaluations from the sample variances and the sample correlation coe�cients
with (3.6), and thus it is a computationally e�cient guide for adding surrogate mod-
els to the MFMC estimator. The estimated MSE shown in Figure 5(b) confirms the
variance reduction results in Figure 5(a).

Figure 6 reports the relative share of each model in the total number of model
evaluations, i.e., in the total number of samples. The shares of the models vary by
orders of magnitude between the high-fidelity, the reduced, the data-fit, and the SVM
models, reflecting their correlations and costs. Note that the relative shares of the
models are independent of the computational budget p, because all components of
m⇤ scale linearly with p; see Theorem 3.4.

We use the sample variances and the sample correlation coe�cients to determine
the number of model evaluations m and the coe�cients ↵. Table 2 compares sam-
ple variances and sample correlation coe�cients computed from 10, 100, and 1000
samples. The di↵erent number of samples leads to di↵erent estimates. Note that
even though the sample variances �̄i, i = 1, . . . , k, change by a factor of two when
increasing the sample size from 10 to 100, the ratios �̄1/�̄i, i = 1, . . . , k change only
slightly. Since only the ratios �̄1/�̄i, i = 1, . . . , k, enter the computation of the co-
e�cients ↵, the variations in the sample variances have only a minor e↵ect on the
coe�cients ↵. This is confirmed by Figure 7, which shows that the perturbations in
the sample variances and the sample correlation coe�cients have a small e↵ect on the
estimated MSE of the MFMC estimator and on the distribution of the work; see also
the discussion in section 3.4 and Figure 2.

D
ow

nl
oa

de
d 

06
/1

4/
18

 to
 1

31
.1

11
.5

.1
42

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Plate bending problem with
c1/c2 = 102 and ρ1,2 = 0.99999

Note there are no assumptions
on the surrogate, i.e., no bounds
on

|f (1)(x)− f (i)(x)|

Only require the correlations ρ1,i



Combining multifidelity MC with GP emulation

Imagine we have a expensive function f for which we want to estimate

Ef (X ) =

∫ 10

0

f (x)

10
dx



Combining multifidelity MC with GP emulation

Build a GP emulator:



Combining multifidelity MC with GP emulation
Use i) Monte Carlo, ii) just the GP, and iii) multifidelity Monte Carlo to
estimate the expectation. Repeat the procedure to get an idea of
sampling variation.

Total budget here is 10 expensive simulator evaluations, and I’ve assumed
c1

c2
= 105



Lower quality emulator

For a good emulator, the
MFMC estimate is worse than
the estimate which just naively
uses the GP.

However, the uncertainty
estimates for GP emulators are
often poor, particularly for
high dimensional problems.

For a poor emulator, MFMC
unbiases the estimate.



Problems of using GPs with MFMC

The method requires σ2
i = Varf (i)(X ) and ρ1,i .

I Estimating these is harder than estimating s = E(f (1)(x))
I Do poor estimates reduce or eliminate the benefit of MFMC?

When using GP emulators, for MFMC we’d need two or three
training sets

I train the emulator
I estimate the correlations and variances
I form the MFMC estimator

We can’t directly use the emulator training set to estimate
correlations.

I Can bootstrapping approaches reduce the number of simulator
evaluations necessary and give a MFMC-GP approach which is
guaranteed to be unbiased?
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IV: Communicating uncertainty is hard



Conclusion

UQ requires a synergy between statistics, applied maths, and domain
knowledge.

I Huge unexplored gap for stats-applied math cross over.
I Introducing physics based knowledge in ML also increasingly seen as

important

Probabilistic methods (primarily Bayesian methods) of UQ are the
mainstream - venture at your peril.

Escaping from ‘model-land’ is challenging.

Uncertainty is an uncomfortable position. But certainty is an absurd one.
Voltaire

As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality. Einstein

Prediction is very difficult, especially if its about the future. Niels Bohr.

Thank you for listening!
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