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What is Uncertainty Quantification (UQ)
Uncertainty Quantification (UQ) = statistics with complex models

@ determining statistical information about the uncertainty in an
output of interest that depends upon the complex model

@ A 'complex model’ is one that is expensive to evaluate.
Typical tasks
@ Uncertainty propagation

@ Parameter estimation

Sensitivity analysis
@ Design

@ Prediction

@ Decision making

UQ should be a synergy between statistics, applied mathematics and
domain sciences

No one trusts a model except the man who wrote it; everyone trusts an
observation except the man who made it, Harlow Shapely.



Why do we need UQ?

Atrial fibrillation

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.

@ Affects around 610,000 people in UK.

o Catheter ablation removes/isolates pathological tissue that
sustain/initiate AF.

@ 40% of patients subsequently experience atrial tachycardia (AT).


http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg

UQ in Patient Specific Cardiac Models
With Richard Clayton, Steve Neiderer, Jeremy Oakley
Aim: predict which AF patients will develop AT following ablation, and
then treat for both in a single procedure.
Use complex electrophysiology
simulation using monodomain
eqgn on shell anatomy.

Accurate predictions require
patient specific models, but
clinical data is sparse and
noisy.
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‘We need to
e Estimate conduction velocity on the atrium using ECG measurements
@ Infer tissues properties, including regions of fibrotic material
@ Predict AT pathways
@ Aid clinical decision making (accounting for uncertainty)



Recent progress in UQ

A good many times | have been present
at gatherings of [highly-educated] people...
who have with considerable gusto been
expressing their incredulity at the illiteracy
of scientists. Once or twice | have been
provoked and have asked the company how
many of them could describe the Second
Law of Thermodynamics. The response
was cold...Yet | was asking something
which is the scientific equivalent of: Have
you read a work of Shakespeare’s? C.P.
Snow, ‘The Two Cultures’
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A good many times | have been present
at gatherings of [highly-educated] people...
who have with considerable gusto been
expressing their incredulity at the illiteracy
of scientists. Once or twice | have been
provoked and have asked the company how
many of them could describe the Second
Law of Thermodynamics. The response
was cold...Yet | was asking something
which is the scientific equivalent of: Have
you read a work of Shakespeare’s? C.P.
Snow, ‘The Two Cultures’

@ Statisticians: ‘What about the real world?’

@ Applied maths: ‘Where is the theory? Error guarantees?’

@ Machine learning: ‘Why weren't we invited?’



Hot topics

Surrogate models
Calibration/parameter estimation

Model discrepancy

High dimensional problems

°
°

°

o Multi-fidelity models
°

@ Machine learning models
°

Communicating uncertainty
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Code uncertainty

Think of the simulator as a function

f:X—=Y

Monte Carlo (brute force) can be used for most tasks if sufficient
computational resource is available. But for long run times, we will only
know the simulator output at a small number of points:

@ All inference must be done using a finite ensemble of model runs
Dsim = {(xi, f(xi)) }i=1,..n

@ If 6 is not in the ensemble, then we are uncertainty about f(x) -
code uncertainty

e X C R19 then 1000 simulator runs is only enough for one point in
each corner of the design space.
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If the simulator is expensive, look to approximate it with a surrogate
@ coarse-grid approximations, projection-based reduced models, and
simplified physics models
@ Data-fit regression models - primarily Gaussian processes
(www.gpss.cc)

Prior Beliefs Posterior beliefs

A GP is a random procesxs indexed by x € X say, such that for every finite
set of indices, x1,...,Xn,

f = (f(x1),...,f(xn)) ~ multivariate Gaussian distribution
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Answer 1
Class of models is closed under various operations.

@ Closed under addition
f(:),L(:) ~ GP then (fi+fH)(:)~ GP
@ Closed under Bayesian conditioning, i.e., if we observe
D = (f(x1),...,f(xn))

then
f|D ~ GP

but with updated mean and covariance functions.

@ Closed under any linear operation. If £ is a linear operator, then
Lf ~ GP(Lm,LkLT)

e.g. %, J f(x)dx, Af are all GPs
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Answer 2: non-parametric/kernel regression

o Linear regression y = x ' 3 + € can be written solely in terms of inner

products x ' x.

3 = argmin|ly — XB|[5 + o?||8]]5
= XT(XXT +0%)7y (the dual form)

@ We know that we can replace x by a feature vector in linear
regression, e.g., ¢(x) = (1 x x? cos(x)) " etc.
@ For some features, inner product is equivalent to evaluating a kernel
T _
¢(x) ¢(x) = k(x,X)
where k: X x X — R is a semi-positive definite function.
Kernel trick: lift x into infinite dimensional feature space by

replacing inner products x ' x” by k(x,x’), but never evaluate these
features, only the n x n kernel matrix.

P =mKx)= Za,-k(x,x,-)
i=1
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Generally, we don’t think about features, we just choose a kernel. But
choosing a kernel is implicitly choosing features, and our model only
includes functions that are linear combinations of this set of features (the
Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

(x=c1)?

o) = (e B .. B )

then as N — oo then

60" 00x) = erp (-5

Although our simulator may not lie in the RKHS defined by k, this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the simulator than any class of models that
contains only a finite number of features.
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Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods!.
If we only knew the expectation and variance of some random variables,
X and Y, then how should we best do statistics?

It can been shown, that the best second-order inference we can do to
update our beliefs about X given Y is

E(X]Y) = E(X) + Cov(X, Y)Var(Y) (Y —E(Y))
which is exactly the Gaussian process update for the posterior mean.

So GPs are in some sense very natural approaches.

Istatistics without probability
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data to train to the other constraints?



Grey box models: physically obedient GPs
With Nigel Clarke

Black box methods use no knowledge of the underlying equations in the
model

Intrusive methods require complete knowledge

Can we develop 'grey-box’ methods?

E.g. suppose model output is f(x) where f is the solution of

Filf]=0
FLIF = w(x)

Can we find GP emulators that obey simpler constraints exactly, and use
data to train to the other constraints?
E.g., guarantee that V.f =0 or V x f = 0 etc.
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Grey box models: physically obedient GPs

Jidling et al. 2017
Simple idea: Suppose f = Gy[g] for some linear operator G, so that for
any function g, f satisfies Fx[f] = 0 for linear operator F.
e.g. if f:R?2 — R? and

fxz(a% %) e Flf] = V.f

o (4)

we have f = G,[g] satisfies Fyf = 0 for all functions g : R? — R.
If g ~ GP(m(-), k(-,-)) then

f = Gylg] ~ GP(Gx[m], GxkG.T)

then if

So we can train emulators of f that satisfy part of the model equations.
To find G such that F,G, we look for the null space of the operator
Fx.



[l1: Calibration

Inverse problems/Calibration/Parameter estimation/...

@ For most simulators we specify parameters 6 and i.c.s and the
simulator, f(0), generates output X.

@ The inverse-problem: observe data D, estimate parameter values 6
which explain the data.

Strepsirhini Haplorhini
1T 1

Bushbabies NewWorld  Old World
Monkeys

Lomurs and Lorses  Tarsiers Monkeys  Apes
N — :
‘species. ) S :‘\)

5, PLEISTOCENE

Puocene
wocene
g oucocene
2 Omomyiforms.
5 coome
: ‘Adapiforms =8 = = Oldestinou
fp—
[N & K/T-Boundary

LATE CRETACEOUS.
~— Inferred age of last common ancestor of iving primates.

Major sub-discipline within statistics.
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Inference under discrepancy

How should we do inference if the model is imperfect?
Data generating process
y~G

Model (complex simulator, finite dimensional parameter)
F = {Fg NS @}

If G = Fp, € F then we know what to do.

How should we proceed if
G¢F

Interest lies in inference of A not calibrated prediction.
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If fy(x) is our simulator, y the observation, then perhaps we can correct f
by modelling
y = fg«(x) + 9(x) where 6~ GP
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An appealing idea
Kennedy an O'Hagan 2001

Can we expand the class of models by adding a Gaussian process (GP) to
our simulator?

If fy(x) is our simulator, y the observation, then perhaps we can correct f
by modelling
y = fg«(x) + 9(x) where 6~ GP

This greatly expands F into a non-parametric world.



An appealing, but flawed, idea

Kennedy and O'Hagan 2001, Brynjarsdottir and O'Hagan 2014

Simulator Reality
0
fy(x) = Ox g() = fi 0 = 0.65, 2 = 20

Solid=model with true theta, dashed=truth

25

1.0

0.5
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An appealing, but flawed, idea
Bolting on a GP can correct your predictions, but won't necessarily fix
your inference,e.g.

@ No discrepancy:
y = fy(x) + N(0, %),
6 ~ N(0,100), 5% ~ I1(0.001,0.001)
o GP discrepancy:
y = fa(x) +6(x) + N(0,0?),
() ~ GP(-,")

No MD GP prior on MD

cy
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o We may still find G ¢ F
o ldentifiability



Dangers of non-parametric model extensions

There are (at least) two problems with this approach:
o We may still find G ¢ F
o ldentifiability

» A GP is an incredibly complex infinite dimensional model, which is not
necessarily identified even asymptotically. The posterior can
concentrate not on a point, but on some sub manifold of parameter
space, and the projection of the prior on this space continues to
impact the posterior even as more and more data are collected.

ie We never forget the prior, but the prior is too complex to understand



Dangers of non-parametric model extensions

There are (at least) two problems with this approach:

o We may still find G ¢ F
o ldentifiability

» A GP is an incredibly complex infinite dimensional model, which is not
necessarily identified even asymptotically. The posterior can
concentrate not on a point, but on some sub manifold of parameter
space, and the projection of the prior on this space continues to
impact the posterior even as more and more data are collected.

ie We never forget the prior, but the prior is too complex to understand
» Brynjarsdottir and O'Hagan 2014 try to model their way out of
trouble with prior information - which is great if you have it.



@ We can also have problems finding the true optima for the
hyperparameters, even in 1d problems:
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@ We can also have problems finding the true optima for the
hyperparameters, even in 1d problems:

— Mean — Mean
s . |xxx Data 2 xxx Data
10 Confidence Confidence
* 1
05 N
00 o
x x
-05 x
B
* x
-10
-2
-5
-20 -
0.0 0.2 04 06 08 10 0.0 02 0.4 0.6 0.8 10

e Wong et al 2017 impose identifiability (for § and ) by giving up and

identifying
" = argmin [(C() ~ f(x))2dn(x)

ROYAL

STATISTICAL isti

SOCIETY’ Statistical Methodology
DATA | EVIDENCE | DECISIONS

J. R. Statist. Soc. B (2017)
79, Part2, pp. 635-648

A frequentist approach to computer model
calibration
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Inferential approaches

@ Maximum likelihood /minimum-distance

e Bayes(ish)

e History matching (HM)/ABC type methods (thresholding)
How do these approaches behave for well-specified and mis-specified
models?

Try to understand why (at least anecdotally) HM and ABC seem to work
well in mis-specified cases.

What properties would we like our inferential approach to possess?
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Maximum likelihood
Maximum likelihood estimator

A

0, = arg max I(y]0)

If G = Fg, € F, then (under some conditions)
é,, — 0y almost surely as n — oo
V(B — o) = N(0.Z(60))

Asymptotic consistency, efficiency, normality.
If G¢&F

0, — 0" = arg mein Dki(G, Fy) almost surely

dG
:argm@in/logdl__edG

V(6 — 06) 2 N(O, V1)



Bayes

Bayesian posterior
m(0ly) o< w(y|0)m(6)
If G=Fy, € F
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Bernstein-von Mises theorem: we forget the prior, and get asymptotic
concentration and normality.
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If G=Fy, € F

7(0ly) 2 N(6o,Z72(60)) as  n — oo

Bernstein-von Mises theorem: we forget the prior, and get asymptotic
concentration and normality.
This also requires (a long list of) identifiability conditions to hold.

If G ¢ F, we still get asymptotic concentration (and possibly normality)
but to #* (the pseudo-true value).

“there is no obvious meaning for Bayesian analysis in this

17
case

Often with non-parametric models (eg GPs), we don't even get this
convergence to the pseudo-true value due to lack of identifiability.
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ABC (Approximate Bayesian computation)

Rejection Algorithm
@ Draw 6 from prior (+)

@ Accept 0 with probability oc w(y | 6)

Accepted 6 are independent draws from the posterior distribution,
(0| D).
If the likelihood, 7(D1#), is unknown:
‘Mechanical’ Rejection Algorithm
e Draw 6 from (")
e Simulate y’ ~ 7(y|@) from the computer model

@ Accept 0 if y = y/, i.e., if computer output equals observation




Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any 6. Instead,
there is an approximate version:
Uniform Rejection Algorithm

e Draw 6 from 7(0)

e Simulate y’ ~ 7(y|0)

@ Accept 0 if p(y,y') <e




Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any 6. Instead,
there is an approximate version:
Uniform Rejection Algorithm

e Draw 6 from 7(0)

e Simulate y’ ~ 7(y|0)

@ Accept 0 if p(y,y') <e

€ reflects the tension between computability and accuracy.

@ As € — 00, we get observations from the prior, 7(0).

e If e =0, we generate observations from (6 | y).



theta vs D Density

Density
00 02 04 06 08 10 12 14

0 ~ U[-10,10],  y ~ N(2(8 +2)8(6 — 2),0.1 + 6?)
ply,y)=ly=y'l, y=2
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History matching and ABC
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History matching seeks to find a NROY set

Pop=1{6: Sum(Fo,y) <3}

where

_[Er(Y) vl

SHM(Feay) VarF (Y)
[Z

ABC approximates the posterior as

7e(0) x W(G)E(HS(ﬁg,y)ge)

for some choice of S and ¢, and where /:_9 is estimated from the simulated
/

y'.
For ABC, typically S(Fg,y) = p(n(y),n(y’)), and n(-) is a lower
dimensional summary.

They have thresholding of a score in common and are algorithmically
comparable.
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@ Potentially use generalised scores/loss-functions

@ The thresholding type nature potentially makes them somewhat
conservative
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What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?

o Consistency?
» | don't want inconsistency.

o : : 2

Frequency properties?

» | wouldn't object but seems impossible for subjective priors.

Coherence?

Robustness to small mis-specifications?

Ease of specification?
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II1: Multi-fidelity models

Sequence of models, () : X — Y for i =1,..., k of decreasing fidelity

High-fidelity model Low-fidelity models
foi = fH x5 Y fo=FfD: x>y
Accurate(?) and costly Less accurate and less costly

a)

b)

The low-fidelity models estimate the same quantity from the same inputs,
but with lower cost and lower accuracy.



Example: Multi-fidelity Uncertainty Propagation

Control variates

Basic idea:
@ m an unbiased estimator of u so that E(m) = u
@ t a random variable with E(t) =7
@ Then
m*=m+c(t —7)

is also an unbiased estimator of u for any c.



Example: Multi-fidelity Uncertainty Propagation

Control variates

Basic idea:
@ m an unbiased estimator of u so that E(m) = u
@ t a random variable with E(t) =7
@ Then
m*=m+c(t—r)
is also an unbiased estimator of u for any c.
The optimal choice is ¢ = —Cov(m, t)/Var(t) and then

Var(m*) = (1 — p?)Var(m)
where p = corr(m, t)

So if we can find an estimator t that is highly correlated with m we can
greatly improve our estimator.
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1 & _a
~ () = g
j=1

We create control variates by nesting the evaluation of the low-fidelity
simulators.



Example: Multi-fidelity Uncertainty Propagation
Peherstorfer, Willcox, Gunzburger 2016

Target: s = Ef(N(X)
1 m
il W) = )
2 fH0g) = m
j=1

We create control variates by nesting the evaluation of the low-fidelity
simulators.

We'll do my evaluations of f(1), m, evaluations of £(2) etc with m; < mjy1
Given random samples X1,..., Xm;, ..., Xm,, ..., Xm, form estimator

k
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Example: Multi-fidelity Uncertainty Propagation
Peherstorfer, Willcox, Gunzburger 2016

Target: s = Ef(N(X)
1 m
il W) = )
2 fH0g) = m
j=1

We create control variates by nesting the evaluation of the low-fidelity
simulators.
We'll do my evaluations of (1), ms, evaluations of (@ etc with m; < mjt1

Given random samples X1,..., Xm;, ..., Xm,, ..., Xm, form estimator
k
Z yml - _'(nl) 1)
i=2

$ is obviously unbiased for s.



Peherstorfer et al. solve the optimization problem

min Var(8)
mERk,ag,...,akER
st.m >0
m; > mj_,

m' ¢ = budget

for given simulator costs ¢y, ..., ck.
The solution is a function of correlations p; ; = cor(f()(X), f()(X)).



Peherstorfer et al. solve the optimization problem

min Var(8)
mGRk,ag,...,akER
st. m >0
m; > mj_,

m' ¢ = budget

for given simulator costs ¢y, ..., ck.
The solution is a function of correlations p; ; = cor(f()(X), f()(X)).
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one model (Moﬂte Carfo) - e Plate bendmg prOblem with
1e+00 r two models # C]_/C2 — 102 and P12 = 0.99999
three models )
le02 six models & | @ Note there are no assumptions
le-04 +

on the surrogate, i.e., no bounds

1606 | ] on
le-08 | ] |f(1)(X) - f(’)(X)|

le02 1e-01 1le+00 let01 le+02 let03 , .
budet p @ Only require the correlations py

variance Var[s]




Combining multifidelity MC with GP emulation

Imagine we have a expensive function f for which we want to estimate

10 X
Ef(X) = /0 fio)dx

12




Combining multifidelity MC with GP emulation

Build a GP emulator:

20 true in red, surrogate blue

— Mean
xxx Data

Br Confidence |]




Combining multifidelity MC with GP emulation
Use i) Monte Carlo, ii) just the GP, and iii) multifidelity Monte Carlo to
estimate the expectation. Repeat the procedure to get an idea of
sampling variation.

Ponly, green=MFMC

Gl
b Total budget=10 m129 m2=13702

10

~
e

L AN
1 2 3 4 5 6 7 8 9
E(f(Z))

Total budget here is 10 expensive simulator evaluations, and I've assumed

2108
(%)



Lower quality emulator

20 —

e in red, surrogate blue

— Mean
xxx Data
Confidence ||

blue=MC, red=GPonl =MFMC
Total budget=10 m128 m2=13702

i

3 4 5 6 7 8 9 10
E(f(Z))

For a good emulator, the
MFEMC estimate is worse than
the estimate which just naively
uses the GP.

However, the uncertainty
estimates for GP emulators are
often poor, particularly for
high dimensional problems.

For a poor emulator, MFMC
unbiases the estimate.



Problems of using GPs with MFMC

o The method requires 62 = Varf()(X) and py ;.

» Estimating these is harder than estimating s = E(f(1)(x))
» Do poor estimates reduce or eliminate the benefit of MFMC?
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training sets

> train the emulator

> estimate the correlations and variances

» form the MFMC estimator

We can’t directly use the emulator training set to estimate
correlations.



Problems of using GPs with MFMC

o The method requires 62 = Varf()(X) and py ;.

» Estimating these is harder than estimating s = E(f(1)(x))
» Do poor estimates reduce or eliminate the benefit of MFMC?

@ When using GP emulators, for MFMC we'd need two or three
training sets
> train the emulator
> estimate the correlations and variances
» form the MFMC estimator
We can’t directly use the emulator training set to estimate
correlations.
» Can bootstrapping approaches reduce the number of simulator
evaluations necessary and give a MFMC-GP approach which is
guaranteed to be unbiased?



IV: Communicating uncertainty is hard

Maths at Sheffield

©) @mathsatshefuni

Following IV

Professor Richard Wilkinson worked with The
Open University to work out the probability
that governments will meet key carbon
emissions targets to prevent dangerous
climate change
g

Dangerous climate change is likely, concludes new research

Anew study has revealed sensitive regions of the world are still at risk from the
dangerous and potentially irreversible effects of climate change; even if we meet ..
sheffield.ac.uk
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Science News & Share - Blog D Cite

New Statistical Model Moves Human Evolution Back Three Million
Years ,
ScienceDaily (Nov. 5, 2010) — Evolutionary -
divergence of humans and chimpanzees likely A
occurred some 8 million years ago rather than the N

5 million year estimate widely accepted by
scientists, a new statistical model suggests.

Ty

The revised estimate of when the
See Also: human species parted ways from its »
relatves should
s pos S b ks ,
* Evolutionary Biology - tne history of human evolution, said
> Nalure Robert D. Martin, curator of biological "
% of y
: Statistics ) »
L " Biology. occurred some 8 million years ago, rather than the
Fossils & Ruins : v 5 millon year estimate widsly accepted by
« Fossis ik sciontist
« Evolution ‘anthropologists and molecular
biologists, Martin has long soughtto ~ Ads by Google
« Hominidae —
« Multiregional various species with the fossil record dey
hypothesis to get a more compiete picture. e NG S Mo sfioue L hoee:




Conclusion

@ UQ requires a synergy between statistics, applied maths, and domain
knowledge.

» Huge unexplored gap for stats-applied math cross over.
» Introducing physics based knowledge in ML also increasingly seen as
important

@ Probabilistic methods (primarily Bayesian methods) of UQ are the
mainstream - venture at your peril.

@ Escaping from ‘model-land’ is challenging.



Conclusion

@ UQ requires a synergy between statistics, applied maths, and domain
knowledge.
» Huge unexplored gap for stats-applied math cross over.
» Introducing physics based knowledge in ML also increasingly seen as
important
@ Probabilistic methods (primarily Bayesian methods) of UQ are the
mainstream - venture at your peril.

@ Escaping from ‘model-land’ is challenging.

Uncertainty is an uncomfortable position. But certainty is an absurd one.
Voltaire

As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality. Einstein

Prediction is very difficult, especially if its about the future. Niels Bohr.

Thank you for listening!



