# Adjoint-aided inference of Gaussian process driven differential equations 

Paterne Gahungu ${ }^{1}$, Christopher Lanyon ${ }^{2}$, Mauricio Alvarez ${ }^{3}$, Engineer Bainomugisha ${ }^{4}$, Michael Smith ${ }^{2}$ Richard Wilkinson ${ }^{5}$

${ }^{1}$ Department of Computer Science, University of Burundi<br>${ }^{2}$ Department of Computer Science, University of Sheffield<br>${ }^{3}$ Department of Computer Science, University of Manchester<br>${ }^{4}$ Department of Computer Science, Makerere University<br>${ }^{5}$ School of Mathematical Sciences, University of Nottingham

September 2022

## Project team



Funders:

Breathe Clean

EPSRC
Engineering and Physical Sciences
Google
Impact Challenge

## Outline

－Motivating example：Air pollution in Kampala
－Inference for linear systems：

$$
\mathcal{L} u=f
$$

Given noisy measurements of $u$ can we infer $f$ ？
－Adjoints

$$
\mathcal{L}^{*} v \text { such that }\langle\mathcal{L} u, v\rangle=\left\langle u, \mathcal{L}^{*} v\right\rangle
$$

－Examples

## Air pollution

7 million people die every year from exposure to air pollution, the majority in LMICs.


The UK government estimates the annual mortality of human-made air pollution to be 28,000 to 36,000 deaths, and costs UK $\sim £ 10^{10}$

## Kampala and AirQo



- AirQo, a portable air quality monitor
- Measures particulate matter
- Solar powered or other available power sources
- Cellular data transmission
- Weather proof for unique African settings


Accurate gravimetric sensors costs $\$ 10,000$ s.
AirQo have developed cheap (but less accurate) sensors that cost $<\$ 100$ and have deployed them around Kampala.
The sensors measure PM2.5 and PM10.

## Kampala：PM2．5 levels at 12pm on 23 Feb 2022



AQI Key

Exeter yesterday： $3.1 \mu \mathrm{~g} / \mathrm{m}^{3}$ 20 year average for UK is $11 \mu \mathrm{~g} / \mathrm{m}^{3}$

Google.org * @Googleorg•12h
Air pollution is the largest single environmental health risk. @AirQoProject is building \& deploying low-cost air sensing devices across African cities to drive awareness and action to improve air quality and help decision makers: goo.gle/3fozTDn

## Using Al to reduce air pollution across African cities

Google.org $\left\lvert\, \begin{gathered}\text { SUstanabie } \\ \text { BuFapmen } \\ \text { GQALS }\end{gathered}\right.$

## ALT



## Modelling air pollution

Model pollution concentration $u(x, t)$ at location $x$ at time $t$ ．
We want to
－infer air pollution（and predict future pollution levels）
－infer pollution sources
Standard non－parametric models（e．g．，Gaussian processes）unable to do this．

## Modelling air pollution

Model pollution concentration $u(x, t)$ at location $x$ at time $t$.
We want to

- infer air pollution (and predict future pollution levels)
- infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do this.
Instead build data models that know some physics

$$
\frac{\partial u}{\partial t}=\nabla \cdot\left(\mathbf{p}_{1} u\right)+\nabla \cdot\left(p_{2} \nabla u\right)-p_{3} u+\sum_{i} S_{i}
$$

Here

- $S_{i}(x, t)$ are different pollution sources,
- we may choose to model different pollution types (PM2.5, PM10 etc)
- $\mathbf{p}_{1}$ is related to the wind speed, $p_{2}$ is the diffusion tensor, and $p_{3}$ the reaction rate.


## Modelling air pollution

Model pollution concentration $u(x, t)$ at location $x$ at time $t$.
We want to

- infer air pollution (and predict future pollution levels)
- infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do this.
Instead build data models that know some physics

$$
\frac{\partial u}{\partial t}=\nabla \cdot\left(\mathbf{p}_{1} u\right)+\nabla \cdot\left(p_{2} \nabla u\right)-p_{3} u+\sum_{i} S_{i}
$$

Here

- $S_{i}(x, t)$ are different pollution sources,
- we may choose to model different pollution types (PM2.5, PM10 etc)
- $\mathbf{p}_{1}$ is related to the wind speed, $p_{2}$ is the diffusion tensor, and $p_{3}$ the reaction rate.
Hypothesis: The inclusion of mechanistic behaviour will allow us to infer sources, plan interventions, and predict better.


## Computational challenge

Given noisy measurements of pollution levels $z_{i}=h_{i}(u)+e_{i}$.
Can we infer

- the concentration field $u(x, t)$ ?
- the unknown source terms $S_{i}(x, t)$ ?
- the diffusion, advection and reaction parameters? Hyperparameters etc?


## Computational challenge

Given noisy measurements of pollution levels $z_{i}=h_{i}(u)+e_{i}$.
Can we infer

- the concentration field $u(x, t)$ ?
- the unknown source terms $S_{i}(x, t)$ ?
- the diffusion, advection and reaction parameters? Hyperparameters etc?
We will use Gaussian process priors for $S_{i}(x, t)$

$$
S_{i} \sim G P\left(m_{i}(\cdot), k_{i}(\cdot, \cdot)\right)
$$

where we carefully choose each prior mean and covariance function:

- Industrial regions
- Major roads and power stations
- Varying affluence levels between regions (related to paving of roads, burning of garbage, cooking on solid fuel stoves etc).


## General linear systems

$$
\mathcal{L} u=f
$$

## Linear systems with unknown parameters

Consider

$$
\mathcal{L}_{p} u=f
$$

where

- $\mathcal{L}_{p}=$ linear operator with non-linear dependence upon parameters $p$.
- $f=$ forcing function.
- $u$ is the quantity being modelled, e.g. pollution concentration.

Finding $u$ given $p$ and $f$ is the forward problem.

## Linear systems with unknown parameters

Consider

$$
\mathcal{L}_{p} u=f
$$

where

- $\mathcal{L}_{p}=$ linear operator with non-linear dependence upon parameters $p$.
- $f=$ forcing function.
- $u$ is the quantity being modelled, e.g. pollution concentration.

Finding $u$ given $p$ and $f$ is the forward problem.
Inverse problem: infer $u, f, p$ given noisy observations of $u$

$$
z=h(u)+N(0, \Sigma)
$$

Note: MCMC likely to be prohibitively expensive: each iteration requires a solution of the forward problem.

## Linear systems with unknown parameters

Least squares/maximum-likelihood estimation:

$$
\begin{aligned}
\min _{p, f} & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f .
\end{aligned}
$$

Bayes: find

$$
\pi(p, f \mid z)
$$

## Linear systems with unknown parameters

Least squares／maximum－likelihood estimation：

$$
\begin{aligned}
\min _{p, f} & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f .
\end{aligned}
$$

Bayes：find

$$
\pi(p, f \mid z)
$$

In both cases it would be useful to marginalize parameters，and compute derivatives with respect to the parameters．

## Linear systems with unknown parameters

Least squares/maximum-likelihood estimation:

$$
\begin{aligned}
\min _{p, f} & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f
\end{aligned}
$$

Bayes: find

$$
\pi(p, f \mid z)
$$

In both cases it would be useful to marginalize parameters, and compute derivatives with respect to the parameters.

- Adjoints can help!


## What is an adjoint?

See Estep 2004
Let $\mathcal{L}: \mathcal{U} \mapsto \mathcal{V}$ be a linear operator between Banach spaces, and let $\mathcal{U}^{*}$ be the dual space of $\mathcal{U}$ : the space of bounded linear functionals on $\mathcal{U}$.

## What is an adjoint?

See Estep 2004
Let $\mathcal{L}: \mathcal{U} \mapsto \mathcal{V}$ be a linear operator between Banach spaces, and let $\mathcal{U}^{*}$ be the dual space of $\mathcal{U}$ : the space of bounded linear functionals on $\mathcal{U}$.

Consider $v^{*} \in \mathcal{V}^{*}$ and define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto v^{*}(\mathcal{L}(u)) .
$$

## What is an adjoint?

See Estep 2004
Let $\mathcal{L}: \mathcal{U} \mapsto \mathcal{V}$ be a linear operator between Banach spaces, and let $\mathcal{U}^{*}$ be the dual space of $\mathcal{U}$ : the space of bounded linear functionals on $\mathcal{U}$.

Consider $v^{*} \in \mathcal{V}^{*}$ and define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto v^{*}(\mathcal{L}(u)) .
$$

Then $F$ is a bounded linear functional on $\mathcal{U}$, i.e. $F=u^{*}$ for some $u^{*} \in \mathcal{U}^{*}$.

Thus for all $v^{*} \in \mathcal{V}^{*}$ we've associated a unique $u^{*} \in \mathcal{U}^{*}$.

## What is an adjoint?

See Estep 2004
Let $\mathcal{L}: \mathcal{U} \mapsto \mathcal{V}$ be a linear operator between Banach spaces, and let $\mathcal{U}^{*}$ be the dual space of $\mathcal{U}$ : the space of bounded linear functionals on $\mathcal{U}$.

Consider $v^{*} \in \mathcal{V}^{*}$ and define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto v^{*}(\mathcal{L}(u)) .
$$

Then $F$ is a bounded linear functional on $\mathcal{U}$, i.e. $F=u^{*}$ for some $u^{*} \in \mathcal{U}^{*}$.

Thus for all $v^{*} \in \mathcal{V}^{*}$ we've associated a unique $u^{*} \in \mathcal{U}^{*}$.

$$
\mathcal{L}^{*}: v^{*} \mapsto u^{*} .
$$

$\mathcal{L}^{*}$ is the adjoint of $\mathcal{L}$, and is itself a bounded linear operator.

## What is an adjoint?

## See Estep 2004

Let $\mathcal{L}: \mathcal{U} \mapsto \mathcal{V}$ be a linear operator between Banach spaces, and let $\mathcal{U}^{*}$ be the dual space of $\mathcal{U}$ : the space of bounded linear functionals on $\mathcal{U}$.

Consider $v^{*} \in \mathcal{V}^{*}$ and define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto v^{*}(\mathcal{L}(u)) .
$$

Then $F$ is a bounded linear functional on $\mathcal{U}$, i.e. $F=u^{*}$ for some $u^{*} \in \mathcal{U}^{*}$.

Thus for all $v^{*} \in \mathcal{V}^{*}$ we've associated a unique $u^{*} \in \mathcal{U}^{*}$.

$$
\mathcal{L}^{*}: v^{*} \mapsto u^{*} .
$$

$\mathcal{L}^{*}$ is the adjoint of $\mathcal{L}$, and is itself a bounded linear operator.
By definition

$$
v^{*}(\mathcal{L}(u))=\mathcal{L}^{*} v^{*}(u)
$$

which is known as the bilinear identity.

## Adjoints in Hilbert space

## See Estep 2004

When $\mathcal{U}$ and $\mathcal{V}$ are Hilbert spaces

- i.e. vector spaces with an inner product $\left\langle u, u^{\prime}\right\rangle$,
then we can identify them with their dual space:
- by the Riesz representation theorem if $v^{*} \in \mathcal{V}^{*}$ there exists $v \in \mathcal{V}$ such that $v^{*}=\langle\cdot, v\rangle_{\mathcal{V}}$ (and vice versa...).


## Adjoints in Hilbert space

See Estep 2004
When $\mathcal{U}$ and $\mathcal{V}$ are Hilbert spaces

- i.e. vector spaces with an inner product $\left\langle u, u^{\prime}\right\rangle$,
then we can identify them with their dual space:
- by the Riesz representation theorem if $v^{*} \in \mathcal{V}^{*}$ there exists $v \in \mathcal{V}$ such that $v^{*}=\langle\cdot, v\rangle_{\mathcal{V}}$ (and vice versa...).

In this case, the bilinear identity reduces to

$$
\langle\mathcal{L} u, v\rangle_{\mathcal{V}}=v^{*}(\mathcal{L}(u))=\mathcal{L}^{*} v^{*}(u)=\left\langle u, \mathcal{L}^{*} v\right\rangle_{\mathcal{U}} .
$$

where we now consider $\mathcal{L}^{*}: \mathcal{V} \rightarrow \mathcal{U}$.

## Adjoints in Hilbert space

## See Estep 2004

When $\mathcal{U}$ and $\mathcal{V}$ are Hilbert spaces

- i.e. vector spaces with an inner product $\left\langle u, u^{\prime}\right\rangle$,
then we can identify them with their dual space:
- by the Riesz representation theorem if $v^{*} \in \mathcal{V}^{*}$ there exists $v \in \mathcal{V}$ such that $v^{*}=\langle\cdot, v\rangle_{\mathcal{V}}$ (and vice versa...).

In this case, the bilinear identity reduces to

$$
\langle\mathcal{L} u, v\rangle_{\mathcal{V}}=v^{*}(\mathcal{L}(u))=\mathcal{L}^{*} v^{*}(u)=\left\langle u, \mathcal{L}^{*} v\right\rangle_{\mathcal{U}} .
$$

where we now consider $\mathcal{L}^{*}: \mathcal{V} \rightarrow \mathcal{U}$.
Example 0: In the finite dimensional case, $\mathcal{L} u=A u$ for some matrix $A$. Then

$$
\mathcal{L}^{*} v=A^{\top} v
$$

That is

$$
\langle A u, v\rangle=\left\langle u, A^{\top} v\right\rangle
$$

## Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

## Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

Use the bilinear identity to find the adjoint of

$$
\mathcal{L} u=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u \quad \text { with } u(0)=\dot{u}(0)=0
$$

## Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

Use the bilinear identity to find the adjoint of

$$
\begin{gathered}
\mathcal{L} u=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u \quad \text { with } u(0)=\dot{u}(0)=0 \\
\langle\mathcal{L} u, v\rangle=\int_{0}^{T} \mathcal{L} u(t) v(t) \mathrm{d} t=\int_{0}^{T}(-D \ddot{u}+\nu \dot{u}+u) v \mathrm{~d} t \\
=[-D \dot{u} v]_{0}^{T}+\int_{0}^{T} D \dot{u} \dot{v} \mathrm{~d} t+[\nu u v]_{0}^{T}-\int_{0}^{T} \nu u \dot{v} d t+\int_{0}^{T} u v \mathrm{~d} t
\end{gathered}
$$

## Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

Use the bilinear identity to find the adjoint of

$$
\begin{aligned}
& \mathcal{L} u=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u \quad \text { with } u(0)=\dot{u}(0)=0 \\
&\langle\mathcal{L} u, v\rangle=\int_{0}^{T} \mathcal{L} u(t) v(t) \mathrm{d} t=\int_{0}^{T}(-D \ddot{u}+\nu \dot{u}+u) v \mathrm{~d} t \\
&=[-D \dot{u} v]_{0}^{T}+\int_{0}^{T} D \dot{u} \dot{v} \mathrm{~d} t+[\nu u v]_{0}^{T}-\int_{0}^{T} \nu u \dot{v} d t+\int_{0}^{T} u v \mathrm{~d} t \\
&=[D u \dot{v}]_{0}^{T}-\int_{0}^{T} D u \ddot{v} \mathrm{~d} t-\int_{0}^{T} \nu u \dot{v} d t+\int_{0}^{T} u v \mathrm{~d} t \\
&=\int_{0}^{T}(-D \ddot{v}-\nu \dot{v}+v) u \mathrm{~d} t \quad \text { when } v(T)=\dot{v}(T)=0 \\
&=\left\langle u, \mathcal{L}^{*} v\right\rangle
\end{aligned}
$$

So the linear operator

$$
\mathcal{L} u=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u \quad \text { with } u(0)=\dot{u}(0)=0
$$

has adjoint operator

$$
\mathcal{L}^{*} v=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}-\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) v \quad \text { with } v(T)=\dot{v}(T)=0
$$

Note that initial conditions on the original system translated to final conditions on the adjoint system.

## Benefits of adjoints

$$
\begin{aligned}
\min _{p, f} S(p, f)= & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f .
\end{aligned}
$$

(1) If $f \equiv f_{q}$ depends linearly on some parameters $q$ we can easily compute the least squares estimator

$$
\hat{q}(p)=\arg \min _{q} S\left(p, f_{q}\right)
$$

## Benefits of adjoints

$$
\begin{aligned}
\min _{p, f} S(p, f)= & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f .
\end{aligned}
$$

(1) If $f \equiv f_{q}$ depends linearly on some parameters $q$ we can easily compute the least squares estimator

$$
\hat{q}(p)=\arg \min _{q} S\left(p, f_{q}\right)
$$

- If $z=h(u)+N(0, \Sigma)$, and $q \sim N(m, C)$ a priori, then

$$
q \mid z, p=N\left(m^{*}, C^{*}\right)
$$

## Benefits of adjoints

$$
\begin{aligned}
\min _{p, f} S(p, f)= & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f .
\end{aligned}
$$

(1) If $f \equiv f_{q}$ depends linearly on some parameters $q$ we can easily compute the least squares estimator

$$
\hat{q}(p)=\arg \min _{q} S\left(p, f_{q}\right)
$$

- If $z=h(u)+N(0, \Sigma)$, and $q \sim N(m, C)$ a priori, then

$$
q \mid z, p=N\left(m^{*}, C^{*}\right)
$$

(2) We can compute $\frac{\mathrm{d} S}{\mathrm{~d} p}\left(p, f_{q}\right)$ and approximate $\frac{\mathrm{d} S}{\mathrm{~d} p}\left(p, f_{\hat{q}(p)}\right)$

## Benefits of adjoints

$$
\begin{aligned}
\min _{p, f} S(p, f)= & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f .
\end{aligned}
$$

(1) If $f \equiv f_{q}$ depends linearly on some parameters $q$ we can easily compute the least squares estimator

$$
\hat{q}(p)=\arg \min _{q} S\left(p, f_{q}\right)
$$

- If $z=h(u)+N(0, \Sigma)$, and $q \sim N(m, C)$ a priori, then

$$
q \mid z, p=N\left(m^{*}, C^{*}\right)
$$

(2) We can compute $\frac{\mathrm{d} S}{\mathrm{~d} p}\left(p, f_{q}\right)$ and approximate $\frac{\mathrm{d} S}{\mathrm{~d} p}\left(p, f_{\hat{q}(p)}\right)$

This may allow for efficient inference of $p$ and $f$

## Efficient inference for $q$

For our linear system $\mathcal{L} u=f$ ，suppose

$$
\begin{equation*}
f(\cdot)=\sum_{m=1}^{M} q_{m} \phi_{m}(\cdot) \tag{1}
\end{equation*}
$$

When $\mathcal{U}$ and $\mathcal{V}$ are spaces of functions on $\mathcal{X}$ ，the $\phi_{m}$ will also be functions on $\mathcal{X}$ ．In the finite－dimensional case，the $\phi_{m}$ will be vectors of length $n$ ．

## Efficient inference for $q$

For our linear system $\mathcal{L} u=f$, suppose

$$
\begin{equation*}
f(\cdot)=\sum_{m=1}^{M} q_{m} \phi_{m}(\cdot) \tag{1}
\end{equation*}
$$

When $\mathcal{U}$ and $\mathcal{V}$ are spaces of functions on $\mathcal{X}$, the $\phi_{m}$ will also be functions on $\mathcal{X}$. In the finite-dimensional case, the $\phi_{m}$ will be vectors of length $n$. If the observation operator is linear

$$
h_{i}(u)=\left\langle h_{i}, u\right\rangle
$$

we can consider the $n$ adjoint systems

$$
\mathcal{L}_{p}^{*} v_{i}=h_{i} \text { for } i=1, \ldots, n
$$

## Efficient inference for $q$

For our linear system $\mathcal{L} u=f$, suppose

$$
\begin{equation*}
f(\cdot)=\sum_{m=1}^{M} q_{m} \phi_{m}(\cdot) \tag{1}
\end{equation*}
$$

When $\mathcal{U}$ and $\mathcal{V}$ are spaces of functions on $\mathcal{X}$, the $\phi_{m}$ will also be functions on $\mathcal{X}$. In the finite-dimensional case, the $\phi_{m}$ will be vectors of length $n$. If the observation operator is linear

$$
h_{i}(u)=\left\langle h_{i}, u\right\rangle
$$

we can consider the $n$ adjoint systems

$$
\mathcal{L}_{p}^{*} v_{i}=h_{i} \text { for } i=1, \ldots, n
$$

Then

$$
\begin{aligned}
h_{i}(u)=\left\langle h_{i}, u\right\rangle & =\left\langle\mathcal{L}_{p}^{*} v_{i}, u\right\rangle=\left\langle v_{i}, \mathcal{L}_{p} u\right\rangle \\
& =\left\langle v_{i}, f\right\rangle
\end{aligned}
$$

by the bilinear identity.

The $i^{\text {th }}$ observation is the inner product between the unknown forcing function $f$ and the solution of the $i^{t h}$ adjoint system.

$$
z_{i}=h_{i}(u)+e_{i}=\left\langle v_{i}, f\right\rangle+e_{i} \quad \text { where } \quad \mathcal{L}_{p}^{*} v_{i}=h_{i}
$$

The $i^{\text {th }}$ observation is the inner product between the unknown forcing function $f$ and the solution of the $i^{t h}$ adjoint system．

$$
z_{i}=h_{i}(u)+e_{i}=\left\langle v_{i}, f\right\rangle+e_{i} \quad \text { where } \quad \mathcal{L}_{p}^{*} v_{i}=h_{i}
$$

This doesn＇t appear to have helped．
－To evaluate the likelihood（or sum of squares）we have gone from needing a single forward solve，to $n$ adjoint solves：an $n$－fold increase in computational cost！

The $i^{\text {th }}$ observation is the inner product between the unknown forcing function $f$ and the solution of the $i^{t h}$ adjoint system.

$$
z_{i}=h_{i}(u)+e_{i}=\left\langle v_{i}, f\right\rangle+e_{i} \quad \text { where } \quad \mathcal{L}_{p}^{*} v_{i}=h_{i}
$$

This doesn't appear to have helped.

- To evaluate the likelihood (or sum of squares) we have gone from needing a single forward solve, to $n$ adjoint solves: an $n$-fold increase in computational cost!
The benefit arises if there is a linear dependence upon the parameters:

$$
h_{i}(u)=\left\langle v_{i}, \sum_{m=1}^{M} q_{m} \phi_{m}\right\rangle=\sum_{m=1}^{M} q_{m}\left\langle v_{i}, \phi_{m}\right\rangle
$$

This is a linear model!

The complete observation vector $z$ can then be written as

$$
\begin{align*}
z & =\left(\begin{array}{ccc}
\left\langle v_{1}, \phi_{1}\right\rangle & \ldots & \left\langle v_{1}, \phi_{M}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, \phi_{1}\right\rangle & \ldots & \left\langle v_{n}, \phi_{M}\right\rangle
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
\\
q_{M}
\end{array}\right)+e  \tag{2}\\
& =\Phi q+e
\end{align*}
$$

The complete observation vector $z$ can then be written as

$$
\begin{align*}
z & =\left(\begin{array}{ccc}
\left\langle v_{1}, \phi_{1}\right\rangle & \ldots & \left\langle v_{1}, \phi_{M}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, \phi_{1}\right\rangle & \ldots & \left\langle v_{n}, \phi_{M}\right\rangle
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
\\
q_{M}
\end{array}\right)+e  \tag{2}\\
& =\Phi q+e
\end{align*}
$$

Thus

$$
\begin{array}{rl}
\min _{q} & S(q)=(z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f_{q}
\end{array}
$$

is equivalent to

$$
\min _{q} S(q)=(z-\Phi q)^{\top}(z-\Phi q)
$$

The complete observation vector $z$ can then be written as

$$
\begin{align*}
z & =\left(\begin{array}{ccc}
\left\langle v_{1}, \phi_{1}\right\rangle & \ldots & \left\langle v_{1}, \phi_{M}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, \phi_{1}\right\rangle & \ldots & \left\langle v_{n}, \phi_{M}\right\rangle
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
\\
q_{M}
\end{array}\right)+e  \tag{2}\\
& =\Phi q+e
\end{align*}
$$

Thus

$$
\begin{array}{rl}
\min _{q} & S(q)=(z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f_{q}
\end{array}
$$

is equivalent to

$$
\min _{q} \quad S(q)=(z-\Phi q)^{\top}(z-\Phi q)
$$

The solution is thus

$$
\hat{q}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} z
$$

with $\operatorname{Var}(\hat{q})=\sigma^{2}\left(\Phi^{\top} \Phi\right)^{-1}$ when $e_{i}$ are uncorrelated and homoscedastic with variance $\sigma^{2}$.

In a Bayesian setting, if we assume a priori that $q \sim \mathcal{N}_{M}\left(\mu_{0}, \Sigma_{0}\right)$, then the posterior for $q$ given $z$ (and other parameters) is

$$
\begin{equation*}
q \mid z \sim \mathcal{N}_{M}\left(\mu_{n}, \Sigma_{n}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{n}=\Sigma_{n}\left(\frac{1}{\sigma^{2}} \Phi^{\top} z+\Sigma_{0}^{-1} \mu_{0}\right), \quad \Sigma_{n}=\left(\frac{1}{\sigma^{2}} \Phi^{\top} \Phi+\Sigma_{0}^{-1}\right)^{-1} \tag{4}
\end{equation*}
$$

## Quick intro to Gaussian Processes

Suppose $f=\{f(x): x \in \mathcal{X}\}$ is an unknown function.

- use a stochastic process to model our uncertainty about $f$


## Quick intro to Gaussian Processes

Suppose $f=\{f(x): x \in \mathcal{X}\}$ is an unknown function．
－use a stochastic process to model our uncertainty about $f$ If the joint distribution of $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ is Gaussian，we say $f$ is a Gaussian process（GP）．

## Quick intro to Gaussian Processes

Suppose $f=\{f(x): x \in \mathcal{X}\}$ is an unknown function.

- use a stochastic process to model our uncertainty about $f$ If the joint distribution of $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ is Gaussian, we say $f$ is a Gaussian process (GP).

All we need to do is specify the prior mean and covariance functions

$$
\mathbb{E} f(x)=m(x), \quad \operatorname{Cov}\left(f(x), f\left(x^{\prime}\right)\right)=k\left(x, x^{\prime}\right)
$$

We write

$$
f \sim G P(m, k)
$$

## Why use GPs?

- Mathematically attractive
- Closed under addition

$$
f_{1}, f_{2} \sim G P \text { then } f_{1}+f_{2} \sim G P
$$

## Why use GPs?

- Mathematically attractive
- Closed under addition

$$
f_{1}, f_{2} \sim G P \text { then } f_{1}+f_{2} \sim G P
$$

- Closed under Bayesian conditioning: if we observe $\mathbf{D}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ then

$$
f \mid D \sim G P
$$

but with updated mean and covariance functions.

## Why use GPs?

- Mathematically attractive
- Closed under addition

$$
f_{1}, f_{2} \sim G P \text { then } f_{1}+f_{2} \sim G P
$$

- Closed under Bayesian conditioning: if we observe $\mathbf{D}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ then

$$
f \mid D \sim G P
$$

but with updated mean and covariance functions.

- Closed under any linear operator. If $f \sim G P(m(\cdot), k(\cdot, \cdot))$, then $\mathcal{L}$ is a linear operator

$$
\mathcal{L} \circ f \sim G P\left(\mathcal{L} \circ m, \mathcal{L}^{2} \circ k\right)
$$

e.g. $\frac{d f}{d x}, \int f(x) d x, A f$ are all GPs

## Why use GPs?

- Mathematically attractive
- Closed under addition

$$
f_{1}, f_{2} \sim G P \text { then } f_{1}+f_{2} \sim G P
$$

- Closed under Bayesian conditioning: if we observe $\mathbf{D}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ then

$$
f \mid D \sim G P
$$

but with updated mean and covariance functions.

- Closed under any linear operator. If $f \sim G P(m(\cdot), k(\cdot, \cdot))$, then $\mathcal{L}$ is a linear operator

$$
\mathcal{L} \circ f \sim G P\left(\mathcal{L} \circ m, \mathcal{L}^{2} \circ k\right)
$$

e.g. $\frac{d f}{d x}, \int f(x) d x, A f$ are all GPs

- Natural - Best linear unbiased predictors etc


## Why use GPs?

- Mathematically attractive
- Closed under addition

$$
f_{1}, f_{2} \sim G P \text { then } f_{1}+f_{2} \sim G P
$$

- Closed under Bayesian conditioning: if we observe $\mathbf{D}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ then

$$
f \mid D \sim G P
$$

but with updated mean and covariance functions.

- Closed under any linear operator. If $f \sim G P(m(\cdot), k(\cdot, \cdot))$, then $\mathcal{L}$ is a linear operator

$$
\mathcal{L} \circ f \sim G P\left(\mathcal{L} \circ m, \mathcal{L}^{2} \circ k\right)
$$

e.g. $\frac{d f}{d x}, \int f(x) d x, A f$ are all GPs

- Natural - Best linear unbiased predictors etc
- Relate to other methods such as kernel regression


## GP illustration





## Parameterizing GPs

$$
f(x) \sim G P\left(m(x), k\left(x, x^{\prime}\right)\right) .
$$

How can we use GPs within the adjoint framework developed earlier?

## Parameterizing GPs

$$
f(x) \sim G P\left(m(x), k\left(x, x^{\prime}\right)\right) .
$$

How can we use GPs within the adjoint framework developed earlier？
－Let $\mathcal{F}$ be the RKHS（function space）associated with kernel $k$ ，i．e．， $f \in \mathcal{F}$
－Consider $\left\{\phi_{1}(x), \phi_{2}(x), \ldots\right\}$ an orthonormal basis for $\mathcal{F}$ ．

## Parameterizing GPs

$$
f(x) \sim G P\left(m(x), k\left(x, x^{\prime}\right)\right) .
$$

How can we use GPs within the adjoint framework developed earlier?

- Let $\mathcal{F}$ be the RKHS (function space) associated with kernel $k$, i.e., $f \in \mathcal{F}$
- Consider $\left\{\phi_{1}(x), \phi_{2}(x), \ldots\right\}$ an orthonormal basis for $\mathcal{F}$.

We can then approximate $f$ using a truncated basis expansion

$$
\begin{aligned}
f(x) \approx f_{q}(x) & =\sum_{j=1}^{M} q_{i} \phi_{i}(x) \text { where a priori } q_{i} \sim N\left(0, \lambda_{i}^{2}\right) \\
& =\Phi \mathbf{q}+e
\end{aligned}
$$

We've reduced the GP to a linear model.

## Choice of basis

- Mercer basis: Consider $T_{k}(f)(\cdot)=\int_{\mathcal{X}} k(x, \cdot) f(x) \mathrm{d} x$. Mercer's theorem gives

$$
k\left(x, x^{\prime}\right)=\sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)
$$

where $\lambda_{i}, \phi_{i}(\cdot)$ are eigenpairs of $T_{k}$, i.e. $T_{k}(\phi)(\cdot)=\lambda \phi(\cdot)$
Karhunen-Loève theorem says optimal mean square approximation is

$$
\hat{f}(x)=\sum_{i=1}^{M} q_{i} \sqrt{\lambda_{i}} \phi_{i}(x)
$$

## Choice of basis

- Mercer basis: Consider $T_{k}(f)(\cdot)=\int_{\mathcal{X}} k(x, \cdot) f(x) \mathrm{d} x$. Mercer's theorem gives

$$
k\left(x, x^{\prime}\right)=\sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)
$$

where $\lambda_{i}, \phi_{i}(\cdot)$ are eigenpairs of $T_{k}$, i.e. $T_{k}(\phi)(\cdot)=\lambda \phi(\cdot)$
Karhunen-Loève theorem says optimal mean square approximation is

$$
\hat{f}(x)=\sum_{i=1}^{M} q_{i} \sqrt{\lambda_{i}} \phi_{i}(x)
$$

- Random Fourier features: If $k$ stationary, Bochner's theorem:

$$
\begin{gathered}
k\left(x-x^{\prime}\right)=\int \exp \left(i w^{\top}\left(x-x^{\prime}\right)\right) p(w) d w=\mathbb{E}_{w \sim p} \exp \left(i w^{\top}\left(x-x^{\prime}\right)\right) \\
\approx \frac{1}{M} \sum_{i=1}^{M}\left(\cos \left(w_{i}^{\top} x\right), \sin \left(w_{i}^{\top} x\right)\right)\binom{\cos \left(w_{i}^{\top} x\right)}{\sin \left(w_{i}^{\top} x\right)} \text { if } w_{i} \sim p(\cdot) \\
\hat{f}(x)=\sum_{i=1}^{M} q_{i} \cos \left(w_{i} x+b_{i}\right)
\end{gathered}
$$

## Example 1: ODE continued

$$
-D \ddot{u}+\nu \dot{u}+u=f(t)
$$

with $u(0)=\dot{u}(0)=0$ and $f \sim G P$.
The linear operator and adjoint were

$$
\begin{aligned}
\mathcal{L} u & =\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u
\end{aligned} \quad \text { with } u(0)=\dot{u}(0)=0, ~ \begin{array}{ll}
\mathcal{L}^{*} v & =\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}-\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) v
\end{array} \quad \text { with } v(T)=\dot{v}(T)=0
$$

## Example 1: GP expansion

If we write

$$
f(t)=\sum_{j=1}^{M} q_{j} \phi_{j}(t)=\Phi \mathbf{q}
$$

then given observations

$$
\begin{aligned}
z_{i} & =\left\langle h_{i}, u\right\rangle+e_{i} \\
& =\left\langle v_{i}, f\right\rangle+e_{i} \\
& =v_{i}^{\top} \Phi \mathbf{q}+e_{i}
\end{aligned}
$$

## Example 1: GP expansion

If we write

$$
f(t)=\sum_{j=1}^{M} q_{j} \phi_{j}(t)=\Phi \mathbf{q}
$$

then given observations

$$
\begin{aligned}
z_{i} & =\left\langle h_{i}, u\right\rangle+e_{i} \\
& =\left\langle v_{i}, f\right\rangle+e_{i} \\
& =v_{i}^{\top} \Phi \mathbf{q}+e_{i}
\end{aligned}
$$

Thus we can estimate $\mathbf{q}$ by

$$
\hat{\mathbf{q}}=\left(\Phi^{\top} V^{\top} V \Phi\right)^{-1} \Phi^{\top} V \mathbf{z}
$$

## Example 1: Posterior mean and $95 \% \mathrm{Cl}$ (blue), true (red)



- top: $n=10$ data points, $M=100$ basis vectors
- bottom: $n=100$ and $M=100$
Results required 10 and 100 ODE solves respectively.


## Example 1: Too few features


$n=100$ data points

- top: $M=100$ basis vectors
- bottom: $M=10$

NB: overconfident and wrong when $M=10$ misspecified model!

## Example 1: Too few features


$n=100$ data points

- top: $M=100$ basis vectors
- bottom: $M=10$

NB: overconfident and wrong when $M=10$ misspecified model!

We need to include enough features to have sufficient modelling flexibility.

Using additional features doesn't require additional ODE solves.

MCMC is fine as long as you have a small number of features.
But even with only 10 features, we need $\sim 1000$ s of ODE solves vs 10 ODE solves for the adjoint method.


MCMC takes longer to converge when we use more features.

## Example 2: PDE

Advection-diffusion-reaction is a linear operator:

$$
\mathcal{L}_{p} u=\frac{\partial u}{\partial t}-\nabla \cdot\left(\mathbf{p}_{1} u\right)-\nabla \cdot\left(p_{2} \nabla u\right)+p_{3} u
$$

Forward problem: solve (for some initial and boundary conditions)

$$
\mathcal{L}_{p} u=f_{q} \text { on } \mathcal{X} \times[0, T]
$$

## Example 2: PDE

Advection-diffusion-reaction is a linear operator:

$$
\mathcal{L}_{p} u=\frac{\partial u}{\partial t}-\nabla \cdot\left(\mathbf{p}_{1} u\right)-\nabla \cdot\left(p_{2} \nabla u\right)+p_{3} u
$$

Forward problem: solve (for some initial and boundary conditions)

$$
\mathcal{L}_{p} u=f_{q} \text { on } \mathcal{X} \times[0, T]
$$

Inverse problem: assume

$$
\begin{aligned}
f_{q}(x, t) & \sim G P\left(m, k_{\lambda}\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)\right) \\
& \approx \sum_{i=1}^{M} q_{i} \phi_{i}(x, t) \text { where } q_{i} \sim N(0,1)
\end{aligned}
$$

and estimate $q, p$ given $z_{i}=\left\langle h_{i}, u\right\rangle+N(0, \sigma)$.

## Example 2: PDE

Advection-diffusion-reaction is a linear operator:

$$
\mathcal{L}_{p} u=\frac{\partial u}{\partial t}-\nabla \cdot\left(\mathbf{p}_{1} u\right)-\nabla \cdot\left(p_{2} \nabla u\right)+p_{3} u
$$

Forward problem: solve (for some initial and boundary conditions)

$$
\mathcal{L}_{p} u=f_{q} \text { on } \mathcal{X} \times[0, T]
$$

Inverse problem: assume

$$
\begin{aligned}
f_{q}(x, t) & \sim G P\left(m, k_{\lambda}\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)\right) \\
& \approx \sum_{i=1}^{M} q_{i} \phi_{i}(x, t) \text { where } q_{i} \sim N(0,1)
\end{aligned}
$$

and estimate $q, p$ given $z_{i}=\left\langle h_{i}, u\right\rangle+N(0, \sigma)$.
Typically $h_{i}$ will be a sensor function that might average the pollution at a specific location over a short window

$$
\left\langle h_{i}, u\right\rangle=\frac{1}{|\mathcal{T}|} \int_{\mathcal{T}} u\left(x_{i}, t\right) d t
$$

## Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

$$
\mathcal{L}^{*} v=-\frac{\partial v}{\partial t}-\mathbf{p}_{1} \cdot \nabla v-\nabla \cdot\left(p_{2} \nabla v\right)+p_{3} u .
$$

## Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

$$
\mathcal{L}^{*} v=-\frac{\partial v}{\partial t}-\mathbf{p}_{1} . \nabla v-\nabla \cdot\left(p_{2} \nabla v\right)+p_{3} u .
$$

For $n$ observations we need $n$ adjoint equations!

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { in } \mathcal{X} \times[0, T] \text { for } i=1, \ldots, n .
$$

## Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

$$
\mathcal{L}^{*} v=-\frac{\partial v}{\partial t}-\mathbf{p}_{1} . \nabla v-\nabla \cdot\left(p_{2} \nabla v\right)+p_{3} u
$$

For $n$ observations we need $n$ adjoint equations!

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { in } \mathcal{X} \times[0, T] \text { for } i=1, \ldots, n .
$$

If we use initial and boundary conditions

$$
u(x, 0)=0 \text { for } x \in \mathcal{X} \text { and } \nabla_{n} u=0 \text { for } x \in \partial \mathcal{X}
$$

then the final and boundary conditions on the adjoint system are

$$
\begin{aligned}
v_{i}(x, T) & =0 \text { for } x \in \mathcal{X} \\
\mathbf{p}_{1} v_{i}(x, t)+p_{2} \nabla v_{i}(x, t) & =0 \text { for } x \in \partial \Omega \text { and } t \in[0, T] .
\end{aligned}
$$

## Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

$$
\mathcal{L}^{*} v=-\frac{\partial v}{\partial t}-\mathbf{p}_{1} . \nabla v-\nabla \cdot\left(p_{2} \nabla v\right)+p_{3} u
$$

For $n$ observations we need $n$ adjoint equations!

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { in } \mathcal{X} \times[0, T] \text { for } i=1, \ldots, n .
$$

If we use initial and boundary conditions

$$
u(x, 0)=0 \text { for } x \in \mathcal{X} \text { and } \nabla_{n} u=0 \text { for } x \in \partial \mathcal{X}
$$

then the final and boundary conditions on the adjoint system are

$$
\begin{aligned}
v_{i}(x, T) & =0 \text { for } x \in \mathcal{X} \\
\mathbf{p}_{1} v_{i}(x, t)+p_{2} \nabla v_{i}(x, t) & =0 \text { for } x \in \partial \Omega \text { and } t \in[0, T] .
\end{aligned}
$$

- May find numerical issues: depends on the discretization, the sensor functions $h_{i}$, diffusion rate etc
- The cost of solving the adjoint is the same as solving the forward problem.

Results: $n=20$ (4 sensors) and $n=80(16)$, noise $=10 \%$ Posterior mean of time slice $u(x, 5)$ - more sensors, improved estimates!


Variance of $u(x, 5)$ : Wind from the south west.

Results: $n=20$ (4 sensors) and $n=80(16)$, noise $=10 \%$ Posterior mean of time slice $u(x, 5)$ - more sensors, improved estimates!


Variance of $u(x, 5)$ : Wind from the south west.


## Effect of length scale, $\lambda=5,2,1$



## Example 2: Results

Mean square error vs number of features and sensors

Median MSE as a function of number of sensors and RFFs.

| Sensors |  | Features |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 10 | 50 | 100 | 200 | 300 |
| 1 | $3.42(2.82,4.39)$ | $3.27(3.13,3.38)$ | $3.24(3.10,3.37)$ | $3.27(3.17,3.44)$ | 3.24 |
| 4 | $7.12(1.57,28.81)$ | $2.39(2.06,2.62)$ | $2.41(2.13,2.60)$ | $2.45(2.32,2.57)$ | 2.50 |
| 9 | $2.38(1.41,4.40)$ | $2.12(1.48,3.98)$ | $1.70(1.49,2.07)$ | $1.48(1.40,1.72)$ | 1.47 |
| 16 | $1.73(1.23,3.28)$ | $3.99(2.32,10.90)$ | $2.18(1.72,3.54)$ | $1.3(1.02,1.68)$ | 1.12 |
| 25 | $1.35(1.19,3.09)$ | $8.93(4.92,39.86)$ | $4.36(2.53,8.20)$ | $1.86(1.43,2.75)$ | 1.35 |
| $25(\mathrm{MH})$ | $3.27(1.73,6.12)$ | - | - | - | - |

MH algorithm did not converge after 20,000 iterations for 50 or more RFFs.

## Non-linear parameter estimation

A naive way to estimate the non-linear parameters is via Bayesian optimization iteration


Preprint showing how to use the adjoint sensitivity soon....

## Costs

Adjoint method:

- For the linear forcing/source parameter, we require $n$ solves of the adjoint system to infer the posterior.
- The method is essentially insensitive to the number of basis functions used.
- The non-linear parameters (GP hyperparameters, PDE parameters) can be inferred in an outer-loop - each step requires a further $n$ adjoint solves (and another $n$ forward solves if we want gradient information).
MCMC:
- All parameters inferred together.
- Hard to say how many iterations will be required, but likely to grow with the the number of parameters (and hence number of GP features).
- Number of iterations required largely independent of $n$.
- Derivative information generally helps, but this is likely to be unavailable (autodiff often unstable for PDE solvers)


## Link to Green＇s function approach

Consider the linear system

$$
\mathcal{L} u=f \quad \text { for } x \in \Omega
$$

The Green＇s function for this system，$G_{y}(x)$ ，satisfies

$$
\mathcal{L}^{*} G_{y}(x)=\delta_{y}(x) \quad \text { for } x \in \Omega
$$

## Link to Green's function approach

Consider the linear system

$$
\mathcal{L} u=f \quad \text { for } x \in \Omega
$$

The Green's function for this system, $G_{y}(x)$, satisfies

$$
\mathcal{L}^{*} G_{y}(x)=\delta_{y}(x) \quad \text { for } x \in \Omega
$$

Solution of the original problem is found by computing the convolution of $G$ with $f$ :

$$
\begin{aligned}
u(y) & =\left\langle\delta_{y}, u\right\rangle=\left\langle\mathcal{L}^{*} G_{y}, u\right\rangle \\
& =\left\langle G_{y}, \mathcal{L} u\right\rangle=\left\langle G_{y}, f\right\rangle=\int G_{y}(x) f(x) \mathrm{d} x
\end{aligned}
$$

## Link to Green's function approach

Consider the linear system

$$
\mathcal{L} u=f \quad \text { for } x \in \Omega
$$

The Green's function for this system, $G_{y}(x)$, satisfies

$$
\mathcal{L}^{*} G_{y}(x)=\delta_{y}(x) \quad \text { for } x \in \Omega
$$

Solution of the original problem is found by computing the convolution of $G$ with $f$ :

$$
\begin{aligned}
u(y) & =\left\langle\delta_{y}, u\right\rangle=\left\langle\mathcal{L}^{*} G_{y}, u\right\rangle \\
& =\left\langle G_{y}, \mathcal{L} u\right\rangle=\left\langle G_{y}, f\right\rangle=\int G_{y}(x) f(x) \mathrm{d} x
\end{aligned}
$$

If $f \sim G P(0, k)$, then $u$ is also distributed as a Gaussian process,

$$
u \sim G P\left(0, k_{u}\right)
$$

with covariance function

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x
$$

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x
$$

If $G$ is known then sometimes it is possible to compute this analytically. Otherwise numerical methods must be used.

- Likely to be cheaper than the adjoint approach

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x
$$

If $G$ is known then sometimes it is possible to compute this analytically. Otherwise numerical methods must be used.

- Likely to be cheaper than the adjoint approach

If $G$ is unknown, then need to approximate $G$ before approximating the integral....

- Expensive, unstable...
- Poorly developed

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x .
$$

If $G$ is known then sometimes it is possible to compute this analytically. Otherwise numerical methods must be used.

- Likely to be cheaper than the adjoint approach

If $G$ is unknown, then need to approximate $G$ before approximating the integral....

- Expensive, unstable...
- Poorly developed

In contrast, our approach relies on

- existence of the adjoint operator $\mathcal{L}^{*}$
- ability to solve adjoint systems numerically - deploy modern finite element solvers (efficient, stable, and offer good error-control).
Recommendation: Use Green's function approach only when $G$ known and covariance integral tractable.


## Conclusions

Adjoints of linear systems

- an intrusive method; development does require some work...
- Gives numerically stable derivatives
- For linear parametric forcing models, leads to cheap inference
- May or may not be faster than MCMC depending on the number of data points, and the dimension of the parameter.
GP models that know some physics can improve predictions over vanilla GPs.
- Lots of opportunities for finding efficiencies...
- Efficient usage of adjoint simulations
- Multi-level approaches
- Gradient based optimization
- See arxiv:2202.04589, to appear NeurIPS 2022.


## Conclusions

Adjoints of linear systems

- an intrusive method; development does require some work...
- Gives numerically stable derivatives
- For linear parametric forcing models, leads to cheap inference
- May or may not be faster than MCMC depending on the number of data points, and the dimension of the parameter.
GP models that know some physics can improve predictions over vanilla GPs.
- Lots of opportunities for finding efficiencies...
- Efficient usage of adjoint simulations
- Multi-level approaches
- Gradient based optimization
- See arxiv:2202.04589, to appear NeurIPS 2022.

Thank you for listening!

## Example 1: Matrix system

Suppose $X=Y=\mathbb{R}^{d}$. A linear operator $\mathcal{L}_{p}: X \rightarrow Y$ can be written as

$$
\mathcal{L}_{p} x=A_{p} x \text { where } A_{p} \in \mathbb{R}^{d}
$$

where $A_{p}$ depends on unknown parameters $p$.
The forward problem is solving the square linear system $A_{p} x=f$, i.e., $x_{p, q}=A_{p}^{-1} f$.

## Example 1: Matrix system

Suppose $X=Y=\mathbb{R}^{d}$. A linear operator $\mathcal{L}_{p}: X \rightarrow Y$ can be written as

$$
\mathcal{L}_{p} x=A_{p} x \text { where } A_{p} \in \mathbb{R}^{d}
$$

where $A_{p}$ depends on unknown parameters $p$.
The forward problem is solving the square linear system $A_{p} x=f$, i.e., $x_{p, q}=A_{p}^{-1} f$.
The adjoint operator is

$$
\mathcal{L}_{p}^{*} y=A_{p}^{\top} y
$$

as we can see that

$$
\begin{aligned}
\left\langle A_{p} x, y\right\rangle & =\left(A_{p} x\right)^{\top} y \\
& =x^{\top}\left(A^{\top} y\right) \\
& =\left\langle x, A_{p}^{\top} y\right\rangle
\end{aligned}
$$

## Sensitivity

Consider the quantity of interest (Qol)

$$
h(x) \equiv\langle g, x\rangle=g^{\top} x
$$

for some $g \in \mathbb{R}^{d}$, where $x$ is the solution to $h(x, p):=f-A x=0$.
We want to compute $\frac{\mathrm{d} g}{\mathrm{~d} p}$ (as then we can compute $\frac{\mathrm{d} S}{\mathrm{~d} p}(p, q)$ )

## Sensitivity

Consider the quantity of interest (Qol)

$$
h(x) \equiv\langle g, x\rangle=g^{\top} x
$$

for some $g \in \mathbb{R}^{d}$, where $x$ is the solution to $h(x, p):=f-A x=0$.
We want to compute $\frac{\mathrm{d} g}{\mathrm{~d} p}$ (as then we can compute $\frac{\mathrm{d} S}{\mathrm{~d} p}(p, q)$ )
Define Lagrangian the

$$
L=g^{\top} x+y^{\top} h(x, p)
$$

Think of $y \in \mathbb{R}^{d}$ as Lagrange multipliers.

$$
L=g^{\top} x+y^{\top} h(x, p)
$$

Differentiating with respect to $p$ gives

$$
\frac{d L}{d p}=g^{\top} \frac{d x}{d p}+y^{\top}\left(\frac{d h}{d x} \frac{d x}{d p}+\frac{d h}{d p}\right)
$$

This is true for all $y$, so if we set $g^{\top}+y^{\top} \frac{d h}{d x}=0$ then we get

$$
\begin{aligned}
\frac{d L}{d p}=\frac{d g}{d p} & =y^{\top} \frac{d h}{d p} \\
& =y^{\top}\left(\frac{d f}{d p}-\frac{d A}{d p} x\right)
\end{aligned}
$$

where $A^{\top} y=g$

$$
L=g^{\top} x+y^{\top} h(x, p)
$$

Differentiating with respect to $p$ gives

$$
\frac{d L}{d p}=g^{\top} \frac{d x}{d p}+y^{\top}\left(\frac{d h}{d x} \frac{d x}{d p}+\frac{d h}{d p}\right)
$$

This is true for all $y$, so if we set $g^{\top}+y^{\top} \frac{d h}{d x}=0$ then we get

$$
\begin{aligned}
\frac{d L}{d p}=\frac{d g}{d p} & =y^{\top} \frac{d h}{d p} \\
& =y^{\top}\left(\frac{d f}{d p}-\frac{d A}{d p} x\right)
\end{aligned}
$$

where $A^{\top} y=g$
This doesn't require $\frac{\mathrm{d} x}{\mathrm{~d} p}$, but does need solutions to the forward $A x=f$ and adjoint systems $A^{\top} y=g$.

$$
L=g^{\top} x+y^{\top} h(x, p)
$$

Differentiating with respect to $p$ gives

$$
\frac{d L}{d p}=g^{\top} \frac{d x}{d p}+y^{\top}\left(\frac{d h}{d x} \frac{d x}{d p}+\frac{d h}{d p}\right)
$$

This is true for all $y$, so if we set $g^{\top}+y^{\top} \frac{d h}{d x}=0$ then we get

$$
\begin{aligned}
\frac{d L}{d p}=\frac{d g}{d p} & =y^{\top} \frac{d h}{d p} \\
& =y^{\top}\left(\frac{d f}{d p}-\frac{d A}{d p} x\right)
\end{aligned}
$$

where $A^{\top} y=g$
This doesn't require $\frac{\mathrm{d} x}{\mathrm{~d} p}$, but does need solutions to the forward $A x=f$ and adjoint systems $A^{\top} y=g$.

- Autodiff software (eg TensorFlow, JAX etc) will give us this, but can be unreliable for differential equations with long iterative loops


## Non-identifiable linear model

Let

$$
A_{p}=\left(\begin{array}{cc}
2+p_{2}^{2} & -1 \\
1 & 1+p_{1}^{2}
\end{array}\right) \text { and } f_{q}=\binom{q_{1}}{q_{2}}=q_{1}\binom{1}{0}+q_{2}\binom{0}{1}
$$

and suppose we're given 4 observations with

$$
G=\left(\begin{array}{llll}
2 & 1 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right)
$$

## Non-identifiable linear model

Let

$$
A_{p}=\left(\begin{array}{cc}
2+p_{2}^{2} & -1 \\
1 & 1+p_{1}^{2}
\end{array}\right) \text { and } f_{q}=\binom{q_{1}}{q_{2}}=q_{1}\binom{1}{0}+q_{2}\binom{0}{1}
$$

and suppose we're given 4 observations with

$$
G=\left(\begin{array}{llll}
2 & 1 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right)
$$

Given any dataset we can learn $q$ (given $p$ ) with a single adjoint solve.

## Non-identifiable linear model

Let

$$
A_{p}=\left(\begin{array}{cc}
2+p_{2}^{2} & -1 \\
1 & 1+p_{1}^{2}
\end{array}\right) \text { and } f_{q}=\binom{q_{1}}{q_{2}}=q_{1}\binom{1}{0}+q_{2}\binom{0}{1}
$$

and suppose we're given 4 observations with

$$
G=\left(\begin{array}{llll}
2 & 1 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right)
$$

Given any dataset we can learn $q$ (given $p$ ) with a single adjoint solve. We can also compute the gradient of $S(p, \hat{q})$ wrt $p$, but in this case

$$
\frac{\mathrm{d} S}{\mathrm{~d} p}=0 \forall p
$$

and so $p$ is unidentifiable.

## Non-identifiable linear model

Let

$$
A_{p}=\left(\begin{array}{cc}
2+p_{2}^{2} & -1 \\
1 & 1+p_{1}^{2}
\end{array}\right) \text { and } f_{q}=\binom{q_{1}}{q_{2}}=q_{1}\binom{1}{0}+q_{2}\binom{0}{1}
$$

and suppose we're given 4 observations with

$$
G=\left(\begin{array}{llll}
2 & 1 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right)
$$

Given any dataset we can learn $q$ (given $p$ ) with a single adjoint solve. We can also compute the gradient of $S(p, \hat{q})$ wrt $p$, but in this case

$$
\frac{\mathrm{d} S}{\mathrm{~d} p}=0 \forall p
$$

and so $p$ is unidentifiable.
Consider the solution to the unconstrained optimization problem.

$$
x^{*}=\arg \min _{x}\left(z-G^{\top} x\right)^{\top}\left(z-G^{\top} x\right)
$$

The basis functions used for $f$ form a complete basis for $\mathbb{R}^{2}$, and we can always find a $q$ so that $A_{p} x^{*}=f_{q}$ (for all $p$ as $A_{p}$ is invertible)

