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Digital twins

A set of virtual information constructs that mimics the
structure, context and behaviour of an individual or unique
physical asset, that is dynamically updated with data from its
physical twin throughout its life-cycle that informs decisions that
realise value.

A model of an individual, informed by data, that influences decisions.
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Motivating example: Cardiac physiology
With Steve Niederer, Richard Clayton, Sam Coveney, Cesare Corrardo, Chris Lanyon,
Marina Strocchi, . . .

Aim: move from treatment based on guidelines derived from
heterogeneous patient groups, to treatment tailored to individual patients
based on their data.



Cardiac digital twin
Slides by Marina Strocchi, Steve Niederer, Richard ClaytonPrecision Cardiology through the Digital Twin
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But how confident are we in our predictions?



Example: Atrial fibrillation

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.

Affects around 1,000,000 people in UK.

Catheter ablation removes/isolates pathological tissue that
sustain/initiate AF.

40% of patients subsequently experience atrial tachycardia (AT).

http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg
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Patient Specific Cardiac Models

Aim: predict whether ablation will successfully treat an AF, by infering
reentry pathways, and guiding the surgical ablation to treat for both AF
and AT in a single procedure.

Each intervention: 6% risk of major complication; cost ∼£10k.

Cardiac models at forefront of personalised modelling

Models are deterministic but clinical diagnosis is rarely definitive
I uncertainty quantification/statistics challenge

aim to consider costs and benefits across all potential outcomes
weighted by their probability.



Patient Specific Cardiac Models

Aim: predict whether ablation will successfully treat an AF, by infering
reentry pathways, and guiding the surgical ablation to treat for both AF
and AT in a single procedure.

Each intervention: 6% risk of major complication; cost ∼£10k.

Cardiac models at forefront of personalised modelling

Models are deterministic but clinical diagnosis is rarely definitive
I uncertainty quantification/statistics challenge

aim to consider costs and benefits across all potential outcomes
weighted by their probability.



Statistical challenges

For a given patient, we want to select a model from our class of models
f (θ, ω) where

ω are directly observable parameters specific to the patient such as
geometry (ie for the computational mesh)

θ are patient specific model parameters, eg diffusion parameters,
which may be spatially varying (θ(x) for x ∈ ω).

Given data D we want to solve the inverse problem

D = f (θ, ω) + e

to estimate
π(θ, ω | D) ∝ π(θ, ω)π(D | θ, ω)

Many of the statistical challenges familiar from UQ, but (cardiac) DTs
also present new challenges.
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Statistical challenges

In practice we need to be pragmatic

Complex simulator and limited computational resource

Large number of unknowns θ, ω, f

Sparse noisy data

Misspecification/discrepancy

P(Event|D) =

∫
P(E |θ, ω, f )π(θ, ω, f |D)dθdωdf

where
π(θ, ω, f |D) ∝ π(D|θ, ω, f )π(θ)π(ω)π(f )

We need to characterize variability at the

population level π(θ), π(ω) etc

individual level π(θ, ω, f , ...|D) – may need to be partially done in
real time

and the physics/simulator π(D|θ, ω, f )
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Surrogate models
Cf Victoria’s talk

If f is slow/costly to evaluate standard methods such as MCMC are
impracticable.

We can use surrogate models/emulators of f , e.g.

f (·, ω) ∼ GP(m(·), k(·, ·))

which are trained on a small ensemble of simulator evaluations
C = {θi , f (θi , ω)}ni=1

Currently run ∼1000 simulations for each new patient. Cost of
£4-16k per patient.

We can then use the surrogate to estimate parameters etc
Note that this adds an additional uncertainty

π(f |C )

Other methods: NNs (e.g. PINNs), polynomial chaos, ROM, POD etc.
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Compact representation
If θ is high dimensional, we need to find a subset or transformation of the
parameters Aθ that we can estimate

mesh used to simulate atrial electro-physiology has ∼ 30, 000 nodes,
with 5 spatially varying parameters

Typical methods

Global sensitivity analysis: select a subset of the most important
parameters (re contribution to variance).

Basis expansions

θ =
k∑

i=1

ziψi

where k � dim(θ) and ψi are basis vectors to be chosen
I Imaging data, random projection, PCA/KL, active subspace methods...

Given the cost of forward evaluation, how should we choose A so that θ is
identifiable?

Trade-off with dimension: accuracy, emulation, and identifiability.
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Non-identifiability

The huge number of parameters, sparse data, and limited computational
power mean we can’t hope to estimate everything.
How can we identify non-identifiabilities?

Difference between training and prediction tasks. We use data D

D = h1f (θ, ω) + e

to estimate Aθ.
But suppose our prediction task is then

h2f (θ, ω)

How should we choose projection A?
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Fast and/or cheap inference

We want to calibrate in (close to) real time

Catheter ablation: every additional 10mins of surgery increases
stroke risk by x%

Even using a surrogate (which can be trained prior to surgery), MCMC
can be too expensive to use in-procedure.

We need cheaper approximate inference methods.

Distinguish between

Case-based inference: for each new dataset D, run a separate
optimization to approximate π(θ|D).

Amortized inference: global upfront training (before data collected)
using simulations, so that inference at test time is rapid. (Cf
Micheal’s automated history matching)
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Case based inference

For each new dataset, D, solve the inference problem (e.g. via MCMC).

Kalman sampling methods:
I Small ensemble of particles {θti }i=1,...,n. At each iteration

(t = 1, . . . ,T ), forward simulate, then adjust using a Kalman update.
I Compute mean and variance for a Gaussian approximation of p(θ|D).

Variational inference: instead of sampling, find variational
approximation qφ(θ) to the posterior

I E.g., mean field approximation qφ(θ) = N(µ, diag(σ2))
I Solve

arg min
φ

KL(qφ(θ)||p(θ|D)) = arg minEq(θ)p(D, θ)− Eq(θ) log q(θ)

I Can be minimized using stochastic gradient descent within a
variational auto-encoder (VAE) framework
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Amortied inference

Train a model that predicts p(θ|D) for any D:
Large upfront cost, rapid test time inference.

Conditional VAE. Assume

qφ(θ|D) = N(mφ(D), s2φ(D))

where mφ and s2φ are pre-trained neural networks.

Neural posteriors. Eg use a normalizing flow:
I Find invertible f such that

θ ∼ p(θ|D) ⇐⇒ f (θ;D) ∼ N(0, I )

then f −1(z ;D) ∼ p(θ|D) when z ∼ N(0, I ).
I Model f as an invertible NN with easily computable Jacobian.
I Can include an additional summary network S : D 7→ Rp to learn

optimal summary p(θ|S(D))
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Scalable DTs

At the moment, we create a new surrogate model for each new patient,
e.g. estimating ω from imaging data

f (·, ω) ∼ GP(m(·), k(·, ·)) trained with C = {θi , f (θi , ω)}ni=1

How can we reduce this cost?

Learn a statistical shape model ω =
∑M

i=1 ziφi for small M, e.g. via
PCA and include z in the inputs to the surrogate.

Learn the discrepancy from a set of reference heart simulations to
the new heart

f (·, ω′) = f (·, ωr ) + δ(·)

Learn diffeomorphism: hearts are topologically equivalent. If
ω′ = Tωr , can we learn a T ′ from T such that f (·, ω′) = T ′f (·, ωr )?

Not clear a priori which approach, if any, will work best.
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Networked Digital Twins
CDT-Net 2024-2029

Suppose we have DTs of 1000s of patients.

How we we learn informative priors?

How do we transfer knowledge through the network?

How do we cheaply initialize new twins?

Jobs available at Imperial, Sheffield, Nottingham and Turing starting 1
Oct.
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Physics-informed models
Building knowledge into data-models

How can we incorporate relatively simple physics into data-models?

∂u

∂t
= ∇.(p1u) +∇.(p2∇u)− p3u + g

Suppose we want to infer forcing function g in the linear system

Lu = g given observations di = 〈hi , u〉+ e i = 1, . . . , n

for example by solving constrained optimization problem

min
g

(D − Hu)>(D − Hu) subject to Lu = g

or finding the Bayesian posterior

π(g |D)

where g(x) ∼ GP(m(x), k(x , x ′)).
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Adjoint aided inference
Lu = g . Observations di = 〈hi , u〉+ ei

Introduce n adjoint systems L∗vi = hi

where L∗ is the adjoint operator of L (automatable).

Then
〈hi , u〉 = 〈L∗vi , u〉 = 〈vi ,Lu〉 = 〈vi , g〉

If g(x) =
∑

ziφi (x) is a linear model, then

〈hi , u〉 =
∑
i

zi 〈vi , φi 〉

D = Φz + e

i.e., an unconstrained linear model in z . Thus exact inference for g
possible at zero additional cost.

Many possible basis expansions of GPs, e.g. Mercer, random Fourier
features, Laplace etc.
Computational cost is n (#data points) adjoint solves.
Method is sequential: each additional data point just requires one
additional adjoint sovle.
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Manifold valued data

We want to estimate local activation times at all locations on the atria
(the LAT map)

Typically, only able to measure LAT at a small number (∼10s) of
locations on the atrium.

How can we interpolate to other locations x ∈ ω?



Manifold valued data

We want to estimate local activation times at all locations on the atria
(the LAT map)

Typically, only able to measure LAT at a small number (∼10s) of
locations on the atrium.

How can we interpolate to other locations x ∈ ω?



GP interpolation

We want to model

LAT (x) ∼ GP(m(x), k(x , x ′))

but standard approaches won’t work when the domain is an atrial
manifold ω

Typically covariance is a function of the Euclidean distance between
two points i.e. k(x , x ′) ≡ k(‖x − x ′‖2),

We want the interpolation to take into account distance on the manifold
travelled by electrical wave.

Defining a valid positive definite covariance function on the manifold
is hard!
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Laplacian basis functions
Coveney et al. Phil. Trans. Roy. Soc. 2020

There is a duality between stationary covariance functions, and spectral
densities (Wiener-Khinchin):

S(ρ) =

∫
k(r)e−iρrdr

Solin and Sarkka (2019) showed that if we use the Laplacian eigenbasis

−∇2φj(x) = λjφj(x) x ∈ ω
φj(x) = 0 x ∈ ∂ω

then

f (x) =
∑

zkφk(x) with zk ∼ N(0,S(
√
λj))

is a GP with spectral density S.
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This allows us to

specify a GP in terms of its spectral density, bypassing the need to
explicitly define a covariance function

work directly with processes on the atrial manifold

Note that
k(x , x ′) =

∑
S(

√
λj)φi (x)φi (x

′)

and that unlike many other expansions (e.g., Mercer, RFF), the basis
functions don’t change if the hyper-parameters of the GP change (so we
only need compute them once).
Truncating the sum gives us an approximate low rank GP

k(x , x ′) ≈
M∑
i=1

S(
√
λj)φi (x)φi (x

′), f (x) ≈
M∑
i=1

wkφk(x)

for which inference can be done in O(M3) operations.
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Computing conduction velocities

Interest lies in conduction velocities, which are the inverse of the LAT
gradient. The Laplacian eigen expansion allows us to compute these

where

dk(x , x ′)

dx
=

M∑
i=1

S(
√
λj)

dφi
dx

(x)φi (x
′)

allowing us to compute variance estimates of the estimated conduction
velocities...





Other topics

Geometric uncertainty
I Heart is never still, segmentation of MRI/CT image imperfect, images

are obtained in unnatural situations.
I Data are collected from an uncertain geometric location.
I Need manifold valued models etc.

Design
I What data should we collect from the patient?
I What simulations should we perform with expensive simulators?

Model discrepancy
I How can we use the network of DTs to learn the model error?

Multi-fidelity/multi-level methods
I If we have models f1, f2, . . ., of varying costs and accuracies, how do

we make the most accurate predictions we can within some given
computational budget?

Modular models
I Can we calibrate model components independently before coupling?



Conclusions
Digital twins provide a fundable framework to work on many of the key
mathematical/statistical challenges arising in UQ.

At present, DTs aren’t used to guide therapy.
I We can currently build DTs for a single patient, but at great expense
I Need to scale and speed up this process

The huge number of uncertain parameters and cost of the
simulations will mean we need to compromise:

I find regularities in the problem to allow us to reduce dimension
sufficiently in order to make inference possible

I learn strong population structured prior distributions
I develop fast method to approximately infer parameters.

Jobs at Imperial, Nottingham, Sheffield from 1 Oct

Newton Institute programme on Representing, Calibrating
and Leveraging Uncertainty May-August 2025 with 3 workshops.

Thank you for listening!
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