
Another introduction to Gaussian Processes

Richard Wilkinson

School of Maths and Statistics
University of Sheffield

GP summer school
September 2017

Why use Gaussian processes?

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

f = {f (x) : x ∈ X}
Usually f (x) ∈ R and X = Rn i.e. f can be thought of as a function of
location x .
f is an infinite dimensional process.
Thankfully we only need consider the finite dimensional distributions
(FDDs), i.e., for all x1, . . . xn and for all n ∈ N

P(f (x1) ≤ y1, . . . , f (xn) ≤ yn)

as these uniquely determine the law of f .
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(f (x1), . . . , f (xn)) ∼ Nn(µ,Σ)

Why would we want to use this very restricted class of model?

Why use Gaussian processes?

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

f = {f (x) : x ∈ X}

Usually f (x) ∈ R and X = Rn i.e. f can be thought of as a function of
location x .
f is an infinite dimensional process.
Thankfully we only need consider the finite dimensional distributions
(FDDs), i.e., for all x1, . . . xn and for all n ∈ N

P(f (x1) ≤ y1, . . . , f (xn) ≤ yn)

as these uniquely determine the law of f .
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(f (x1), . . . , f (xn)) ∼ Nn(µ,Σ)

Why would we want to use this very restricted class of model?

Why use Gaussian processes?

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

f = {f (x) : x ∈ X}
Usually f (x) ∈ R and X = Rn i.e. f can be thought of as a function of
location x .

f is an infinite dimensional process.
Thankfully we only need consider the finite dimensional distributions
(FDDs), i.e., for all x1, . . . xn and for all n ∈ N

P(f (x1) ≤ y1, . . . , f (xn) ≤ yn)

as these uniquely determine the law of f .
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(f (x1), . . . , f (xn)) ∼ Nn(µ,Σ)

Why would we want to use this very restricted class of model?

Why use Gaussian processes?

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

f = {f (x) : x ∈ X}
Usually f (x) ∈ R and X = Rn i.e. f can be thought of as a function of
location x .
f is an infinite dimensional process.

Thankfully we only need consider the finite dimensional distributions
(FDDs), i.e., for all x1, . . . xn and for all n ∈ N

P(f (x1) ≤ y1, . . . , f (xn) ≤ yn)

as these uniquely determine the law of f .
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(f (x1), . . . , f (xn)) ∼ Nn(µ,Σ)

Why would we want to use this very restricted class of model?

Why use Gaussian processes?

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

f = {f (x) : x ∈ X}
Usually f (x) ∈ R and X = Rn i.e. f can be thought of as a function of
location x .
f is an infinite dimensional process.
Thankfully we only need consider the finite dimensional distributions
(FDDs), i.e., for all x1, . . . xn and for all n ∈ N

P(f (x1) ≤ y1, . . . , f (xn) ≤ yn)

as these uniquely determine the law of f .

A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(f (x1), . . . , f (xn)) ∼ Nn(µ,Σ)

Why would we want to use this very restricted class of model?

Why use Gaussian processes?

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

f = {f (x) : x ∈ X}
Usually f (x) ∈ R and X = Rn i.e. f can be thought of as a function of
location x .
f is an infinite dimensional process.
Thankfully we only need consider the finite dimensional distributions
(FDDs), i.e., for all x1, . . . xn and for all n ∈ N

P(f (x1) ≤ y1, . . . , f (xn) ≤ yn)

as these uniquely determine the law of f .
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(f (x1), . . . , f (xn)) ∼ Nn(µ,Σ)

Why would we want to use this very restricted class of model?

Why use Gaussian processes?

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

f = {f (x) : x ∈ X}
Usually f (x) ∈ R and X = Rn i.e. f can be thought of as a function of
location x .
f is an infinite dimensional process.
Thankfully we only need consider the finite dimensional distributions
(FDDs), i.e., for all x1, . . . xn and for all n ∈ N

P(f (x1) ≤ y1, . . . , f (xn) ≤ yn)

as these uniquely determine the law of f .
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(f (x1), . . . , f (xn)) ∼ Nn(µ,Σ)

Why would we want to use this very restricted class of model?

Why use Gaussian processes?

Gaussian distributions have several properties that make them easy to
work with:

Property 1: X ∼ Nn(µ,Σ) if and only if AX ∼ Np(Aµ,AΣA>) for all
p × n constant matrices A.

So sums of Gaussians are Gaussian, and marginal distributions of
multivariate Gaussians are still Gaussian.

Why use Gaussian processes?

Gaussian distributions have several properties that make them easy to
work with:

Property 1: X ∼ Nn(µ,Σ) if and only if AX ∼ Np(Aµ,AΣA>) for all
p × n constant matrices A.

So sums of Gaussians are Gaussian, and marginal distributions of
multivariate Gaussians are still Gaussian.

Why use Gaussian processes?

Gaussian distributions have several properties that make them easy to
work with:

Property 1: X ∼ Nn(µ,Σ) if and only if AX ∼ Np(Aµ,AΣA>) for all
p × n constant matrices A.

So sums of Gaussians are Gaussian, and marginal distributions of
multivariate Gaussians are still Gaussian.

Property 2: Conditional distributions are still Gaussian

Suppose

X =

(
X1

X2

)
∼ N (µ,Σ)

where

µ =

(
µ1

µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)

Then

X2 | X1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

Property 2: Conditional distributions are still Gaussian

Suppose

X =

(
X1

X2

)
∼ N (µ,Σ)

where

µ =

(
µ1

µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Then

X2 | X1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

Property 2: Conditional distributions are still Gaussian

Suppose

X =

(
X1

X2

)
∼ N (µ,Σ)

where

µ =

(
µ1

µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Then

X2 | X1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

Proof:

π(x2|x1) =
π(x1, x2)

π(x1)
∝ π(x1, x2)

∝ exp

(
−1

2
(x − µ)>Σ−1(x − µ)

)
∝ exp

(
−1

2

[
(x2 − µ2)>Q22(x2 − µ2) + 2(x2 − µ2)>Q21(x1 − µ1)

])
where

Σ−1 := Q :=

(
Q11 Q12

Q21 Q22

)
So X2|X1 = x1 is Gaussian.

Proof:

π(x2|x1) =
π(x1, x2)

π(x1)
∝ π(x1, x2)

∝ exp

(
−1

2
(x − µ)>Σ−1(x − µ)

)

∝ exp

(
−1

2

[
(x2 − µ2)>Q22(x2 − µ2) + 2(x2 − µ2)>Q21(x1 − µ1)

])
where

Σ−1 := Q :=

(
Q11 Q12

Q21 Q22

)
So X2|X1 = x1 is Gaussian.

Proof:

π(x2|x1) =
π(x1, x2)

π(x1)
∝ π(x1, x2)

∝ exp

(
−1

2
(x − µ)>Σ−1(x − µ)

)
∝ exp

(
−1

2

[
(x2 − µ2)>Q22(x2 − µ2) + 2(x2 − µ2)>Q21(x1 − µ1)

])
where

Σ−1 := Q :=

(
Q11 Q12

Q21 Q22

)

So X2|X1 = x1 is Gaussian.

Proof:

π(x2|x1) =
π(x1, x2)

π(x1)
∝ π(x1, x2)

∝ exp

(
−1

2
(x − µ)>Σ−1(x − µ)

)
∝ exp

(
−1

2

[
(x2 − µ2)>Q22(x2 − µ2) + 2(x2 − µ2)>Q21(x1 − µ1)

])
where

Σ−1 := Q :=

(
Q11 Q12

Q21 Q22

)
So X2|X1 = x1 is Gaussian.

π(x2|x1) ∝ exp

(
−1

2

[
(x2 − µ2)>Q22(x2 − µ2) + 2(x2 − µ2)>Q21(x1 − µ1)

])

∝ exp

(
−1

2

[
x>2 Q22x2 − 2x>2 (Q22µ2 + Q21(x1 − µ1))

])
∝ exp

(
−1

2

(
x2 − Q−1

22 (Q22µ2 + Q21(x1 − µ1))
)>

Q22 (x2 − . . .)
)

So
X2|X1 = x1 ∼ N(µ2 + Q−1

22 Q21(x1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

X2|X1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

π(x2|x1) ∝ exp

(
−1

2

[
(x2 − µ2)>Q22(x2 − µ2) + 2(x2 − µ2)>Q21(x1 − µ1)

])
∝ exp

(
−1

2

[
x>2 Q22x2 − 2x>2 (Q22µ2 + Q21(x1 − µ1))

])

∝ exp

(
−1

2

(
x2 − Q−1

22 (Q22µ2 + Q21(x1 − µ1))
)>

Q22 (x2 − . . .)
)

So
X2|X1 = x1 ∼ N(µ2 + Q−1

22 Q21(x1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

X2|X1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

π(x2|x1) ∝ exp

(
−1

2

[
(x2 − µ2)>Q22(x2 − µ2) + 2(x2 − µ2)>Q21(x1 − µ1)

])
∝ exp

(
−1

2

[
x>2 Q22x2 − 2x>2 (Q22µ2 + Q21(x1 − µ1))

])
∝ exp

(
−1

2

(
x2 − Q−1

22 (Q22µ2 + Q21(x1 − µ1))
)>

Q22 (x2 − . . .)
)

So
X2|X1 = x1 ∼ N(µ2 + Q−1

22 Q21(x1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

X2|X1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

π(x2|x1) ∝ exp

(
−1

2

[
(x2 − µ2)>Q22(x2 − µ2) + 2(x2 − µ2)>Q21(x1 − µ1)

])
∝ exp

(
−1

2

[
x>2 Q22x2 − 2x>2 (Q22µ2 + Q21(x1 − µ1))

])
∝ exp

(
−1

2

(
x2 − Q−1

22 (Q22µ2 + Q21(x1 − µ1))
)>

Q22 (x2 − . . .)
)

So
X2|X1 = x1 ∼ N(µ2 + Q−1

22 Q21(x1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

X2|X1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

π(x2|x1) ∝ exp

(
−1

2

[
(x2 − µ2)>Q22(x2 − µ2) + 2(x2 − µ2)>Q21(x1 − µ1)

])
∝ exp

(
−1

2

[
x>2 Q22x2 − 2x>2 (Q22µ2 + Q21(x1 − µ1))

])
∝ exp

(
−1

2

(
x2 − Q−1

22 (Q22µ2 + Q21(x1 − µ1))
)>

Q22 (x2 − . . .)
)

So
X2|X1 = x1 ∼ N(µ2 + Q−1

22 Q21(x1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

X2|X1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

π(x2|x1) ∝ exp

(
−1

2

[
(x2 − µ2)>Q22(x2 − µ2) + 2(x2 − µ2)>Q21(x1 − µ1)

])
∝ exp

(
−1

2

[
x>2 Q22x2 − 2x>2 (Q22µ2 + Q21(x1 − µ1))

])
∝ exp

(
−1

2

(
x2 − Q−1

22 (Q22µ2 + Q21(x1 − µ1))
)>

Q22 (x2 − . . .)
)

So
X2|X1 = x1 ∼ N(µ2 + Q−1

22 Q21(x1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

X2|X1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

Conditional updates of Gaussian processes
So suppose f is a Gaussian process, then

f (x1), . . . , f (xn), f (x) ∼ N(µ,Σ)

If we observe its value at x1, . . . , xn then

f (x)|f (x1), . . . , f (xn) ∼ N(µ∗, σ∗)

where µ∗ and σ∗ are as on the previous slide.

Note that we still believe f is a GP even though we’ve observed its value
at a number of locations.

Conditional updates of Gaussian processes
So suppose f is a Gaussian process, then

f (x1), . . . , f (xn), f (x) ∼ N(µ,Σ)

If we observe its value at x1, . . . , xn then

f (x)|f (x1), . . . , f (xn) ∼ N(µ∗, σ∗)

where µ∗ and σ∗ are as on the previous slide.

Note that we still believe f is a GP even though we’ve observed its value
at a number of locations.

Why use GPs? Answer 1
The GP class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If f ∼ GP(m(·), k(·, ·)), then if L
is a linear operator

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Why use GPs? Answer 1
The GP class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If f ∼ GP(m(·), k(·, ·)), then if L
is a linear operator

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Why use GPs? Answer 1
The GP class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If f ∼ GP(m(·), k(·, ·)), then if L
is a linear operator

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Why use GPs? Answer 1
The GP class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If f ∼ GP(m(·), k(·, ·)), then if L
is a linear operator

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Determining the mean and covariance function
How do we determine the mean E(f (x)) and covariance Cov(f (x), f (x ′))?

Simplest answer is to pick values we like (found by trial and error) subject
to ‘the rules’:

We can use any mean function we want:

m(x) = E(f (x))

Most popular choices are m(x) = 0 or m(x) = a for all x , or
m(x) = a + bx

We usually use a covariance function that is a function of distance
between the locations

k(x , x ′) = Cov(f (x), f (x ′)),

which has to be positive semi-definite, i.e., lead to valid covariance
matrices.

I This can be problematic (see Nicolas’ talk)

Determining the mean and covariance function
How do we determine the mean E(f (x)) and covariance Cov(f (x), f (x ′))?
Simplest answer is to pick values we like (found by trial and error) subject
to ‘the rules’:

We can use any mean function we want:

m(x) = E(f (x))

Most popular choices are m(x) = 0 or m(x) = a for all x , or
m(x) = a + bx

We usually use a covariance function that is a function of distance
between the locations

k(x , x ′) = Cov(f (x), f (x ′)),

which has to be positive semi-definite, i.e., lead to valid covariance
matrices.

I This can be problematic (see Nicolas’ talk)

Determining the mean and covariance function
How do we determine the mean E(f (x)) and covariance Cov(f (x), f (x ′))?
Simplest answer is to pick values we like (found by trial and error) subject
to ‘the rules’:

We can use any mean function we want:

m(x) = E(f (x))

Most popular choices are m(x) = 0 or m(x) = a for all x , or
m(x) = a + bx

We usually use a covariance function that is a function of distance
between the locations

k(x , x ′) = Cov(f (x), f (x ′)),

which has to be positive semi-definite, i.e., lead to valid covariance
matrices.

I This can be problematic (see Nicolas’ talk)

Determining the mean and covariance function
How do we determine the mean E(f (x)) and covariance Cov(f (x), f (x ′))?
Simplest answer is to pick values we like (found by trial and error) subject
to ‘the rules’:

We can use any mean function we want:

m(x) = E(f (x))

Most popular choices are m(x) = 0 or m(x) = a for all x , or
m(x) = a + bx

We usually use a covariance function that is a function of distance
between the locations

k(x , x ′) = Cov(f (x), f (x ′)),

which has to be positive semi-definite, i.e., lead to valid covariance
matrices.

I This can be problematic (see Nicolas’ talk)

Determining the mean and covariance function
How do we determine the mean E(f (x)) and covariance Cov(f (x), f (x ′))?
Simplest answer is to pick values we like (found by trial and error) subject
to ‘the rules’:

We can use any mean function we want:

m(x) = E(f (x))

Most popular choices are m(x) = 0 or m(x) = a for all x , or
m(x) = a + bx

We usually use a covariance function that is a function of distance
between the locations

k(x , x ′) = Cov(f (x), f (x ′)),

which has to be positive semi-definite, i.e., lead to valid covariance
matrices.

I This can be problematic (see Nicolas’ talk)

Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = exp

(
−1

2
(x − x ′)2

)

Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = exp

(
−1

2

(x − x ′)2

0.252

)

Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = exp

(
−1

2

(x − x ′)2

42

)

Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = 100 exp

(
−1

2
(x − x ′)2

)

Examples

Matern 3/2
k(x , x ′) ∼ (1 + |x − x ′|) exp

(
−|x − x ′|

)

Examples

Brownian motion
k(x , x ′) = min(x , x ′)

Examples

White noise

k(x , x ′) =

{
1 if x = x ′

0 otherwise

Examples
The GP inherits its properties primarily from the covariance function k .

Smoothness

Differentiability

Variance

A final example
k(x , x ′) = x>x ′

What is happening?

Examples
The GP inherits its properties primarily from the covariance function k .

Smoothness

Differentiability

Variance

A final example
k(x , x ′) = x>x ′

What is happening?

Why use GPs? Answer 2: non-parametric/kernel regression
Let’s now motivate the use of GPs as a non-parametric extension to linear
regression. We’ll also show that k determines the space of functions that
sample paths live in.

Suppose we’re given data {(xi , yi)ni=1}.

Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= (X>X + σ2I)−1X>y

= X>(XX> + σ2I)−1y (the dual form)

At first the dual form looks like we’ve made the problem harder for most
problems.

X>X is p × p
XX> is n × n

But the dual form makes clear that linear regression only uses inner
products.
— This is useful!

Why use GPs? Answer 2: non-parametric/kernel regression
Let’s now motivate the use of GPs as a non-parametric extension to linear
regression. We’ll also show that k determines the space of functions that
sample paths live in.
Suppose we’re given data {(xi , yi)ni=1}.
Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22

= (X>X + σ2I)−1X>y

= X>(XX> + σ2I)−1y (the dual form)

At first the dual form looks like we’ve made the problem harder for most
problems.

X>X is p × p
XX> is n × n

But the dual form makes clear that linear regression only uses inner
products.
— This is useful!

Why use GPs? Answer 2: non-parametric/kernel regression
Let’s now motivate the use of GPs as a non-parametric extension to linear
regression. We’ll also show that k determines the space of functions that
sample paths live in.
Suppose we’re given data {(xi , yi)ni=1}.
Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= (X>X + σ2I)−1X>y

= X>(XX> + σ2I)−1y (the dual form)

At first the dual form looks like we’ve made the problem harder for most
problems.

X>X is p × p
XX> is n × n

But the dual form makes clear that linear regression only uses inner
products.
— This is useful!

Why use GPs? Answer 2: non-parametric/kernel regression
Let’s now motivate the use of GPs as a non-parametric extension to linear
regression. We’ll also show that k determines the space of functions that
sample paths live in.
Suppose we’re given data {(xi , yi)ni=1}.
Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= (X>X + σ2I)−1X>y

= X>(XX> + σ2I)−1y (the dual form)

At first the dual form looks like we’ve made the problem harder for most
problems.

X>X is p × p
XX> is n × n

But the dual form makes clear that linear regression only uses inner
products.
— This is useful!

Why use GPs? Answer 2: non-parametric/kernel regression
Let’s now motivate the use of GPs as a non-parametric extension to linear
regression. We’ll also show that k determines the space of functions that
sample paths live in.
Suppose we’re given data {(xi , yi)ni=1}.
Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= (X>X + σ2I)−1X>y

= X>(XX> + σ2I)−1y (the dual form)

At first the dual form looks like we’ve made the problem harder for most
problems.

X>X is p × p
XX> is n × n

But the dual form makes clear that linear regression only uses inner
products.
— This is useful!

Why use GPs? Answer 2: non-parametric/kernel regression
Let’s now motivate the use of GPs as a non-parametric extension to linear
regression. We’ll also show that k determines the space of functions that
sample paths live in.
Suppose we’re given data {(xi , yi)ni=1}.
Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= (X>X + σ2I)−1X>y

= X>(XX> + σ2I)−1y (the dual form)

At first the dual form looks like we’ve made the problem harder for most
problems.

X>X is p × p
XX> is n × n

But the dual form makes clear that linear regression only uses inner
products.
— This is useful!

Prediction
The best prediction of y at a new location x ′ is

ŷ ′ = x ′>β̂

= x ′>X>(XX> + σ2I)−1y

= k(x ′)(K + σ2I)−1y

where k(x ′) := (x ′>x1, . . . , x
′>xn) and Kij := x>i xj

K and k(x) are kernel matrices. Every element is the inner product
between two rows of training points.
Note the similarity to the GP conditional mean we derived before. If(

y
y ′

)
∼ N

(
0,

(
Σ11 Σ12

Σ21 Σ22

))
then E(y ′|y) = Σ21Σ−1

11 y

where Σ11 = K + σ2I , and Σ12 = Cov(y , y ′) then we can see that linear
regression and GP regression are equivalent for the kernel/covariance
function k(x , x ′) = x>x ′.

Prediction
The best prediction of y at a new location x ′ is

ŷ ′ = x ′>β̂

= x ′>X>(XX> + σ2I)−1y

= k(x ′)(K + σ2I)−1y

where k(x ′) := (x ′>x1, . . . , x
′>xn) and Kij := x>i xj

K and k(x) are kernel matrices. Every element is the inner product
between two rows of training points.

Note the similarity to the GP conditional mean we derived before. If(
y
y ′

)
∼ N

(
0,

(
Σ11 Σ12

Σ21 Σ22

))
then E(y ′|y) = Σ21Σ−1

11 y

where Σ11 = K + σ2I , and Σ12 = Cov(y , y ′) then we can see that linear
regression and GP regression are equivalent for the kernel/covariance
function k(x , x ′) = x>x ′.

Prediction
The best prediction of y at a new location x ′ is

ŷ ′ = x ′>β̂

= x ′>X>(XX> + σ2I)−1y

= k(x ′)(K + σ2I)−1y

where k(x ′) := (x ′>x1, . . . , x
′>xn) and Kij := x>i xj

K and k(x) are kernel matrices. Every element is the inner product
between two rows of training points.
Note the similarity to the GP conditional mean we derived before. If(

y
y ′

)
∼ N

(
0,

(
Σ11 Σ12

Σ21 Σ22

))
then E(y ′|y) = Σ21Σ−1

11 y

where Σ11 = K + σ2I , and Σ12 = Cov(y , y ′) then we can see that linear
regression and GP regression are equivalent for the kernel/covariance
function k(x , x ′) = x>x ′.

We know that we can replace x by a feature vector in linear
regression, e.g., φ(x) = (1 x x2) etc.
Then

Kij = φ(xi)
>φ(xj) etc

For some sets of features, the inner product is equivalent to
evaluating a kernel function

φ(x)>φ(x ′) ≡ k(x , x ′)

where
k : X × X → R

is a semi-positive definite function.

We can use an infinite dimensional feature vector φ(x), and because
linear regression can be done solely in terms of inner-products
(inverting a n × n matrix in the dual form) we never need evaluate
the feature vector, only the kernel.

For some sets of features, the inner product is equivalent to
evaluating a kernel function

φ(x)>φ(x ′) ≡ k(x , x ′)

where
k : X × X → R

is a semi-positive definite function.

We can use an infinite dimensional feature vector φ(x), and because
linear regression can be done solely in terms of inner-products
(inverting a n × n matrix in the dual form) we never need evaluate
the feature vector, only the kernel.

Kernel trick:
lift x into feature space by replacing inner products x>x ′ by k(x , x ′)

Kernel regression/non-parametric regression/GP regression all closely
related:

ŷ ′ = m(x ′) =
n∑

i=1

αik(x , xi)

Kernel trick:
lift x into feature space by replacing inner products x>x ′ by k(x , x ′)

Kernel regression/non-parametric regression/GP regression all closely
related:

ŷ ′ = m(x ′) =
n∑

i=1

αik(x , xi)

Generally, we don’t think about these features, we just choose a kernel.
But any kernel is implicitly choosing a set of features, and our model only
includes functions that are linear combinations of this set of features (this
space is called the Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN)2

2λ2)

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the true functional form than any class of
models that contains only a finite number of features.

This is the motivation for non-parametric methods.

Generally, we don’t think about these features, we just choose a kernel.
But any kernel is implicitly choosing a set of features, and our model only
includes functions that are linear combinations of this set of features (this
space is called the Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN)2

2λ2)

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the true functional form than any class of
models that contains only a finite number of features.

This is the motivation for non-parametric methods.

Generally, we don’t think about these features, we just choose a kernel.
But any kernel is implicitly choosing a set of features, and our model only
includes functions that are linear combinations of this set of features (this
space is called the Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN)2

2λ2)

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the true functional form than any class of
models that contains only a finite number of features.

This is the motivation for non-parametric methods.

Generally, we don’t think about these features, we just choose a kernel.
But any kernel is implicitly choosing a set of features, and our model only
includes functions that are linear combinations of this set of features (this
space is called the Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN)2

2λ2)

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the true functional form than any class of
models that contains only a finite number of features.

This is the motivation for non-parametric methods.

Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods1.
If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do to update our beliefs
about X given Y is

E(X |Y) = E(X) + Cov(X ,Y)Var(Y)−1(Y − E(Y))

i.e., exactly the Gaussian process update for the posterior mean.
So GPs are in some sense second-order optimal.

1

Statistics without probability!

Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods1.
If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do to update our beliefs
about X given Y is

E(X |Y) = E(X) + Cov(X ,Y)Var(Y)−1(Y − E(Y))

i.e., exactly the Gaussian process update for the posterior mean.
So GPs are in some sense second-order optimal.

1Statistics without probability!

Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods1.
If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do to update our beliefs
about X given Y is

E(X |Y) = E(X) + Cov(X ,Y)Var(Y)−1(Y − E(Y))

i.e., exactly the Gaussian process update for the posterior mean.
So GPs are in some sense second-order optimal.

1Statistics without probability!

Why use GPs? Answer 4: Uncertainty estimates from
emulators

We often think of our prediction as consisting of two parts

point estimate

uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen
as one of their main advantages.

It is important to check both aspects.

Warning: the uncertainty estimates from a GP can be flawed. Note that
given data D = X , y

Var(f (x)|X , y) = k(x , x)− k(x ,X)k(X ,X)−1k(X , x)

so that the posterior variance of f (x) does not depend upon y !

The variance estimates are particularly sensitive to the hyper-parameter
estimates.

Why use GPs? Answer 4: Uncertainty estimates from
emulators

We often think of our prediction as consisting of two parts

point estimate

uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen
as one of their main advantages.

It is important to check both aspects.

Warning: the uncertainty estimates from a GP can be flawed. Note that
given data D = X , y

Var(f (x)|X , y) = k(x , x)− k(x ,X)k(X ,X)−1k(X , x)

so that the posterior variance of f (x) does not depend upon y !

The variance estimates are particularly sensitive to the hyper-parameter
estimates.

Why use GPs? Answer 4: Uncertainty estimates from
emulators

We often think of our prediction as consisting of two parts

point estimate

uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen
as one of their main advantages.

It is important to check both aspects.

Warning: the uncertainty estimates from a GP can be flawed. Note that
given data D = X , y

Var(f (x)|X , y) = k(x , x)− k(x ,X)k(X ,X)−1k(X , x)

so that the posterior variance of f (x) does not depend upon y !

The variance estimates are particularly sensitive to the hyper-parameter
estimates.

Difficulties of using GPs

If we know what RKHS ≡ what covariance function we should use, GPs
work great!

Unfortunately, we don’t usually know this.

We pick a covariance function from a small set, based usually on
differentiability considerations.

Possibly try a few (plus combinations of a few) covariance functions,
and attempt to make a good choice using some sort of empirical
evaluation.

Covariance functions often contain hyper-parameters. E.g
I RBF kernel

k(x , x ′) = σ2 exp

(
−1

2

(x − x ′)2

λ2

)
Estimate these using some standard procedure (maximum likelihood,
cross-validation, Bayes etc)

Difficulties of using GPs

If we know what RKHS ≡ what covariance function we should use, GPs
work great!
Unfortunately, we don’t usually know this.

We pick a covariance function from a small set, based usually on
differentiability considerations.

Possibly try a few (plus combinations of a few) covariance functions,
and attempt to make a good choice using some sort of empirical
evaluation.

Covariance functions often contain hyper-parameters. E.g
I RBF kernel

k(x , x ′) = σ2 exp

(
−1

2

(x − x ′)2

λ2

)
Estimate these using some standard procedure (maximum likelihood,
cross-validation, Bayes etc)

Difficulties of using GPs

If we know what RKHS ≡ what covariance function we should use, GPs
work great!
Unfortunately, we don’t usually know this.

We pick a covariance function from a small set, based usually on
differentiability considerations.

Possibly try a few (plus combinations of a few) covariance functions,
and attempt to make a good choice using some sort of empirical
evaluation.

Covariance functions often contain hyper-parameters. E.g
I RBF kernel

k(x , x ′) = σ2 exp

(
−1

2

(x − x ′)2

λ2

)
Estimate these using some standard procedure (maximum likelihood,
cross-validation, Bayes etc)

Difficulties of using GPs

If we know what RKHS ≡ what covariance function we should use, GPs
work great!
Unfortunately, we don’t usually know this.

We pick a covariance function from a small set, based usually on
differentiability considerations.

Possibly try a few (plus combinations of a few) covariance functions,
and attempt to make a good choice using some sort of empirical
evaluation.

Covariance functions often contain hyper-parameters. E.g
I RBF kernel

k(x , x ′) = σ2 exp

(
−1

2

(x − x ′)2

λ2

)
Estimate these using some standard procedure (maximum likelihood,
cross-validation, Bayes etc)

Difficulties of using GPs
Gelman et al. 2017

Assuming a GP model for your data imposes a complex structure on the
data.

The number of parameters in a GP is essentially infinite, and so they are
not identified even asymptotically.

So the posterior can concentrate not on a point, but on some submanifold
of parameter space, and the projection of the prior on this space continues
to impact the posterior even as more and more data are collected.

E.g. consider a zero mean GP on [0, 1] with covariance function

k(x , x ′) = σ2 exp(−κ2|x − x |)
We can consistently estimate σ2κ, but not σ2 or κ, even as n→∞.

Difficulties of using GPs
Gelman et al. 2017

Assuming a GP model for your data imposes a complex structure on the
data.

The number of parameters in a GP is essentially infinite, and so they are
not identified even asymptotically.

So the posterior can concentrate not on a point, but on some submanifold
of parameter space, and the projection of the prior on this space continues
to impact the posterior even as more and more data are collected.

E.g. consider a zero mean GP on [0, 1] with covariance function

k(x , x ′) = σ2 exp(−κ2|x − x |)
We can consistently estimate σ2κ, but not σ2 or κ, even as n→∞.

Difficulties of using GPs
Gelman et al. 2017

Assuming a GP model for your data imposes a complex structure on the
data.

The number of parameters in a GP is essentially infinite, and so they are
not identified even asymptotically.

So the posterior can concentrate not on a point, but on some submanifold
of parameter space, and the projection of the prior on this space continues
to impact the posterior even as more and more data are collected.

E.g. consider a zero mean GP on [0, 1] with covariance function

k(x , x ′) = σ2 exp(−κ2|x − x |)
We can consistently estimate σ2κ, but not σ2 or κ, even as n→∞.

Difficulties of using GPs
Gelman et al. 2017

Assuming a GP model for your data imposes a complex structure on the
data.

The number of parameters in a GP is essentially infinite, and so they are
not identified even asymptotically.

So the posterior can concentrate not on a point, but on some submanifold
of parameter space, and the projection of the prior on this space continues
to impact the posterior even as more and more data are collected.

E.g. consider a zero mean GP on [0, 1] with covariance function

k(x , x ′) = σ2 exp(−κ2|x − x |)
We can consistently estimate σ2κ, but not σ2 or κ, even as n→∞.

Problems with hyper-parameter optimization

As well as problems of identifiability, the likelihood surface that is being
maximized is often flat and multi-modal, and thus the optimizer can
sometimes fail to converge, or gets stuck in local-maxima.

In practice, it is not uncommon to optimize hyper parameters and find
solutions such as

We often work around these problems by running the optimizer multiple
times from random start points, using prior distributions, constraining or
fixing hyper-parameters, or adding white noise.

Problems with hyper-parameter optimization

As well as problems of identifiability, the likelihood surface that is being
maximized is often flat and multi-modal, and thus the optimizer can
sometimes fail to converge, or gets stuck in local-maxima.
In practice, it is not uncommon to optimize hyper parameters and find
solutions such as

We often work around these problems by running the optimizer multiple
times from random start points, using prior distributions, constraining or
fixing hyper-parameters, or adding white noise.

Problems with hyper-parameter optimization

As well as problems of identifiability, the likelihood surface that is being
maximized is often flat and multi-modal, and thus the optimizer can
sometimes fail to converge, or gets stuck in local-maxima.
In practice, it is not uncommon to optimize hyper parameters and find
solutions such as

We often work around these problems by running the optimizer multiple
times from random start points, using prior distributions, constraining or
fixing hyper-parameters, or adding white noise.

GPs in Uncertainty Quantification

Baker 1977 (Science):

‘Computerese is the new lingua franca of science’

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

The gold-standard of empirical research is the designed experiment, which
usually involves concepts such as replication, blocking, and randomization.

However, in the past three decades computer experiments (in silico
experiments) have become commonplace in nearly all fields.

GPs in Uncertainty Quantification

Baker 1977 (Science):

‘Computerese is the new lingua franca of science’

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

The gold-standard of empirical research is the designed experiment, which
usually involves concepts such as replication, blocking, and randomization.

However, in the past three decades computer experiments (in silico
experiments) have become commonplace in nearly all fields.

Engineering
Carbon capture and storage technology - PANACEA project

Knowledge about the geology of the wells is uncertain.

Climate Science
Predicting future climate

Challenges of computer experiments
Climate Predictions

Challenges for statistics

The statistical challenges posed by computer experiments are somewhat
different to physical experiments and have only recently begun to be
tackled by statisticians.

For example, replication, randomization and blocking are irrelevant
because a computer model will give identical answers if run multiple times.

Key questions: How do we make inferences about the world from a
simulation of it?

how do we relate simulators to reality? (model error)

how do we estimate tunable parameters? (calibration)

how do we deal with computational constraints? (stat. comp.)

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors? (UQ)

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.

Challenges for statistics

The statistical challenges posed by computer experiments are somewhat
different to physical experiments and have only recently begun to be
tackled by statisticians.

For example, replication, randomization and blocking are irrelevant
because a computer model will give identical answers if run multiple times.

Key questions: How do we make inferences about the world from a
simulation of it?

how do we relate simulators to reality? (model error)

how do we estimate tunable parameters? (calibration)

how do we deal with computational constraints? (stat. comp.)

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors? (UQ)

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.

Challenges for statistics

The statistical challenges posed by computer experiments are somewhat
different to physical experiments and have only recently begun to be
tackled by statisticians.

For example, replication, randomization and blocking are irrelevant
because a computer model will give identical answers if run multiple times.

Key questions: How do we make inferences about the world from a
simulation of it?

how do we relate simulators to reality? (model error)

how do we estimate tunable parameters? (calibration)

how do we deal with computational constraints? (stat. comp.)

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors? (UQ)

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.

Incorporating and accounting for uncertainty

Perhaps the biggest challenge faced is incorporating uncertainty in
computer experiments.

We are used to dealing with uncertainty in physical experiments. But if
your computer model is deterministic, there is no natural source of
variation and so the experimenter must carefully assess where errors might
arise.

Types of uncertainty:

Parametric uncertainty

Model inadequacy

Observation errors

Code uncertainty

Incorporating and accounting for uncertainty

Perhaps the biggest challenge faced is incorporating uncertainty in
computer experiments.

We are used to dealing with uncertainty in physical experiments. But if
your computer model is deterministic, there is no natural source of
variation and so the experimenter must carefully assess where errors might
arise.

Types of uncertainty:

Parametric uncertainty

Model inadequacy

Observation errors

Code uncertainty

Code uncertainty
We think of the simulator as a function

η : X → Y
Typically both the input and output space will be subsets of Rn for some
n.

Monte Carlo (brute force) methods can be used for most tasks if sufficient
computational resource is available.

For example, uncertainty analysis is finding the distribution of η(θ) when
θ ∼ π(·):

draw a sample of parameter values from the prior θ1, . . . , θN ∼ π(θ),

Look at η(θ1), . . . , η(θN) to find the distribution π(η(θ)).

However, for complex simulators, run times might be long.
Consequently, we will only know the simulator output at a finite number
of points:

code uncertainty

Code uncertainty
We think of the simulator as a function

η : X → Y
Typically both the input and output space will be subsets of Rn for some
n.

Monte Carlo (brute force) methods can be used for most tasks if sufficient
computational resource is available.
For example, uncertainty analysis is finding the distribution of η(θ) when
θ ∼ π(·):

draw a sample of parameter values from the prior θ1, . . . , θN ∼ π(θ),

Look at η(θ1), . . . , η(θN) to find the distribution π(η(θ)).

However, for complex simulators, run times might be long.
Consequently, we will only know the simulator output at a finite number
of points:

code uncertainty

Code uncertainty
We think of the simulator as a function

η : X → Y
Typically both the input and output space will be subsets of Rn for some
n.

Monte Carlo (brute force) methods can be used for most tasks if sufficient
computational resource is available.
For example, uncertainty analysis is finding the distribution of η(θ) when
θ ∼ π(·):

draw a sample of parameter values from the prior θ1, . . . , θN ∼ π(θ),

Look at η(θ1), . . . , η(θN) to find the distribution π(η(θ)).

However, for complex simulators, run times might be long.
Consequently, we will only know the simulator output at a finite number
of points:

code uncertainty

Code uncertainty

Code uncertainty

For slow simulators, we are uncertain about the simulator value at all
points except those in a finite set.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , η(θi))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of η(θ).

If θ is multidimensional, then even short run times can rule out brute
force approaches

θ ∈ R10 then 1000 simulator runs is only enough for one point in
each corner of the design space.

Code uncertainty

For slow simulators, we are uncertain about the simulator value at all
points except those in a finite set.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , η(θi))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of η(θ).

If θ is multidimensional, then even short run times can rule out brute
force approaches

θ ∈ R10 then 1000 simulator runs is only enough for one point in
each corner of the design space.

Code uncertainty

For slow simulators, we are uncertain about the simulator value at all
points except those in a finite set.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , η(θi))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of η(θ).

If θ is multidimensional, then even short run times can rule out brute
force approaches

θ ∈ R10 then 1000 simulator runs is only enough for one point in
each corner of the design space.

Code uncertainty

For slow simulators, we are uncertain about the simulator value at all
points except those in a finite set.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , η(θi))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of η(θ).

If θ is multidimensional, then even short run times can rule out brute
force approaches

θ ∈ R10 then 1000 simulator runs is only enough for one point in
each corner of the design space.

Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this meta-model an emulator of our simulator.

We use the emulator as a cheap approximation to the simulator.

ideally an emulator should come with an assessment of its accuracy

rather just predict η(θ) it should predict π(η(θ)|Dsim) - our
uncertainty about the simulator value given the ensemble Dsim.

Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this meta-model an emulator of our simulator.

We use the emulator as a cheap approximation to the simulator.

ideally an emulator should come with an assessment of its accuracy

rather just predict η(θ) it should predict π(η(θ)|Dsim) - our
uncertainty about the simulator value given the ensemble Dsim.

Meta-modelling
Gaussian Process Emulators

Gaussian processes provide a flexible nonparametric distributions for our
prior beliefs about the functional form of the simulator:

η(·) ∼ GP(m(·), σ2c(·, ·))

where m(·) is the prior mean function, and c(·, ·) is the prior covariance
function (semi-definite).

If we observe the ensemble of model runs Dsim, then update our prior
belief about η in light of the ensemble of model runs:

η(·)|Dsim ∼ GP(m∗(·), σ2c∗(·, ·))

where m∗ and c∗ are the posterior mean and covariance functions (simple
functions of Dsim, m and c).

Meta-modelling
Gaussian Process Emulators

Gaussian processes provide a flexible nonparametric distributions for our
prior beliefs about the functional form of the simulator:

η(·) ∼ GP(m(·), σ2c(·, ·))

where m(·) is the prior mean function, and c(·, ·) is the prior covariance
function (semi-definite).

If we observe the ensemble of model runs Dsim, then update our prior
belief about η in light of the ensemble of model runs:

η(·)|Dsim ∼ GP(m∗(·), σ2c∗(·, ·))

where m∗ and c∗ are the posterior mean and covariance functions (simple
functions of Dsim, m and c).

Gaussian Process Illustration
Zero mean

0 2 4 6 8 10

−
2

0
2

4
6

8
1
0

Prior Beliefs

X

Y

Gaussian Process Illustration

0 2 4 6 8 10

−
2

0
2

4
6

8
1
0

Ensemble of model evaluations

X

Y

Gaussian Process Illustration

0 2 4 6 8 10

−
2

0
2

4
6

8
1
0

Posterior beliefs

X

Y

Emulator choices

η(x) = h(x)β + u(x)

emulator = mean structure + residual

u(x) can be taken to be a zero-mean Gaussian process

u(·) ∼ GP(0, c(·, ·))

Emulator choices:

mean structure h(x)
I 1, x , x2, . . ., Legendre polynomials?
I Allows us to build in known trends and exploit power of linear

regression

covariance function c(·, ·) - cf Nicolas’ talk
I Stationary? Smooth?
I Length-scale?
I Nb - we don’t want a nugget term

Emulator choices

η(x) = h(x)β + u(x)

emulator = mean structure + residual

u(x) can be taken to be a zero-mean Gaussian process

u(·) ∼ GP(0, c(·, ·))

Emulator choices:

mean structure h(x)
I 1, x , x2, . . ., Legendre polynomials?
I Allows us to build in known trends and exploit power of linear

regression

covariance function c(·, ·) - cf Nicolas’ talk
I Stationary? Smooth?
I Length-scale?
I Nb - we don’t want a nugget term

Emulator choices

η(x) = h(x)β + u(x)

emulator = mean structure + residual

u(x) can be taken to be a zero-mean Gaussian process

u(·) ∼ GP(0, c(·, ·))

Emulator choices:

mean structure h(x)
I 1, x , x2, . . ., Legendre polynomials?
I Allows us to build in known trends and exploit power of linear

regression

covariance function c(·, ·) - cf Nicolas’ talk
I Stationary? Smooth?
I Length-scale?
I Nb - we don’t want a nugget term

Emulator choices

η(x) = h(x)β + u(x)

emulator = mean structure + residual

u(x) can be taken to be a zero-mean Gaussian process

u(·) ∼ GP(0, c(·, ·))

Emulator choices:

mean structure h(x)
I 1, x , x2, . . ., Legendre polynomials?
I Allows us to build in known trends and exploit power of linear

regression

covariance function c(·, ·) - cf Nicolas’ talk
I Stationary? Smooth?
I Length-scale?
I Nb - we don’t want a nugget term

Example 1: Easier regression
PLASIM-ENTS: Holden, Edwards, Garthwaite, W 2015

Emulate spatially resolved precipitation as
a function of astronomical parameters:
eccentricity, precession, obliquity.

Using a linear regression emulator (on
the EOFs/principal components),
selecting terms using stepwise
regression etc, we got an accuracy of
63%.

After much thought and playing
around, we realised we could improve
the accuracy by using trigonometric
transformations of the inputs. This
gave an accuracy of 81%.

A GP gave us 82% accuracy (straight
out of the box) with no need for
transformations.

Example 1: Easier regression
PLASIM-ENTS: Holden, Edwards, Garthwaite, W 2015

Emulate spatially resolved precipitation as
a function of astronomical parameters:
eccentricity, precession, obliquity.

Using a linear regression emulator (on
the EOFs/principal components),
selecting terms using stepwise
regression etc, we got an accuracy of
63%.

After much thought and playing
around, we realised we could improve
the accuracy by using trigonometric
transformations of the inputs. This
gave an accuracy of 81%.

A GP gave us 82% accuracy (straight
out of the box) with no need for
transformations.

Example 1: Easier regression
PLASIM-ENTS: Holden, Edwards, Garthwaite, W 2015

Emulate spatially resolved precipitation as
a function of astronomical parameters:
eccentricity, precession, obliquity.

Using a linear regression emulator (on
the EOFs/principal components),
selecting terms using stepwise
regression etc, we got an accuracy of
63%.

After much thought and playing
around, we realised we could improve
the accuracy by using trigonometric
transformations of the inputs. This
gave an accuracy of 81%.

A GP gave us 82% accuracy (straight
out of the box) with no need for
transformations.

Example 1: Easier regression
PLASIM-ENTS: Holden, Edwards, Garthwaite, W 2015

Emulate spatially resolved precipitation as
a function of astronomical parameters:
eccentricity, precession, obliquity.

Using a linear regression emulator (on
the EOFs/principal components),
selecting terms using stepwise
regression etc, we got an accuracy of
63%.

After much thought and playing
around, we realised we could improve
the accuracy by using trigonometric
transformations of the inputs. This
gave an accuracy of 81%.

A GP gave us 82% accuracy (straight
out of the box) with no need for
transformations.

Example 2: Estimating gas laws for CCS
Cresswell, Wheatley, W., Graham 2016

PV = nRT is an idealised law that holds in the limit.

it doesn’t apply when the gas is near its critical point

gasses are most easily transported in the super-critical region.

Impurities in the CO2 (SO2 etc) change the fluid behaviour.

We only have a few measurements of fluid behaviour for impure CO2.

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035

−5
0

5
10

v.star

va
lu
es

Figure 2: Pressure against Volume Plot of GP for Pure CO2 at 290K

anything about the EoS. This contrast with reality where certain increases for large volumes as we
know the EoS tends to the ideal gas law. Whilst the mean of the GP does become this exactly for
large volume due to our choice of mean function, the large uncertainty means that the independent
realisations behave erratically. This suggests a need for either a non-stationary covariance function
which tends to zero as volume tends to infinity or perhaps an adaptation of the methods described
in section 1 where the input space is partitioned and di↵erent models fit to each region. Here rather
than fitting a GP to the region of large volume we could fit the ideal gas law model. Finally we
note the critical point does not behave exactly like a saddlepoint. This could be due to there being
a scarcity of data points in the region around the critical point. We attempt to correct for this
by obtaining a further 26 data points at the critical temperature in the region around the critical
point. This does indeed improve the behaviour although not perfectly. For volume less than the
critical volume the pressure attains values lower than the critical pressure and for volumes greater
than the critical volume, pressure greater than the critical pressure are attained. It is possible that
the prescence of greater amounts of data below the critical temperature than above it play a part
in this and in future data for more temperatures around the critical temperature could be included.
For now we proceed with 950 data points on 9 temperatures.

2.3 Optimisation
Choosing the hyperparameters is not particularly robust. As such we estimate them by max-

imising the log-likelihood for our GP. Doing this using the numerical integration functions in R,
integrate and adaptIntegrate, however leads to issues. The numerical integration seems to lead to
errors in the construction of the covariance matrix for our training data and the inverse can thus
not be computed. As such we must constrain ourselves to covariance functions for which we can find
the integrals required in section 2.1. This is possible for the squared exponential function. A further
issue arises even when using analytic integrals. Starting the optimisation using Nelder-Mead, from
100 randomly generated initial points leads to failure 18% of the time due to the nugget tending to
0 whilst the signal variance tends to infinity. This leads to our covariance matrix becoming compu-
tationally singular and non-invertible. This is due to the NIST data being from a smooth function.
As such we fix the nugget to be 10�6 as a jitter term used for computational means, common prac-
tice when using GPs, Goldberg et al. [1998]. With a nugget of this size the optimiser finds a local
maximum on 16 occasions. Avergaing over the 84 times the optimiser found the global maximum

5

∫ vg

vl

P(v)dv = Ps(vg−vl)

and
∂P

∂v
| =

∂P2

∂v2
|= 0

at P = Pc ,T = Tc . By
incorporating this
information we were able
to make more accurate
predictions.

Example 3: Symmetry
Suppose we are modelling a function that is invariant under the single
permutation σ, where σ2 = e, e.g.,

f (x1, x2) = f (x2, x1)

If we assume
f (x1, x2) = g(x1, x2) + g(x2, x1)

for some arbitrary function g, then f has the required symmetry.

If we model g(·) ∼ GP(0, k(·, ·)), then the covariance function for f is

kf = Cov(f (x), f (x ′)) = k(x , x ′) + k(σx , x ′) + k(x , σx ′) + k(σx , σx ′)

If k is an isotropic kernel (we only actually require isotropy for each pair
of vertices that swap in σ), then k(x , x ′) = k(σx , σx ′) and
k(x , σx ′) = k(σx , x ′) as swaps only occur in pairs (σ2 = e). So we can
use

kf (x , x ′) = k(x , x ′) + k(σx , x ′)

saving half the computation.

Example 3: Symmetry
Suppose we are modelling a function that is invariant under the single
permutation σ, where σ2 = e, e.g.,

f (x1, x2) = f (x2, x1)

If we assume
f (x1, x2) = g(x1, x2) + g(x2, x1)

for some arbitrary function g, then f has the required symmetry.

If we model g(·) ∼ GP(0, k(·, ·)), then the covariance function for f is

kf = Cov(f (x), f (x ′)) = k(x , x ′) + k(σx , x ′) + k(x , σx ′) + k(σx , σx ′)

If k is an isotropic kernel (we only actually require isotropy for each pair
of vertices that swap in σ), then k(x , x ′) = k(σx , σx ′) and
k(x , σx ′) = k(σx , x ′) as swaps only occur in pairs (σ2 = e). So we can
use

kf (x , x ′) = k(x , x ′) + k(σx , x ′)

saving half the computation.

Example 3: Symmetry
Suppose we are modelling a function that is invariant under the single
permutation σ, where σ2 = e, e.g.,

f (x1, x2) = f (x2, x1)

If we assume
f (x1, x2) = g(x1, x2) + g(x2, x1)

for some arbitrary function g, then f has the required symmetry.

If we model g(·) ∼ GP(0, k(·, ·)), then the covariance function for f is

kf = Cov(f (x), f (x ′)) = k(x , x ′) + k(σx , x ′) + k(x , σx ′) + k(σx , σx ′)

If k is an isotropic kernel (we only actually require isotropy for each pair
of vertices that swap in σ), then k(x , x ′) = k(σx , σx ′) and
k(x , σx ′) = k(σx , x ′) as swaps only occur in pairs (σ2 = e). So we can
use

kf (x , x ′) = k(x , x ′) + k(σx , x ′)

saving half the computation.

Example 3: Symmetry
Suppose we are modelling a function that is invariant under the single
permutation σ, where σ2 = e, e.g.,

f (x1, x2) = f (x2, x1)

If we assume
f (x1, x2) = g(x1, x2) + g(x2, x1)

for some arbitrary function g, then f has the required symmetry.

If we model g(·) ∼ GP(0, k(·, ·)), then the covariance function for f is

kf = Cov(f (x), f (x ′)) = k(x , x ′) + k(σx , x ′) + k(x , σx ′) + k(σx , σx ′)

If k is an isotropic kernel (we only actually require isotropy for each pair
of vertices that swap in σ), then k(x , x ′) = k(σx , σx ′) and
k(x , σx ′) = k(σx , x ′) as swaps only occur in pairs (σ2 = e). So we can
use

kf (x , x ′) = k(x , x ′) + k(σx , x ′)

saving half the computation.

Example 3: Modelling intermolecular potentials: Ne-CO2
Uteva, Graham, W, Wheatley 2017

10 100 1000
Latin Hypercube size

10-8

10-7

10-6

10-5

10-4

10-3

R
M

SE
 [E

h]

Basic model
Non-symmetric kernel
Symmetric kernel

SPDE-INLA: Beyond GPs
Lindgren, Rue, Lindström 2011

The GP viewpoint is somewhat limited in that it relies upon us specifying
a positive definite covariance function.

How can we build boutique covariance functions? E.g. emulating SST

The SPDE-INLA approach of Lindgren, Rue, Lindström shows how any
Gauss Markov random field (somewhat like a GP) can be written as the
solution to a SPDE, which we can solve on a finite mesh.

This gives us more modelling power, but at the cost of much more
complex mathematics/algorithms.

High dimensional problems
Carbon capture and storage

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field) y

f (K)y
Outputs:

Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),
...

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0
10

20
30

40
50

0

10

20

30

40

50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

↓ f (K)

True truncated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01
True truncated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Surface Flux= 6.43, . . .

Uncertainty quantification (UQ) for CCS

The simulator maps from permeability field K to outputs such as the
surface flux S. Let f (K) denote this mapping

f : K → S

For most problems the permeability K is unknown.

If we assume a distribution for K ∼ π(K), we can quantify our
uncertainty about S = f (K).

e.g., by finding the cumulative distribution function (CDF) of S:

F (s) = P(f (K) ≤ s)

Uncertainty quantification (UQ) for CCS

The simulator maps from permeability field K to outputs such as the
surface flux S. Let f (K) denote this mapping

f : K → S

For most problems the permeability K is unknown.

If we assume a distribution for K ∼ π(K), we can quantify our
uncertainty about S = f (K).

e.g., by finding the cumulative distribution function (CDF) of S:

F (s) = P(f (K) ≤ s)

UQ for complex computer models

Gold standard approach: Monte Carlo simulation

Draw K1, . . . ,KN ∼ π(K), and
evaluate the simulator at each
giving fluxes
s1 = f (K1), . . . , sN = f (KN)

Estimate the empirical CDF

F̂ (s) =
1

N

N∑
i=1

Isi≤s

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

ECDF obtained with 57 simulator runs

Note that N = 103 is not large if we want quantiles in the tail of the
distribution
However the cost of the simulator means we are limited to ∼100
evaluations.

UQ for complex computer models

Gold standard approach: Monte Carlo simulation

Draw K1, . . . ,KN ∼ π(K), and
evaluate the simulator at each
giving fluxes
s1 = f (K1), . . . , sN = f (KN)

Estimate the empirical CDF

F̂ (s) =
1

N

N∑
i=1

Isi≤s

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

ECDF obtained with 57 simulator runs

Note that N = 103 is not large if we want quantiles in the tail of the
distribution
However the cost of the simulator means we are limited to ∼100
evaluations.

Multivariate Emulation
Wilkinson 2010

How can we deal with multivariate ouput?

Build independent or separable multivariate emulators,
Linear model of coregionalization?

Instead, if the outputs are highly correlated we can reduce the dimension
of the data by projecting the data into some lower dimensional space Ypc ,
i.e., assume

y = Wypc + e

where dim(y) >> dim(ypc)
Emulate from Θ to the reduced dimensional output space Ypc

We can then emulate the function that maps the input space Θ to the
reduced dimensional output space Ypc , i.e., ηpc(·) : Θ → Ypc

Θ Y

Ypc

η(·)

PCA
PCA−1ηpc(·)

R.D. Wilkinson (University of Sheffield) MUCM Manchester 2009 11 / 24

Any dimension reduction scheme can be used, as long as we can
reconstruct from Ypc (and quantify the reconstruction error).

Multivariate Emulation
Wilkinson 2010

How can we deal with multivariate ouput?

Build independent or separable multivariate emulators,
Linear model of coregionalization?

Instead, if the outputs are highly correlated we can reduce the dimension
of the data by projecting the data into some lower dimensional space Ypc ,
i.e., assume

y = Wypc + e

where dim(y) >> dim(ypc)
Emulate from Θ to the reduced dimensional output space Ypc

We can then emulate the function that maps the input space Θ to the
reduced dimensional output space Ypc , i.e., ηpc(·) : Θ → Ypc

Θ Y

Ypc

η(·)

PCA
PCA−1ηpc(·)

R.D. Wilkinson (University of Sheffield) MUCM Manchester 2009 11 / 24

Any dimension reduction scheme can be used, as long as we can
reconstruct from Ypc (and quantify the reconstruction error).

Principal Component Emulation (EOF)

1 Find the singular value decomposition of Y .

Y = UΓV ∗.

Γ contains the singular values (sqrt of the eigenvalues), and V the
principal components (eigenvectors of Y>Y).

2 Decide on the dimension of the principal subspace, n∗ say, and throw
away all but the n∗ leading principal components. An orthonormal
basis for the principal subspace is given by the first n∗ columns of V ,
denoted V1. Let V2 be the matrix of discarded columns.

3 Project Y onto the principal subspace to find Y pc = YV1

Why use PCA here?

The n directions are chosen to maximize the variance captured

The approximation is the best possible rank n approximation in terms
of minimizing the reconstruction error (Frobenius/2-norm)

Principal Component Emulation (EOF)

1 Find the singular value decomposition of Y .

Y = UΓV ∗.

Γ contains the singular values (sqrt of the eigenvalues), and V the
principal components (eigenvectors of Y>Y).

2 Decide on the dimension of the principal subspace, n∗ say, and throw
away all but the n∗ leading principal components. An orthonormal
basis for the principal subspace is given by the first n∗ columns of V ,
denoted V1. Let V2 be the matrix of discarded columns.

3 Project Y onto the principal subspace to find Y pc = YV1

Why use PCA here?

The n directions are chosen to maximize the variance captured

The approximation is the best possible rank n approximation in terms
of minimizing the reconstruction error (Frobenius/2-norm)

Principal Component Emulation (EOF)

1 Find the singular value decomposition of Y .

Y = UΓV ∗.

Γ contains the singular values (sqrt of the eigenvalues), and V the
principal components (eigenvectors of Y>Y).

2 Decide on the dimension of the principal subspace, n∗ say, and throw
away all but the n∗ leading principal components. An orthonormal
basis for the principal subspace is given by the first n∗ columns of V ,
denoted V1. Let V2 be the matrix of discarded columns.

3 Project Y onto the principal subspace to find Y pc = YV1

Why use PCA here?

The n directions are chosen to maximize the variance captured

The approximation is the best possible rank n approximation in terms
of minimizing the reconstruction error (Frobenius/2-norm)

Principal Component Emulation (EOF)

1 Find the singular value decomposition of Y .

Y = UΓV ∗.

Γ contains the singular values (sqrt of the eigenvalues), and V the
principal components (eigenvectors of Y>Y).

2 Decide on the dimension of the principal subspace, n∗ say, and throw
away all but the n∗ leading principal components. An orthonormal
basis for the principal subspace is given by the first n∗ columns of V ,
denoted V1. Let V2 be the matrix of discarded columns.

3 Project Y onto the principal subspace to find Y pc = YV1

Why use PCA here?

The n directions are chosen to maximize the variance captured

The approximation is the best possible rank n approximation in terms
of minimizing the reconstruction error (Frobenius/2-norm)

PLASIM-ENTS
Holden, Edwards, Garthwaite, Wilkinson 2015

Planet Simulator coupled to the terrestrial carbon model ENTS

Inputs are eccentricity, obliquity, precession describing Earth’s orbit
around the sun.

Model climate (annual average surface temperature and rainfall) and
vegetation (annual average vegetation carbon density) spatial fields
(on a 64× 32) grid.

We used an ensemble of 50 simulations

Principal components

PCA emulation

We then emulate the reduced dimension model

ηpc(·) = (η1
pc(·), . . . , ηn∗pc (·)).

Each component ηipc will be uncorrelated (in the ensemble) but not
necessarily independent. We use independent Gaussian processes for
each component.

The output can be reconstructed (accounting for reconstruction
error) by modelling the discarded components as Gaussian noise with
variance equal to the corresponding eigenvalue:

η(θ) = V1ηpc(θ) + V2diag(Λ)

where Λi ∼ N(0, Γii) (Γii = i th eigenvalue).

Leave-one-out cross validation of the emulator

For Peer Review Only

254x190mm (72 x 72 DPI)

Page 30 of 31

URL: http://mc.manuscriptcentral.com/cjas

Journal of Applied Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

We can then use the PC-emulator to do sensitivity analysis.

Comments

This approach (PCA emulation) requires that the outputs are highly
correlated.

We are assuming that the output Dsim is really a linear combination
of a smaller number of variables,

η(θ) = v1η
1
pc(θ) + . . .+ vn∗η

n∗
pc (θ)

which may be a reasonable assumption in many situations, eg,
temporal spatial fields.

Although PCA is a linear method (we could use kernel-PCA instead),
the method can be used on highly non-linear models as we are still
using non-linear Gaussian processes to map from Θ to Ypc – the
linear assumption applies only to the dimension reduction (and can
be generalised).

The method accounts for the reconstruction error from reducing the
dimension of the data.

Emulating simulators with high dimensional input
Crevilln-Garca, W., Shah, Power, 2016

For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,

e.g. if we use a 100× 100 grid in the solver, K contains 104 entries

Impossible to directly model f : R10,000 → R

We can use the same idea to reduce the dimension of the inputs.
However, because we know the distribution of K , it is more efficient to
use the Karhunen-Loève (KL) expansion of K (rather than learn it
empirically as in PCA)

K = exp(Z) where Z ∼ GP(m,C)

Z can be represented as

Z (·) =
∞∑
i=1

λiξiφi (·)

where λi and φi are the eigenvalues and eigenfunctions of the
covariance function of Z and ξi ∼ N(0, 1).

Emulating simulators with high dimensional input
Crevilln-Garca, W., Shah, Power, 2016

For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,

e.g. if we use a 100× 100 grid in the solver, K contains 104 entries

Impossible to directly model f : R10,000 → R
We can use the same idea to reduce the dimension of the inputs.
However, because we know the distribution of K , it is more efficient to
use the Karhunen-Loève (KL) expansion of K (rather than learn it
empirically as in PCA)

K = exp(Z) where Z ∼ GP(m,C)

Z can be represented as

Z (·) =
∞∑
i=1

λiξiφi (·)

where λi and φi are the eigenvalues and eigenfunctions of the
covariance function of Z and ξi ∼ N(0, 1).

Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0
Emulated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

True concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Emulated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0
Emulated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

True concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Emulated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01
Emulated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

True concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Emulated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predictive performance vs n = no. of KL components

We can assess the accuracy of the
emulator by examining the prediction
error on a held-out test set. Plotting
predicted vs true value indicates the
accuracy the GP emulator.

We can also choose the number of KL components to retain using
numerical scores

CCS simulator results - 20 simulator training runs

Blue line = CDF from using 103 Monte Carlo samples from the simulator
Red line = CDF obtained using emulator (trained with 20 simulator runs,
rational quadratic covariance function)

Comments
The optimal output dimension reduction method is probably
something like PCA, at least if what we care about is building a good
global emulator.

PCA may be a poor dimension reduction for the inputs.
Mathews and Vial 2017 describe a very interesting new approach for
optimal dimension reduction when

d = f (x) y = g(x)

where d are the observations, x the unknown (high dimensional)
field, and y the quantity you want to predict.
There is a trade-off in the dimension reduction.

I The more we reduce the dimension of the input the easier the
regression becomes, but we lose more info in the compression.

I Less dimension reduction leads to less information loss, but the
regression becomes harder.

Using global sensitivity analysis to select the most influential inputs
is a way of doing dimension reduction focused on the important
information for regression. However, it is limited to projections onto
the original coordinate axes.

Comments
The optimal output dimension reduction method is probably
something like PCA, at least if what we care about is building a good
global emulator.
PCA may be a poor dimension reduction for the inputs.
Mathews and Vial 2017 describe a very interesting new approach for
optimal dimension reduction when

d = f (x) y = g(x)

where d are the observations, x the unknown (high dimensional)
field, and y the quantity you want to predict.

There is a trade-off in the dimension reduction.
I The more we reduce the dimension of the input the easier the

regression becomes, but we lose more info in the compression.
I Less dimension reduction leads to less information loss, but the

regression becomes harder.

Using global sensitivity analysis to select the most influential inputs
is a way of doing dimension reduction focused on the important
information for regression. However, it is limited to projections onto
the original coordinate axes.

Comments
The optimal output dimension reduction method is probably
something like PCA, at least if what we care about is building a good
global emulator.
PCA may be a poor dimension reduction for the inputs.
Mathews and Vial 2017 describe a very interesting new approach for
optimal dimension reduction when

d = f (x) y = g(x)

where d are the observations, x the unknown (high dimensional)
field, and y the quantity you want to predict.
There is a trade-off in the dimension reduction.

I The more we reduce the dimension of the input the easier the
regression becomes, but we lose more info in the compression.

I Less dimension reduction leads to less information loss, but the
regression becomes harder.

Using global sensitivity analysis to select the most influential inputs
is a way of doing dimension reduction focused on the important
information for regression. However, it is limited to projections onto
the original coordinate axes.

Comments
The optimal output dimension reduction method is probably
something like PCA, at least if what we care about is building a good
global emulator.
PCA may be a poor dimension reduction for the inputs.
Mathews and Vial 2017 describe a very interesting new approach for
optimal dimension reduction when

d = f (x) y = g(x)

where d are the observations, x the unknown (high dimensional)
field, and y the quantity you want to predict.
There is a trade-off in the dimension reduction.

I The more we reduce the dimension of the input the easier the
regression becomes, but we lose more info in the compression.

I Less dimension reduction leads to less information loss, but the
regression becomes harder.

Using global sensitivity analysis to select the most influential inputs
is a way of doing dimension reduction focused on the important
information for regression. However, it is limited to projections onto
the original coordinate axes.

Model discrepancy

An appealing idea
Kennedy and O’Hagan 2001

Lets acknowledge that most models are imperfect.

Can we expand the class of models by adding a GP to our simulator?

If f (x) is our simulator, d the observation, then perhaps we can correct f
by modelling

y = f (x) + δ(x) where δ ∼ GP

An appealing idea
Kennedy and O’Hagan 2001

Lets acknowledge that most models are imperfect.
Can we expand the class of models by adding a GP to our simulator?

If f (x) is our simulator, d the observation, then perhaps we can correct f
by modelling

y = f (x) + δ(x) where δ ∼ GP

An appealing, but flawed, idea
Kennedy and O’Hagan 2001, Brynjarsdottir and O’Hagan 2014

Simulator Reality

f (x) = xθ g(x) =
θx

1 + x
a

θ = 0.65, a = 20

No MD

chains$beta

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0

GP prior on MD

chains3$beta

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

Uniform MD on [−1,1]

chains2b$beta

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
10

00
20

00

Uniform MD on [−0.5,0.5]

chains2$beta

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Bolting on a GP can correct your predictions, but won’t necessarily fix
your inference.

Conclusions

Once the good china, GPs are now ubiquitous in statistics/ML.

Popularity stems from
I Naturalness of the framework
I Mathematical tractability
I Empirical success

Thank you for listening!

Conclusions

Once the good china, GPs are now ubiquitous in statistics/ML.

Popularity stems from
I Naturalness of the framework
I Mathematical tractability
I Empirical success

Thank you for listening!

