
Quiz

Suppose we are testing H0 vs H1 and find p < 0.05 and reject H0 at the 5% level.
Which, if any, of these statements is true:

The probability H0 is true is 0.05

False

If H0 is false, then we will correctly reject H0 95% of the time.

False

If we observe p = 0.05, the probability we falsely reject H0 given that it is true is
0.05.

False

If H0 is true, we will falsely reject it 5% of the time

True

Personal view: p-values are not the problem - it is the belief that every dataset should give a
yes/no answer.
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Why be Bayesian?

a man’s attitude toward inference, like his attitude towards religion, is
determined by his emotional make-up, not by reason or mathematics.

M Kendall



Why be Bayesian do Bayesian analyses?

Coherence: under various sets of axioms, Bayes is the only sensible choice.... cf Jaynes,
de Finetti, Jeffreys etc.
Build in expert belief / rule out things we know are unlikely / regularise the solution
It is all just probability

I makes combining different uncertainties easy/possible e.g. calibrated prediction
p(y |x) =

∫
p(y |θ)p(θ|x)dθ

I deals with equifinality (ie multiple feasible values, under-specified systems)
I Simpler! Q:What’s the difference between probability, significance, coverage, confidence,

p-values etc

It is possible / increasingly easy to do Bayesian inference
I Frequentist procedures are ‘mathematically challenging’ to derive for complex models

The downsides:
We have to choose a prior.

I In practice, ‘priors of convenience’ are often used. You need to really care about the answer
to bother with expert elicitation.

I You can check robustness wrt your choices.
There is no need for your posterior to relate to the world

I Post-hoc checks (calibration etc) can help, but there are no frequency guarantees.
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Calibration

For most simulators we specify parameters θ and i.c.s and the simulator, f (θ), generates
output X .

The inverse-problem: observe data D, estimate parameter values θ which explain the data.

The Bayesian approach
is to find the posterior
distribution

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝
prior× likelihood



Intractability

π(θ|D) =
π(D|θ)π(θ)

π(D)

usual intractability in Bayesian inference is not knowing π(D).

a problem is doubly intractable if π(D|θ) = cθp(D|θ) with cθ unknown (cf Murray,
Ghahramani and MacKay 2006)

a problem is completely intractable if π(D|θ) is unknown and can’t be evaluated
(unknown is subjective). I.e., if the analytic distribution of the simulator, f (θ), run at θ is
unknown.

Completely intractable models are where we need to resort to ABC methods
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Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian computation) is one
of the few approaches we can use to do inference.

ABC algorithms are a collection of Monte Carlo methods used for calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are ‘likelihood-free’).

ABC methods are widely used primarily because they are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied
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Plan

i. Basics

ii. Efficient sampling algorithms

iii. Regression adjustments/ post-hoc corrections

iv. Summary statistics

v. Inference for misspecified models



Basics



‘Likelihood-Free’ Inference

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution, π(θ | D).

If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate X ∼ f (θ) from the computer model

Accept θ if D = X , i.e., if computer output equals observation

The acceptance rate is
∫
P(D|θ)π(θ)dθ = P(D).
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any θ. Instead, there is an
approximate version:

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).
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ρ(D,X ) = |D − X |, D = 2



ε = 7.5
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ε = 2.5
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ε = 1
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Rejection ABC

If the data are too high dimensional we never observe simulations that are ‘close’ to the field
data - curse of dimensionality

Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(S(D), S(X )) < ε

If S is sufficient this is equivalent to the previous algorithm.

Simple → Popular with non-statisticians
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ABC as a probability model
W. 2008/13

We wanted to solve the inverse problem

D = f (θ)

but instead ABC solves
D = f (θ) + e.

ABC gives ‘exact’ inference under a different model!

We can show that

Proposition

If ρ(D,X ) = |D − X |, then ABC samples from the posterior distribution of θ given D where
we assume D = f (θ) + e and that

e ∼ U[−ε, ε]

We can generalise ABC to assume non-uniform errors
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Key challenges for ABC (or perhaps for all inference)

Scoring θ

The tolerance ε, distance ρ, summary S(D) (or variations thereof) determine the
theoretical ‘accuracy’ of the approximation

Computing acceptable θ

Computing the approximate posterior for any given score is usually hard.

There is a trade-off between accuracy achievable in the approximation (size of ε), and the
information loss incurred when summarizing

Likelihood-free methods should generally be avoided when possible1

There are fewer and fewer likelihood-free problems.

1

Unless your model is wrong...



Key challenges for ABC (or perhaps for all inference)

Scoring θ

The tolerance ε, distance ρ, summary S(D) (or variations thereof) determine the
theoretical ‘accuracy’ of the approximation

Computing acceptable θ

Computing the approximate posterior for any given score is usually hard.

There is a trade-off between accuracy achievable in the approximation (size of ε), and the
information loss incurred when summarizing

Likelihood-free methods should generally be avoided when possible1

There are fewer and fewer likelihood-free problems.

1

Unless your model is wrong...



Key challenges for ABC (or perhaps for all inference)

Scoring θ

The tolerance ε, distance ρ, summary S(D) (or variations thereof) determine the
theoretical ‘accuracy’ of the approximation

Computing acceptable θ

Computing the approximate posterior for any given score is usually hard.

There is a trade-off between accuracy achievable in the approximation (size of ε), and the
information loss incurred when summarizing

Likelihood-free methods should generally be avoided when possible1

There are fewer and fewer likelihood-free problems.

1Unless your model is wrong...



Efficient Algorithms

References:

Marjoram et al. 2003

Sisson et al. 2007

Beaumont et al. 2008

Toni et al. 2009

Del Moral et al. 2011

Drovandi et al. 2011



ABCifying Monte Carlo methods

Rejection ABC is the basic ABC algorithm

Inefficient as it repeatedly samples from prior

More efficient sampling algorithms allow us to make better use of the available computational
resource: spend more time in regions of parameter space likely to lead to accepted values.

allows us to use smaller values of ε

Most Monte Carlo algorithms now have ABC versions for when we don’t know the likelihood:
IS, MCMC, SMC (×n), EM, EP etc



MCMC-ABC
Marjoram et al. 2003, Sisson and Fan 2011, Lee 2012

We are targeting the joint distribution

πABC (θ, x |D) ∝ Iρ(D,x)≤επ(x |θ)π(θ)

To explore the (θ, x) space, proposals of the form

Q((θ, x), (θ′, x ′)) = q(θ, θ′)π(x ′|θ′)
seem to be inevitable. The Metropolis-Hastings (MH) acceptance probability is then

r =
πABC (θ′, x ′|D)Q((θ′, x ′), (θ, x))

πABC (θ, x |D)Q((θ, x), (θ′, x ′))

=
Iρ(D,x ′)≤επ(x ′|θ′)π(θ′)q(θ′, θ)π(x |θ)

Iρ(D,x)≤επ(x |θ)π(θ)q(θ, θ′)π(x ′|θ′)

=
Iρ(D,x ′)≤εq(θ′, θ)π(θ′)

Iρ(D,x)≤εq(θ, θ′)π(θ)

NB: HMC is not possible (w/o a surrogate)
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Sequential ABC algorithms
Sisson et al. 2007, Toni et al. 2008, Beaumont et al. 2009, Del Moral et al. 2011, Drovandi et al. 2011, ...

Choose a sequence of tolerances ε1 > ε2 > . . . > εT and let πt be the ABC approximation
when using tolerance εt .
We aim to sample N particles successively from

π1(θ), . . . , πT (θ) = target

ABC SMC (Toni et al., 2009)

(a) As in ABC rejection, we define a prior
distribution P (✓) and we would like to approxi-
mate a posterior distribution P (✓|D0). In ABC
SMC we do this sequentially by constructing
intermediate distributions, which converge
to the posterior distribution. We define a
tolerance schedule ✏1 > ✏2 > . . . ✏T � 0.

(b) We sample particles from a prior distribu-
tion until N particles have been accepted (have
reached the distance smaller than ✏1). For all
accepted particles we calculate weights (see
[4] for formulas and derivation). We call the
sample of all accepted particles ”Population
1”.

(c) We then sample a particle ✓⇤ from popu-
lation 1 and perturb it to obtain a perturbed
particle ✓⇤⇤ ⇠ K(✓|✓⇤), where K is a per-
turbation kernel (for example a Gaussian
random walk). We then simulate a dataset
D⇤ ⇠ f(D|✓⇤⇤) and accept the particle ✓⇤⇤

if d(D0, D
⇤⇤)  ✏2. We repeat this until we

have accepted N particles in population 2. We
calculate weights for all accepted particles.

(d) We repeat the same procedure for the
following populations, until we have accepted
N particles of the last population T and
calculated their weights. Population T is a
sample of particles that approximates the
posterior distribution.

ABC SMC is computationally much more
e�cient than ABC rejection (see [4] for
comparison).

ABC SMC (Sequential Monte Carlo)

Intermediate DistributionsPrior Posterior

✏1 ✏2 . . . ✏T�1 ✏T

Population 1 Population 2 Population T

Tina Toni, Michael Stumpf ABC dynamical systems 03/07/08 1 / 1

(a)

(b)

(c)

(d)

Figure 2: Schematic representation of ABC
SMC.
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At each stage t, we aim to construct a weighted sample of particles that approximates πt(θ, x).
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Model selection
W. 2007, Grelaud et al. 2009

Often we want to compare models → Bayes factors

B12 =
π(D|M1)

π(D|M2)

where π(D|Mi ) =
∫
Iρ(D,X )≤επ(x |θ,Mi )π(θ)dxdθ.

For rejection ABC

π(D|M) ≈ 1

N

∑
Iρ(D,Xi )≤ε

where Xi ∼ M(θi ) with θi ∼ π(θ).
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Summary Statistics

References:

Blum, Nunes, Prangle and Sisson 2012

Joyce and Marjoram 2008

Nunes and Balding 2010

Fearnhead and Prangle 2012

Robert et al. 2011



Choosing summary statistics
Blum, Nunes, Prangle, Fearnhead 2012

If S(D) = sobs is sufficient for θ, i.e., sobs contains all the information contained in D about θ

π(θ|sobs) = π(θ|D),

then using summaries has no detrimental effect

However, low-dimensional sufficient statistics are rarely available.
How do we choose good low dimensional summaries?
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Error trade-off
Fearnhead and Prangle 2012

The error in the ABC approximation can be broken into two parts

1 Choice of summary:

π(θ|D)
?≈ π(θ|sobs)

2 Use of ABC acceptance kernel:

π(θ|sobs)
?≈ πABC (θ|sobs)

The first approximation allows the matching between S(D) and S(X ) to be done in a lower
dimension. There is a trade-off

dim(S) small: π(θ|sobs) ≈ πABC (θ|sobs), but π(θ|sobs) 6≈ π(θ|D)

dim(S) large: π(θ|sobs) ≈ π(θ|D) but π(θ|sobs) 6≈ πABC (θ|sobs)
as curse of dimensionality forces us to use larger ε

Optimal (in some sense) to choose dim(s) = dim(θ)
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as curse of dimensionality forces us to use larger ε

Optimal (in some sense) to choose dim(s) = dim(θ)



Machine learning invasion
ML algorithms are good at classification, often better than humans.

ABC can be done via classification, albeit at the cost of abandoning the Bayesian
interpretation.

E.g. 1)Use random forests, (C)NNs etc to generate a summary
1 Train a ML model, m(X ), to predict θ from D using a large number of simulator runs
{θi ,Xi}

2 ABC then simulates θ from the prior and X from the simulator, and accepts θ if
m(X ) ≈ m(Dobs)

E.g. 2) Generative Adversarial Networks (GANs) play a game between a generator and a
discriminative classifier. The classifier tries to distinguish between data and simulation, and
the generator tries to trick the classifier.
E.g. 3) Park et al. 2016, . . ., suggested using the kernel mean embedding of the distribution
(MMD) in an RKHS - inference is then simply projection in the RKHS.
All work well in simulation studies where the model is well specified and there is a true θ...

Warning: beware of all automated summary selection approaches if misspecified
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Inference for misspecified models



Inference under discrepancy

How should we do inference if the model is imperfect?
Data generating process

y ∼ G

Model (complex simulator, finite dimensional parameter)

F = {Fθ : θ ∈ Θ}

If G = Fθ0 ∈ F then we know what to do2.

How should we proceed if
G 6∈ F

2Even if we can’t agree about it!



Maximum likelihood
Maximum likelihood estimator

θ̂n = arg max
θ

l(y |θ)

If G = Fθ0 ∈ F , then (under some conditions)

θ̂n → θ0 almost surely as n→∞
√
n(θ̂n − θ0)

d
=⇒ N(0, I−1(θ0))

Asymptotic consistency, efficiency, normality.

If G 6∈ F

θ̂n → θ∗ = arg min
θ

DKL(G ,Fθ) almost surely

= arg min
θ

∫
log

dG

dFθ
dG

√
n(θ̂n − θ0)

d
=⇒ N(0,V−1)
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Bayes

Bayesian posterior
π(θ|y) ∝ π(y |θ)π(θ)

If G = Fθ0 ∈ F
π(θ|y)

d
=⇒ N(θ0, n

−1I−1(θ0)) as n→∞
Bernstein-von Mises theorem: we forget the prior, and get asymptotic concentration and
normality (under some conditions).

If G 6∈ F , we still get asymptotic concentration (and possibly normality) but to θ∗ (the
pseudo-true value).

“there is no obvious meaning for Bayesian analysis in this case”

Often with non-parametric models (eg GPs), we don’t even get this convergence to the
pseudo-true value due to lack of identifiability.
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An appealing idea: model the discrepancy
Kennedy an O’Hagan 2001

Can we expand the class of models by adding a Gaussian
process (GP) to our simulator?

If fθ(x) is our simulator, y the observation, then perhaps
we can correct f by modelling

y = fθ∗(x) + δ(x) where δ ∼ GP

This greatly expands F into a non-parametric world.
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An appealing, but flawed, idea
Kennedy and O’Hagan 2001, Brynjarsdottir and O’Hagan 2014

Simulator Reality
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An appealing, but flawed, idea
Bolting on a GP can correct your predictions, but won’t necessarily fix your inference:

No discrepancy:

y = fθ(x) + N(0, σ2),

θ ∼ N(0,100), σ2 ∼ Γ−1(0.001, 0.001)

GP discrepancy:

y = fθ(x) + δ(x) + N(0, σ2),

δ(·) ∼ GP(·, ·) with objective priors
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Dangers of non-parametric model extensions

There are (at least) two problems with this approach:

We may still find G 6∈ F
Identifiability

I A GP is an incredibly complex infinite dimensional model, which is not necessarily identified
even asymptotically. The posterior can concentrate not on a point, but on some sub
manifold of parameter space, and the projection of the prior on this space continues to
impact the posterior even as more and more data are collected.

ie We never forget the prior, but the prior is too complex to understand
I Brynjarsdottir and O’Hagan 2014 try to model their way out of trouble with prior information

- which is great if you have it.
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We can also have problems finding the true optima for the hyperparameters, even in 1d
problems:

Wong et al 2017 impose identifiability (for δ and θ) by giving up and identifying

θ∗ = arg min
θ

∫
(ζ(x)− fθ(x))2dπ(x)
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Summary. The paper considers the computer model calibration problem and provides a gen-
eral frequentist solution. Under the framework proposed, the data model is semiparametric
with a non-parametric discrepancy function which accounts for any discrepancy between phys-
ical reality and the computer model. In an attempt to solve a fundamentally important (but often
ignored) identifiability issue between the computer model parameters and the discrepancy func-
tion, the paper proposes a new and identifiable parameterization of the calibration problem. It
also develops a two-step procedure for estimating all the relevant quantities under the new
parameterization. This estimation procedure is shown to enjoy excellent rates of convergence
and can be straightforwardly implemented with existing software. For uncertainty quantifica-
tion, bootstrapping is adopted to construct confidence regions for the quantities of interest. The
practical performance of the methodology is illustrated through simulation examples and an
application to a computational fluid dynamics model.

Keywords: Bootstrap; Inverse problem; Model misspecification; Semiparametric modelling;
Surrogate model; Uncertainty analysis

1. Introduction

In many scientific studies, complex mathematical models, implemented as computer code, are
often used to model physical reality (see, for example, Santner et al. (2003) and Fang et al.
(2010)). Such computer codes are also known as computer models and can only be executed
when certain model parameters are prespecified. The goal of computer model calibration is to
find the model parameter values that allow the computer model to reproduce physical reality
best.

In the computer model calibration problem (Kennedy and O’Hagan, 2001), an output y is
observed from physical reality ζ at n locations of a p-variate input x = .x1, : : : , xp/T:

yi = ζ.xi/+ "i, i=1, : : : , n,

where "i is the measurement error for the ith observation. It is assumed that the user can
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History matching
ABC was proposed as a method of last resort, but there is evidence it works particularly well
for mis-specified models.

History matching was designed for inference in mis-specified models. It seeks to find a NROY
set

Pθ = {θ : SHM(F̂θ, y) ≤ 3}
where

SHM(Fθ, y) =
|EFθ

(Y )− y |√
VarFθ

(Y )

ABC approximates the posterior as

πε(θ) ∝ π(θ)E(IS(F̂θ,y)≤ε)

for some choice of S (typically S(F̂θ, y) = ρ(η(y), η(y ′)) where y ′ ∼ Fθ) and ε.

They have thresholding of a score in common and are algorithmically comparable
(thresholding).
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History matching and ABC

These methods (anecdotally) seem to work better in mis-specified situations.

Why?

They differ from likelihood based approaches in that

They only use some aspect of the simulator output

I Typically we hand pick which simulator outputs to compare, and weight them on a case by
case basis.

Potentially use generalised scores/loss-functions

The thresholding type nature potentially makes them somewhat conservative
I Bayes/Max-likelihood estimates usually concentrate asymptotically. If G 6∈ F can we hope to

learn precisely about θ?
I We should use methods that limit the amount of learning that is possible about θ.
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Conclusions

ABC allows inference in models for which it would otherwise be impossible.

not a silver bullet - if likelihood methods possible, use them instead

Algorithms and post-hoc regression can greatly improve computational efficiency, but
computation is still usually the limiting factor.

Challenge is to develop more efficient methods to allow inference in more expensive
models.

Scoring of parameter values needs careful thought

Likelihood isn’t always fit for purpose.

Thank you for listening!
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