Quiz

Suppose we are testing Hyg vs H; and find p < 0.05 and reject Hy at the 5% level.
Which, if any, of these statements is true:

@ The probability Hp is true is 0.05

o If Hy is false, then we will correctly reject Hyp 95% of the time.

o If we observe p = 0.05, the probability we falsely reject Hy given that it is true is
0.05.

o If Hyp is true, we will falsely reject it 5% of the time



Quiz

Suppose we are testing Hyg vs H; and find p < 0.05 and reject Hy at the 5% level.
Which, if any, of these statements is true:

@ The probability Hp is true is 0.05 False

o If Hy is false, then we will correctly reject Hyp 95% of the time. False

o If we observe p = 0.05, the probability we falsely reject Hy given that it is true is
0.05.False

o If Hyp is true, we will falsely reject it 5% of the time True

Personal view: p-values are not the problem - it is the belief that every dataset should give a
yes/no answer.
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Why be Bayesian?

a man'’s attitude toward inference, like his attitude towards religion, is
determined by his emotional make-up, not by reason or mathematics.

M Kendall
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@ It is all just probability
» makes combining different uncertainties easy/possible e.g. calibrated prediction
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to bother with expert elicitation.
» You can check robustness wrt your choices.



Why be-Bayesian do Bayesian analyses?

@ Coherence: under various sets of axioms, Bayes is the only sensible choice.... cf Jaynes,
de Finetti, Jeffreys etc.
@ Build in expert belief / rule out things we know are unlikely / regularise the solution
@ It is all just probability
» makes combining different uncertainties easy/possible e.g. calibrated prediction
p(y|x) = [ p(y|0)p(0]x)do
> deals with equifinality (ie multiple feasible values, under-specified systems)
» Simpler! Q:What's the difference between probability, significance, coverage, confidence,
p-values etc
@ It is possible / increasingly easy to do Bayesian inference
» Frequentist procedures are ‘mathematically challenging’ to derive for complex models
The downsides:
@ We have to choose a prior.

» In practice, ‘priors of convenience’ are often used. You need to really care about the answer
to bother with expert elicitation.
» You can check robustness wrt your choices.
@ There is no need for your posterior to relate to the world
» Post-hoc checks (calibration etc) can help. but there are no frequency guarantees:



Calibration

@ For most simulators we specify parameters § and i.c.s and the simulator, f(6), generates
output X.
@ The inverse-problem: observe data D, estimate parameter values 6 which explain the data.
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Intractability

m(D[6)n(6)
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@ usual intractability in Bayesian inference is not knowing (D).



Intractability

m(D[6)n(6)
0|D) = —————
w(010) = "%
@ usual intractability in Bayesian inference is not knowing (D).
@ a problem is doubly intractable if 7(D|0) = cyp(D|6) with cy unknown (cf Murray,
Ghahramani and MacKay 2006)

@ a problem is completely intractable if 7(D|6) is unknown and can’t be evaluated
(unknown is subjective). l.e., if the analytic distribution of the simulator, (), run at 6 is

unknown.
Completely intractable models are where we need to resort to ABC methods
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Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian computation) is one
of the few approaches we can use to do inference.
ABC algorithms are a collection of Monte Carlo methods used for calibrating simulators

@ they do not require explicit knowledge of the likelihood function

e inference is done using simulation from the model (they are ‘likelihood-free').

ABC methods are widely used primarily because they are

Simple to implement

@ Intuitive

@ Embarrassingly parallelizable
°

Can usually be applied



Plan

i. Basics

i. Efficient sampling algorithms
il Regression adjustments/- post-hoc corrections
iv. Summary statistics

v. Inference for misspecified models



Basics
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@ Accept 6 with probability 7(D | 6)
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‘Likelihood-Free' Inference

Rejection Algorithm
e Draw 6 from prior 7(-)
@ Accept 6 with probability 7(D | 6)

Accepted 6 are independent draws from the posterior distribution, 7(6 | D).
If the likelihood, 7(D|#), is unknown:

‘Mechanical’ Rejection Algorithm

e Draw 6 from 7(+)
e Simulate X ~ f(6) from the computer model
o Accept 0 if D = X, i.e., if computer output equals observation

The acceptance rate is [ P(D|0)r(6)dd = P(D).



Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any 6. Instead, there is an
approximate version:

Uniform Rejection Algorithm
e Draw 6 from 7(6)
e Simulate X ~ f(0)
@ Accept 6§ if p(D, X) <€




Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any 6. Instead, there is an
approximate version:

Uniform Rejection Algorithm
e Draw 6 from 7(6)
e Simulate X ~ f(0)
@ Accept 6§ if p(D, X) <€

e reflects the tension between computability and accuracy.

@ As € — 00, we get observations from the prior, 7(0).

e If ¢ =0, we generate observations from 7 (6 | D).
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Density
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Density
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p(D,X)=|D-X|, D=2



Rejection ABC

If the data are too high dimensional we never observe simulations that are ‘close’ to the field
data - curse of dimensionality

Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries
@ Draw 6 from 7(6)
e Simulate X ~ f(0)
@ Accept 0 if p(S(D),S5(X)) < e

If S is sufficient this is equivalent to the previous algorithm.



Rejection ABC

If the data are too high dimensional we never observe simulations that are ‘close’ to the field
data - curse of dimensionality

Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries
@ Draw 6 from 7(6)
e Simulate X ~ f(0)
@ Accept 0 if p(S(D),S5(X)) < e

If S is sufficient this is equivalent to the previous algorithm.

Simple — Popular with non-statisticians
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ABC as a probability model
W. 2008/13
We wanted to solve the inverse problem

D = £(0)
but instead ABC solves
D=f(0)+e.
ABC gives ‘exact’ inference under a different model!

We can show that
Proposition

If p(D,X) =|D — X|, then ABC samples from the posterior distribution of 6 given D where
we assume D = f(6) + e and that
e~ Ul—e¢, €]

We can generalise ABC to assume non-uniform errors
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@ The tolerance ¢, distance p, summary S(D) (or variations thereof) determine the
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Key challenges for ABC (or perhaps for all inference)

Scoring 6

@ The tolerance ¢, distance p, summary S(D) (or variations thereof) determine the
theoretical ‘accuracy’ of the approximation

Computing acceptable 6

@ Computing the approximate posterior for any given score is usually hard.

@ There is a trade-off between accuracy achievable in the approximation (size of €), and the
information loss incurred when summarizing

Likelihood-free methods should generally be avoided when possible!

There are fewer and fewer likelihood-free problems.

'Unless your model is wrong...



References:

Marjoram et al. 2003
Sisson et al. 2007
Beaumont et al. 2008
Toni et al. 2009

Del Moral et al. 2011
Drovandi et al. 2011

Efficient Algorithms



ABCifying Monte Carlo methods

Rejection ABC is the basic ABC algorithm
o Inefficient as it repeatedly samples from prior

More efficient sampling algorithms allow us to make better use of the available computational
resource: spend more time in regions of parameter space likely to lead to accepted values.

@ allows us to use smaller values of ¢

Most Monte Carlo algorithms now have ABC versions for when we don’t know the likelihood:
IS, MCMC, SMC (xn), EM, EP etc
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We are targeting the joint distribution
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MCMC-ABC

Marjoram et al. 2003, Sisson and Fan 2011, Lee 2012
We are targeting the joint distribution
magc (0, x|D) o< Lyp xy<em(x]0)m(0)
To explore the (6, x) space, proposals of the form
Q((0,x), (¢",x')) = q(0,0")m(x'|¢")
seem to be inevitable. The Metropolis-Hastings (MH) acceptance probability is then

_ masc(9, X|D)Q((¢", X'), (6, x))
7TABC(9 x|D)Q((6,x), (¢',x))

e (X[0")m(6")q (6", 0)m(x|0)
p(DX J(X\@)?T(H)qw,@’) (x'16")
p(Dx)<cq(0', 0)m(6")

Io(px)<eq(0, 0")m(6)
NB: HMC is not possible (w/o a surrogate)




Sequential ABC algorithms
Sisson et al. 2007, Toni et al. 2008, Beaumont et al. 2009, Del Moral et al. 2011, Drovandi et al. 2011, ...

Choose a sequence of tolerances €3 > €3 > ... > e7 and let m; be the ABC approximation
when using tolerance ;.

We aim to sample N particles successively from

7['1(9), ce 7['7'((9) = target

€1 €2 €T-1 €T
\ [
Prior Intermediate Distributions Posterior



At each stage t, we aim to construct a weighted sample of particles that approximates (6, x).

Population 1 Population 2 Population T
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Intermediate Distributions Posterior

Picture from Toni and Stumpf 2010



Model selection
W. 2007, Grelaud et al. 2009

Often we want to compare models — Bayes factors

_ w(D|My)
512 = 2 (D|My)

where m(D|M;) = [1,p x)<em(x|0, Mi)m(6)dxd6.



Model selection
W. 2007, Grelaud et al. 2009

Often we want to compare models — Bayes factors

B,, — T(DIM)
m(D|Ma)
where m(D|M;) = [1,p x)<em(x|0, Mi)m(6)dxd6.
For rejection ABC

m(D|M) ~ Z]I (D.X)

where X; ~ M(6;) with 6; ~ ().



Summary Statistics

References:
@ Blum, Nunes, Prangle and Sisson 2012
Joyce and Marjoram 2008
Nunes and Balding 2010
Fearnhead and Prangle 2012
Robert et al. 2011
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If S(D) = seps is sufficient for 0, i.e., sops contains all the information contained in D about
7(0|sops) = w(0|D),

then using summaries has no detrimental effect



Choosing summary statistics
Blum, Nunes, Prangle, Fearnhead 2012

If S(D) = seps is sufficient for 0, i.e., sops contains all the information contained in D about
7(0|sops) = w(0|D),

then using summaries has no detrimental effect

However, low-dimensional sufficient statistics are rarely available.
How do we choose good low dimensional summaries?
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Fearnhead and Prangle 2012

The error in the ABC approximation can be broken into two parts
@ Choice of summary:

?
7(0|D) ~ m(0|sobs)
@ Use of ABC acceptance kernel:

?
7T(9’50bs) ~ WABC(QISObS)

The first approximation allows the matching between S(D) and S(X) to be done in a lower
dimension. There is a trade-off
o dim(S) small: m(0|sops) ~ magc(0]Sobs), but m(0|sops) % w(0]D)

o dim(S) large: m(8|sobs) = m(8|D) but w(0|sons) % maBC(0|Sobs)
as curse of dimensionality forces us to use larger €



Error trade-off
Fearnhead and Prangle 2012
The error in the ABC approximation can be broken into two parts
@ Choice of summary:
?
7(0|D) ~ m(0|sobs)
@ Use of ABC acceptance kernel:

?
7T(9’50bs) ~ WABC(QISObS)

The first approximation allows the matching between S(D) and S(X) to be done in a lower
dimension. There is a trade-off
o dim(S) small: m(0|sops) ~ magc(0]Sobs), but m(0|sops) % w(0]D)
o dim(S) large: m(8|sobs) = m(8|D) but w(0|sons) % maBC(0|Sobs)
as curse of dimensionality forces us to use larger €
Optimal (in some sense) to choose dim(s) = dim(0)
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Machine learning invasion
ML algorithms are good at classification, often better than humans.

ABC can be done via classification, albeit at the cost of abandoning the Bayesian
interpretation.
E.g. 1)Use random forests, (C)NNs etc to generate a summary
@ Train a ML model, m(X), to predict 6 from D using a large number of simulator runs
10i, Xi}
@ ABC then simulates 6 from the prior and X from the simulator, and accepts 6 if
m(X) = m(Dops)
E.g. 2) Generative Adversarial Networks (GANs) play a game between a generator and a
discriminative classifier. The classifier tries to distinguish between data and simulation, and
the generator tries to trick the classifier.
E.g. 3) Park et al. 2016, ..., suggested using the kernel mean embedding of the distribution
(MMD) in an RKHS - inference is then simply projection in the RKHS.
All work well in simulation studies where the model is well specified and there is a true 6...

@ Warning: beware of all automated summary selection approaches if misspecified



Inference for misspecified models




Inference under discrepancy

How should we do inference if the model is imperfect?
Data generating process

y~G

Model (complex simulator, finite dimensional parameter)
F = {Fg 10 e @}

If G = Fy, € F then we know what to do?.

How should we proceed if
G¢F

2Even if we can't agree about it!

;\\



Maximum likelihood
Maximum likelihood estimator

0, =arg m@ax/(y\ﬁ)
If G = Fg, € F, then (under some conditions)

é,, — 0p almost surely as n — oo
V(B — 00) 2 N(0,Z72(60))

Asymptotic consistency, efficiency, normality.



Maximum likelihood
Maximum likelihood estimator

0, =arg meax/(y\ﬁ)
If G = Fg, € F, then (under some conditions)

é,, — 0p almost surely as n — oo
V(B — 00) 2 N(0,Z72(60))

Asymptotic consistency, efficiency, normality.
If G ¢ F

0, — 0" = arg mein Dki (G, Fy) almost surely
. dG
—argmeln/logdl__edG
V(0o — 60) 2 N0, V)

~ \y



Bayes

Bayesian posterior

m(0ly) oc 7(y|0)m(0)
If G=Fy € F

m(0ly) 2 N6, n1T71(6p)) as n— o

Bernstein-von Mises theorem: we forget the prior, and get asymptotic concentration and
normality (under some conditions).
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Bayes

Bayesian posterior
m(0ly) o< w(y|0)m(6)
If G=Fyp, € F
m(0ly) 2 N(6o, n2T71(60)) as n — oo

Bernstein-von Mises theorem: we forget the prior, and get asymptotic concentration and
normality (under some conditions).

If G & F, we still get asymptotic concentration (and possibly normality) but to 6* (the
pseudo-true value).

“there is no obvious meaning for Bayesian analysis in this case”

Often with non-parametric models (eg GPs), we don’t even get this convergence to the
pseudo-true value due to lack of identifiability.



An appealing idea: model the discrepancy
Kennedy an O'Hagan 2001

Can we expand the class of models by adding a Gaussian
process (GP) to our simulator?

If fy(x) is our simulator, y the observation, then perhaps
we can correct f by modelling

y = fp«(x) + 6(x) where §~ GP



An appealing idea: model the discrepancy
Kennedy an O'Hagan 2001

Can we expand the class of models by adding a Gaussian
process (GP) to our simulator?

If fy(x) is our simulator, y the observation, then perhaps
we can correct f by modelling

y = fp«(x) + 6(x) where §~ GP e 5

This greatly expands F into a non-parametric world.



An appealing, but flawed, idea
Kennedy and O'Hagan 2001, Brynjarsdottir and O'Hagan 2014
Simulator Reality

f(x) = bx g(x) = 2

1+2

0 =0.65,a = 20

Solid=model with true theta, dashed=truth




An appealing, but flawed, idea

Bolting on a GP can correct your predictions, but won't necessarily fix your inference:
@ No discrepancy:
y = fo(x) + N(0,5?),
6 ~ N(0,100), 5% ~ I1(0.001,0.001)
o GP discrepancy:
y = f3(x) +8(x) + N(0,0%),
d(-) ~ GP(-,-) with objective priors

No MD GP prior on MD

cy
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e We may still find G ¢ F
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» A GP is an incredibly complex infinite dimensional model, which is not necessarily identified
even asymptotically. The posterior can concentrate not on a point, but on some sub
manifold of parameter space, and the projection of the prior on this space continues to
impact the posterior even as more and more data are collected.

ie We never forget the prior, but the prior is too complex to understand



Dangers of non-parametric model extensions

There are (at least) two problems with this approach:

e We may still find G ¢ F
o ldentifiability

» A GP is an incredibly complex infinite dimensional model, which is not necessarily identified
even asymptotically. The posterior can concentrate not on a point, but on some sub
manifold of parameter space, and the projection of the prior on this space continues to
impact the posterior even as more and more data are collected.

ie We never forget the prior, but the prior is too complex to understand

» Brynjarsdottir and O'Hagan 2014 try to model their way out of trouble with prior information
- which is great if you have it.
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@ Wong et al 2017 impose identifiability (for 6 and ) by giving up and identifying
0" = argmin [ (¢(x) - f(x)Pdr(x)

ROYAL . L.
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J. R. Statist. Soc. B (2017)
79, Part2, pp. 635648

A frequentist approach to computer model
calibration
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for some choice of S (typically S(Fy,y) = p(n(y), n(y')) where y' ~ Fp) and .

They have thresholding of a score in common and are algorithmically comparable
(thresholding).
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They differ from likelihood based approaches in that

@ They only use some aspect of the simulator output

» Typically we hand pick which simulator outputs to compare, and weight them on a case by
case basis.

e Potentially use generalised scores/loss-functions

@ The thresholding type nature potentially makes them somewhat conservative

» Bayes/Max-likelihood estimates usually concentrate asymptotically. If G & F can we hope to
learn precisely about 67

» We should use methods that limit the amount of learning that is possible about 6.
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Conclusions

ABC allows inference in models for which it would otherwise be impossible.
@ not a silver bullet - if likelihood methods possible, use them instead

Algorithms and post-hoc regression can greatly improve computational efficiency, but
computation is still usually the limiting factor.

@ Challenge is to develop more efficient methods to allow inference in more expensive
models.

Scoring of parameter values needs careful thought

@ Likelihood isn't always fit for purpose.
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Thank you for listening!



