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What is calibration?
Parameter estimation/fitting/tuning/inverse problem/system identification

Computer model (or simulator) f (x , u)

x a parameter, we want to estimate

u a control input.

Given

observations y collected under experimental conditions u

a relationship between f (x∗, u) and y

calibration is the process of estimating x∗ - the ‘best input’

Adjust x∗ until the simulator prediction looks like the data y .

Stochastic models:

f (x , u, ξ) where ξ ∼ U[0, 1]D
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Motivating example: Cardiac Digital Twins

The heart is an electrical-mechanical pump,
which contracts under electrical potential.

Left atrium - sinus rhythm

Atrial fibrillation (AF) is rapid and
uncoordinated electrical activation
(arrhythmia) leading to poor mechanical
function.

Some hearts sustain AF - others don’t.

Affects around 600,000 people in UK.

Catheter ablation removes/isolates
pathological tissue that
sustain/initiates AF.

Treatment unsuccessful in ≈40% of
patients .

Kirchof & Calkins 2017

https://youtu.be/VtMxTemNSSg
https://youtu.be/1gyu8G1kTWk
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Modelling activation
Corrado & Niederer 2016

Given an atrial geometry G, the simulator f models the voltage through
time v ≡ v(z , t) where z ∈ G.

∂v

∂t
= ∇ · (D∇v) + h

v (v − vgate) (1− v)

τin
− (1− h)

v

τout
+ ustim

∂h

∂t
=

{
(1− h)/τopen if v ≤ vgate

−h/τopen otherwise

Parameters x = {τopen(z), τout(z), τin(z),D(z)}
Control inputs ustim(z , t)

Each simulation takes ∼ an hour on a HPC.
Simulations are different for every patient specific geometry G
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Impossible dreams
Coveney et al. 2022

In the clinic, cardiologists pace the heart (i.e. fix ustim) and collect noisy
measurements of local activation times (LAT) at some locations.

We need to estimate parameters:

π(x∗|y) where y = f (x∗, u = Fstim) + e

and predict if AF will be sustained after ablation a;

P(AF sustained|a) =

∫
P(AF sustained|x∗, a)π(x∗|y)dx∗
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Challenges of calibrating cardiac digital twins

Complex inference problem

High dimensional parameter x with sparse noisy data y

Expensive simulator f

Uncertain geometry

To be a practical clinical tool

Inference needs to be fast, cheap, and scalable

Predictions need to be robust

Need calibration approaches that can cope with variable data
(missing, incomplete, asynchronous etc).
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Key decisions in calibration
W. and Lanyon 2024

Quantity of interest
I what do we want to compute?

Calibration framework
I how do we define a good fit and characterize uncertainty?

Observation error
I how the simulator relates to the data?

Computation
I how will we compute it?



Preliminaries

Identifiability

x is structurally non-identifiable if f (x , u) = f (x ′, u) for some x 6= x ′

x is practically identifiable if I(x) = E∇ log p(y |x)∇ log p(y |x)> is
full rank

Does the non-identifiability matter for your prediction task?

We often use sensitivity as a proxy for identifiability.

Sobol indices

Si =
VarXi

(EX−i
(Y |Xi ))

Var(Y )
STi

=
EX−i

(VarXi
(Y |X−i ))

Var(Y )

Si ,STi
= 0 suggests xi is not identifiable

I Fix non-identifiable params to a reference value
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Why calibrate?
Quantity of interest (QoI)

Explanation

can we make our simulator output look like the true DGP?

model development - what do we need to fix to achieve this?

Inference

π(x∗|y):

learn the true physical or ‘best’ value of some parameter.

Calibrated prediction

y ′ = f (x∗, u′) π(y ′|y) =

∫
π(f (x∗, u′)|x∗)π(x∗|y)dx∗

Predict some future or unobserved quantity given the data available

Decision

max
a∈A

E(utility of action a) =

∫
U(a, y ′)π(y ′|y)dx∗

Take an optimal action given current state of knowledge.
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Observation model
How does best simulator prediction relate to the observations? i.e.,

π(y |f (x∗, u))

Often trickiest aspect of inference

For well-specified simulator, need only think about observation error

y = f (x∗, u) + e

where, eg, ei are assumed to be iid N(0, σ2)

From the observation error we get the link between x∗ and y which allows
us to learn. Eg a likelihood

π(y |x∗) = N (y ; f (x∗, u), σ2I )

Need to work harder for stochastic models

π(y |x∗) =

∫
π(y |f (x∗, u, ξ))π(ξ)df
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Misspecified models
Bochkina 2022

What if the simulator is an imperfect representation of reality ζ(u)?

Kennedy and O’Hagan 2001: model the discrepancy between best
simulator prediction and reality

ζ(u) = f (x∗, u) + δ(u)

y = ζ(u) + e

Typically model δ(u) as a Gaussian process (GP)
I Can we model our way out of trouble by expanding F into a

non-parametric world?
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An appealing, but flawed, idea
Brynjarsdottir and O’Hagan 2014

Simulator Reality

fx(u) = xu g(u) =
x∗u
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An appealing, but flawed, idea

A GP discrepancy can correct your predictions, but won’t necessarily fix
inference of x∗ as δ(·), x∗ are structurally non-identifiable:

No discrepancy:
y = f (x∗, u) + N(0, σ2)

GP discrepancy:
y = f (x∗,u) + δ(u) + N(0, σ2),

δ(·) ∼ GP(·, ·)

No MD
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’dangerous to interpret estimates of x∗... as estimates of the true physical
values of those parameters’
No explicit definition of x∗ provided
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Can we recover identifiability?
Sung and Tuo 2023

Let e(x , u) = ζ(u)− f (x , u)
Tuo and Wu 2015 (and others) explicitly define the L2 projection

x∗ := arg min
x
||e(x , ·)||L2 = arg min

x

∫
(ζ(u)− f (x , u))2du

Tuo and Wu 2016, 2020 show that if δ(u) ∼ GP(0, k(u, u′)), the
posterior mode for x∗ converges to

arg min
x
||e(x , ·)||Hk

6= x∗

i.e. we don’t forget the prior.

Tuo and Wu 2015 (and others) proposed frequentist approaches for
estimating L2 projection.
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Can we recover identifiability?

Plumlee 2017 suggested a Bayesian approach that avoids
non-identifiabilities:

make the discrepancy δ(u) orthogonal to ∇x f (x , u)

Idea: δ shouldn’t explain variations in the output that could be explained
by adjusting x , ie, we shouldn’t correct errors the computer model can fix

Challenging to implement.

Summary:

inference of true physical parameter values with a misspecified model
is hard!

Calibrated prediction is easier.

’dangerous to interpret estimates of x∗... as estimates of the true physical
values of those parameters’
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Physics informed machine learning
Raissi et al. 2019, Ramsey et al. 2007, Brunton et al. 2016

Suppose f solves differential equations

Lg = 0

E.g.
gx(z , t) solution to ∂tg = x∇2

zg

Physics informed neural networks fit model hψ,x(z , t)

min
ψ
||Lxhψ,x ||+ ||hψ,x(z , t)− y ||

Or we can seek to learn missing physics

Lg + δ = 0

Hard to maintain any interpretation for x .
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Implicit observation models
W. 2013

Often we don’t give an explicit statistical model relating observations to
best simulator prediction.

ABC/history matching, kernel methods, scoring rule approaches,
Bayes linear etc

But sometimes we can reinterpret the algorithm within a statistical
framework. E.g.

ABC

Draw x from π(x)

Simulate Y sim ∼ f (x , u, ξ)

Accept x if d(Y sim, y) ≤ ε

is equivalent to assuming δ(u) ∼ U{e : d(y + e, y) ≤ ε}



Implicit observation models
W. 2013

Often we don’t give an explicit statistical model relating observations to
best simulator prediction.

ABC/history matching, kernel methods, scoring rule approaches,
Bayes linear etc

But sometimes we can reinterpret the algorithm within a statistical
framework. E.g.

ABC

Draw x from π(x)

Simulate Y sim ∼ f (x , u, ξ)

Accept x if d(Y sim, y) ≤ ε

is equivalent to assuming δ(u) ∼ U{e : d(y + e, y) ≤ ε}



Calibration framework
How will we characterize uncertainty about x∗?

Bayes

Given a prior distribution π(x∗) compute posterior

π(x∗|y) =
π(y |x∗)π(x∗)

π(y)

More challenging with stochastic simulator
I likelihood-free / simulation-based inference / ABC

Often get lingering prior dependence. Calibration (cf Johanna’s talk),
frequentist, robustness properties?

Generalized Bayes

π(x∗|y) = arg min
p∈P

Ex∼p(x)`(x , y) + D(p||π)

Generalizes Bayesian inference and allows us to use more robust1 loss
functions (see Knoblauch et al. 2019)

Computation?

1typically robust only to mild misspecification, not the typical gross misspec.
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frequentist, robustness properties?

Generalized Bayes

π(x∗|y) = arg min
p∈P

Ex∼p(x)`(x , y) + D(p||π)

Generalizes Bayesian inference and allows us to use more robust1 loss
functions (see Knoblauch et al. 2019)

Computation?
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Calibration framework
Craig et al. 1999, Vernon et al. 2014, Holden et al. 2018

History matching seeks to find a not ruled out yet (NROY) set

Px∗ = {x : SHM(F̂x , y) ≤ 3}

where

SHM(Fx , y) =
|EFx (Y )− y |√

VarFx (Y )

ABC approximates the posterior as

πε(x
∗) ∝ π(x∗)E(IS(F̂x∗ ,y)≤ε

)

for some choice2 of S and ε.

They both threshold a score and are algorithmically comparable.

2originally S(F̂x , y) = d(η(y), η(y ′)) where y ′ ∼ Fx , or MMD etc
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History matching and ABC

These methods (anecdotally) seem to work better in mis-specified
situations.

Why?

They differ from likelihood based approaches in that

They only use some aspect of the simulator output (cf Gibbs
posteriors Bissiri et al. 2016)

I Typically we hand pick which simulator outputs to compare, and
weight them on a case by case basis.

Potentially use generalised scores/loss-functions that are more robust
to misspecification

The thresholding type nature potentially makes them somewhat
conservative

∃ many frequentist approaches, minimum scoring rule (Dawid et al. 2015,
Waghmare et al. 2025), etc....
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Computing π(x∗|y)
Cranmer et al. 2020

Choice of approximation method depends on

Computational budget:
I Max of N simulations possible {xi , f (xi )}Ni=1

Knowledge of the simulator
I Zeroth order f (x), first order ∇f (x), second order ∇2f (x)?
I Intrusive methods? E.g. multi-fidelity/level methods.
I Known likelihood? Simulation-based inference

Time-urgency...

Distinguish between

Case-based inference: for each new dataset y , run a separate
optimization to approximate π(x∗|y).

Amortized inference: global upfront training (before data collected)
using simulations, so that inference at test time is rapid.
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Case-based methods

Gold standard remains sampling methods such as MCMC.

Sequentially simulate x1, x2, . . . from π(x∗|y). At stage n

x ′ ∼ q(xn, x
′)

Set xn=1 =

{
x ′ w.p. α(xn, x

′, y , f (x ′, u), f (x , u))

xn otherwise

If available, gradient information ∇f (x) and ∇2f (x) can accelerate
mixing.

However, for most complex models MCMC is computationally infeasible
without the use of a surrogate f̃ .
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Case-based methods
Ensemble Kalman methods (Evensen 1994, Iglesias et al. 2013, Schillings
et al. 2017, Garbuno-Inigo et al. 2020)

Exact for linear Gaussian systems. Approximates a Gaussian
approximation in non-linear problems...

Uses a small set of particles {x it}Ni=1 to approximate posterior at
artificial time t.

x it+1 = x it + Kn(y i − f (x i+1
t ))

Can be seen as a derivative-free gradient flow

Variational inference: optimization based alternative to sampling (e.g.
Blei et al. 2016).

Choose a parametric family of distributions to approximate posterior,
e.g. qφ(x∗) = N(µ,Σ2)

Solve
arg min

φ
DKL(qφ(x∗)||π(x∗||y))
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Surrogate modelling
E.g. Gramacy 2020

If f is slow/costly to evaluate, standard methods such as MCMC are
impracticable.

Inference must be based on ensemble E = {xn, f (xn)}Nn=1.

Use a surrogate model / emulator / approximation of f , e.g.,

f (·) ∼ GP(m(·), k(·, ·))

Inference then based on f (·)|E

Note that this adds an additional uncertainty π(f |E)
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Intrusive methods

Methods so far only query f (x , u). But if we can get into the internals
there may be model specific structures that can be exploited.

For example,

Multi-fidelity or multi-level approaches: if we have f1, f2, . . . that are
lower fidelity, but cheaper, versions of f , we can exploit this to
reduce costs (eg Peherstorfer et al. 2018).

Linear systems often admit (partially) closed form solution. E.g.

Lg = x

We can compute π(x |y) analytically in some cases (eg Gahungu,
Lanyon et al. 2022)
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Amortized inference
Papamakarios et al. 2019, Radev et al. 2020

Train a model that predicts π(x∗|y) for any y :

Large upfront cost, rapid test time inference.

Neural posteriors. Eg use a normalizing flow:

Find invertible g such that

x∗ ∼ π(x∗|y) ⇐⇒ g(x∗; y) ∼ N(0, I )

then g−1(z ; y) ∼ π(x∗|y) when z ∼ N(0, I ).

Model g as an invertible NN with easily computable Jacobian.

Can include an additional summary network S : y 7→ Rp to learn
optimal summary π(x∗|S(y))
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Motivating example revisited
Coveney et al. 2020, 2021, cf Borovitskiy talk in workshop 1

LAT (x ,w) ∼ GP(m(x ,w), k((x ,w), (x ′,w ′)))

but standard kernels won’t work when domain w ∈ G is an atrial manifold

Solin et al. (2019) showed that if we use a Laplacian eigenbasis

−∇2φj(w) = λjφj(w) w ∈ G

then f (w) =
∑

zkφk(w) with zk ∼ N(0, S(
√
λj))

is a GP with spectral density S.
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Motivating example revisited
Mamajiwala et al. 2024

Can use EnKF with a GP emulator to approximate π(x∗|y)

Homogenous parameters
Works in close to real time
Can identify 2 (homogeneous) params, but sufficient for prediction of
S1S2
Limited improvement in AF prediction.



Challenges

In digital twin settings, we often have populations of related simulators:

f1, f2, . . . ∼ π(f )

For example, fi ≡ fGi (x , u).

How can we reuse simulations from f1, . . . , fn to build a surrogate for
fn+1?

Learn a low dim shape model wi = w(G) and assume fi = f (x , u,wi )

Or learn a general low dim latent representation fi = f (x , u, zi )

Learn a discrepancy between instances and a reference model
fi = f r (x , u) + δi (x , u) where δi is simple
...

Can we train a single amortized calibration methods for the population?
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Conclusions

High dimensional parameters and expensive simulations means we
need to compromise

Estimating unknown physical values is challenging

How can we find regularities in the problem to allow us to reduce
dimension sufficiently in order to make inference possible?

How do we use more robust scores to calibrate models with
interpretable UQ?

Can we make amortized methods that work in practical examples?

Thank you for listening!
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