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What is calibration?

Parameter estimation /fitting/tuning/inverse problem /system identification

Computer model (or simulator) f(x, u)
@ x a parameter, we want to estimate
@ u a control input.
Given
@ observations y collected under experimental conditions u
@ a relationship between f(x*, u) and y
calibration is the process of estimating x* - the 'best input’
@ Adjust x* until the simulator prediction looks like the data y.

Stochastic models:

f(x, u, &) where £ ~ U[0,1]P
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Motivating example: Cardiac Digital Twins

The heart is an electrical-mechanical pump, .
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@ Affects around 600,000 people in UK.

o Catheter ablation removes/isolates
pathological tissue that
sustain/initiates AF.

@ Treatment unsuccessful in ~40% of
patients .

Kirchof & Calkins 2017
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Modelling activation
Corrado & Niederer 2016

Given an atrial geometry G, the simulator f models the voltage through
time v = v(z, t) where z € G.

ov V(v — Vgate) (1 — v) v

5 = V-(DVv)+h . (1 h)Tout + Ustim
@ _ (L—h)/Topen if v < Vgate

ot —h/Topen otherwise

o Parameters x = {Topen(2), Tout(2), Tin(2), D(2) }
e Control inputs ustim(z, t)

Each simulation takes ~ an hour on a HPC.
Simulations are different for every patient specific geometry G
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Coveney et al. 2022
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Impossible dreams
Coveney et al. 2022

In the clinic, cardiologists pace the heart (i.e. fix ustim) and collect noisy
measurements of local activation times (LAT) at some locations.

20 30 40 50 60 70 80 90 100
LAT (ms)
We need to estimate parameters:

m(x*|y) where y = f(x*, u = Fstim) + €
and predict if AF will be sustained after ablation a;

P(AF sustained|a) = /IP’(AF sustained|x*, a)m(x*|y)dx*

[m]

5

o>
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@ High dimensional parameter x with sparse noisy data y
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Challenges of calibrating cardiac digital twins

Complex inference problem
@ High dimensional parameter x with sparse noisy data y
@ Expensive simulator f
@ Uncertain geometry
To be a practical clinical tool
@ Inference needs to be fast, cheap, and scalable
@ Predictions need to be robust

@ Need calibration approaches that can cope with variable data
(missing, incomplete, asynchronous etc).



Key decisions in calibration
W. and Lanyon 2024

@ Quantity of interest
» what do we want to compute?
o Calibration framework
» how do we define a good fit and characterize uncertainty?
@ Observation error
» how the simulator relates to the data?
e Computation
» how will we compute it?
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o x is practically identifiable if Z(x) = EV log p(y|x)V log p(y|x) " is
full rank

Does the non-identifiability matter for your prediction task?



Preliminaries

Identifiability
@ x is structurally non-identifiable if f(x, u) = f(x’, u) for some x # x’

o x is practically identifiable if Z(x) = EV log p(y|x)V log p(y|x) " is
full rank

Does the non-identifiability matter for your prediction task?
We often use sensitivity as a proxy for identifiability.

@ Sobol indices
_ Varx(Ex_ (X)) _ Ex.(Varg (VX))
e Var(Y) i Var(Y)

Si, ST, = 0 suggests x; is not identifiable
» Fix non-identifiable params to a reference value
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Why calibrate?

Quantity of interest (Qol)
Explanation

@ can we make our simulator output look like the true DGP?

@ model development - what do we need to fix to achieve this?
Inference m(x*|y):

@ learn the true physical or ‘best’ value of some parameter.
Calibrated prediction

y'=f(x" ) W(Y'!y):/W(f(X*’U’)IX*)W(X*Iy)dX*

@ Predict some future or unobserved quantity given the data available
Decision

ma}fE(utiIity of action a) = / U(a,y")m(y'ly)dx*
ac

@ Take an optimal action given current state of knowledge.
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Observation model
How does best simulator prediction relate to the observations? i.e.,

m(ylf(x*; u))

@ Often trickiest aspect of inference
For well-specified simulator, need only think about observation error
y="Ff(x"u)+e
where, eg, e; are assumed to be iid N(0, 0?)

From the observation error we get the link between x* and y which allows
us to learn. Eg a likelihood

w(y|x*) = N(y: f(x*, u),0%1)

Need to work harder for stochastic models

r(ylx®) = / (| F(x*, 0, €))m(€)dF
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Misspecified models
Bochkina 2022

What if the simulator is an imperfect representation of reality ((u)?

@ Kennedy and O'Hagan 2001: model the discrepancy between best
simulator prediction and reality

C(u) = f(x*, u) + o(u)
y=((u)+e

e Typically model 6(u) as a Gaussian process (GP)

» Can we model our way out of trouble by expanding F into a
non-parametric world?



An appealing, but flawed, idea

Brynjarsdottir and O'Hagan 2014

Simulator Reality
x*u

fio(u) = xu u) = x* =0.66,a =20
(w) 80 = 11

Solid=model with true theta, dashed=truth




An appealing, but flawed, idea
A GP discrepancy can correct your predictions, but won't necessarily fix
inference of x* as d(-), x* are structurally non-identifiable:
No di :
@ No discrepancy y = F(x*, 1) + N(0, o)
GP di :
PRIy — ) + 6(u) + N(0, 02),
6(-) ~ GP(-,")

No MD GP prior on MD

Frequency
200 400 600
Frequency

0 100 200 300 400

0

T T T 1
0.4 0.6 0.8 1.0

o
>

T T T 1
0.4 0.6 0.8 1.0

o _
o



An appealing, but flawed, idea
A GP discrepancy can correct your predictions, but won't necessarily fix
inference of x* as d(-), x* are structurally non-identifiable:
No di :
@ No discrepancy y = F(x*, 1) + N(0, o)
GP di :
PRIy — ) + 6(u) + N(0, 02),
6(-) ~ GP(-,")

No MD GP prior on MD

Frequency
200 400 600
Frequency

0 100 200 300 400

r T T T 1
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

‘dangerous to interpret estimates of x*... as estimates of the true physical
values of those parameters’
No explicit definition of x* provided
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Can we recover identifiability?
Sung and Tuo 2023

Let e(x, u) = ((u) — f(x, u)
Tuo and Wu 2015 (and others) explicitly define the Ly projection
x* := argmin ||e(x, -)||1, = arg min /(C(u) — f(x,u))*du

Tuo and Wu 2016, 2020 show that if §(u) ~ GP(0, k(u, u')), the
posterior mode for x* converges to

arg min|e(x, )13, # x°

i.e. we don't forget the prior.

Tuo and Wu 2015 (and others) proposed frequentist approaches for
estimating L, projection.
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Can we recover identifiability?

Plumlee 2017 suggested a Bayesian approach that avoids
non-identifiabilities:

@ make the discrepancy d(u) orthogonal to V,f(x, u)

Idea: ¢ shouldn’t explain variations in the output that could be explained
by adjusting x, ie, we shouldn't correct errors the computer model can fix

@ Challenging to implement.

Summary:

@ inference of true physical parameter values with a misspecified model
is hard!

o Calibrated prediction is easier.

‘dangerous to interpret estimates of x*... as estimates of the true physical
values of those parameters’
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Physics informed machine learning
Raissi et al. 2019, Ramsey et al. 2007, Brunton et al. 2016

Suppose f solves differential equations
Lg=0

Eg.
gx(z, t) solution to ;g = xV3g

Physics informed neural networks fit model hy, «(z, t)

min Lxchy x| + [y x(z, £) = v

Or we can seek to learn missing physics
Lg+d=0

Hard to maintain any interpretation for x.
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Bayes linear etc



Implicit observation models
W. 2013

Often we don't give an explicit statistical model relating observations to
best simulator prediction.

e ABC/history matching, kernel methods, scoring rule approaches,
Bayes linear etc

But sometimes we can reinterpret the algorithm within a statistical
framework. E.g.
ABC

e Draw x from m(x)

o Simulate Y™ ~ f(x, u,€)

o Accept x if d(Y™ y) <

is equivalent to assuming d(u) ~ U{e: d(y + e,y) <€}
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Calibration framework
How will we characterize uncertainty about x*?7
Bayes
e Given a prior distribution 7(x*) compute posterior

rly) = T
m(y)
@ More challenging with stochastic simulator
> likelihood-free / simulation-based inference / ABC
e Often get lingering prior dependence. Calibration (cf Johanna's talk),
frequentist, robustness properties?

Generalized Bayes

m(x*|y) = arg min Expio £(x, ¥) + D(pl|)
@ Generalizes Bayesian inference and allows us to use more robust! loss
functions (see Knoblauch et al. 2019)

@ Computation?
typically robust only to mild misspecification, not the typical gross misspec.
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Craig et al. 1999, Vernon et al. 2014, Holden et al. 2018

History matching seeks to find a not ruled out yet (NROY) set
Px* — {X : SHM(ﬁxv_y) < 3}
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Calibration framework
Craig et al. 1999, Vernon et al. 2014, Holden et al. 2018

History matching seeks to find a not ruled out yet (NROY) set

P = {x : Sum(Fx,y) < 3}

where
_[Er(Y) -~y

Stm(Fx,y) Varr (V)
Fx

ABC approximates the posterior as
Te(x™) o W(X*)E(HS(’EX* 7y)§6)

for some choice? of S and e.

They both threshold a score and are algorithmically comparable.

2originally S(Fx,y) = d(n(y),n(y")) where y’ ~ F, or MMD etc
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@ The thresholding type nature potentially makes them somewhat
conservative



History matching and ABC

These methods (anecdotally) seem to work better in mis-specified
situations.

Why?

They differ from likelihood based approaches in that
@ They only use some aspect of the simulator output (cf Gibbs
posteriors Bissiri et al. 2016)
» Typically we hand pick which simulator outputs to compare, and
weight them on a case by case basis.
@ Potentially use generalised scores/loss-functions that are more robust
to misspecification
@ The thresholding type nature potentially makes them somewhat
conservative
3 many frequentist approaches, minimum scoring rule (Dawid et al. 2015,
Waghmare et al. 2025), etc....



Computing 7(x*|y)

Cranmer et al. 2020

Choice of approximation method depends on
e Computational budget:
» Max of N simulations possible {x;, f(x;)};
@ Knowledge of the simulator

» Zeroth order f(x), first order Vf(x), second order V2f(x)?
» Intrusive methods? E.g. multi-fidelity/level methods.
» Known likelihood? Simulation-based inference

@ Time-urgency...



Computing 7(x*|y)

Cranmer et al. 2020

Choice of approximation method depends on
e Computational budget:
» Max of N simulations possible {x;, f(x;)};
@ Knowledge of the simulator

» Zeroth order f(x), first order Vf(x), second order V2f(x)?
» Intrusive methods? E.g. multi-fidelity/level methods.
» Known likelihood? Simulation-based inference

@ Time-urgency...
Distinguish between

@ Case-based inference: for each new dataset y, run a separate
optimization to approximate 7(x*|y).

e Amortized inference: global upfront training (before data collected)
using simulations, so that inference at test time is rapid.



Case-based methods

Gold standard remains sampling methods such as MCMC.
e Sequentially simulate xi, x2, ... from m(x*|y). At stage n
X'~ q(xn, X')
Set . {x’ w.p. (X, y, F(x, 0). F(x, u))

X, otherwise

If available, gradient information V£ (x) and V2f(x) can accelerate
mixing.



Case-based methods

Gold standard remains sampling methods such as MCMC.
@ Sequentially simulate xi, x2, ... from m(x*|y). At stage n

X'~ q(xn, X')

Set Xp—1 = X/ w.p. a(.Xn,X/a)/, f(X,, U), f(X, U))
X, otherwise

If available, gradient information V£ (x) and V2f(x) can accelerate
mixing.
However, for most complex models MCMC is computationally infeasible
without the use of a surrogate f.
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Ensemble Kalman methods (Evensen 1994, Iglesias et al. 2013, Schillings
et al. 2017, Garbuno-Inigo et al. 2020)

@ Exact for linear Gaussian systems. Approximates a Gaussian
approximation in non-linear problems...

@ Uses a small set of particles {x{},'\’:1 to approximate posterior at
artificial time t.

X1 =X+ Kaly' = F(™))

@ Can be seen as a derivative-free gradient flow



Case-based methods
Ensemble Kalman methods (Evensen 1994, Iglesias et al. 2013, Schillings
et al. 2017, Garbuno-Inigo et al. 2020)
@ Exact for linear Gaussian systems. Approximates a Gaussian
approximation in non-linear problems...
@ Uses a small set of particles {x{},'\’:1 to approximate posterior at
artificial time t.

X1 =X+ Kaly' = F(™))

@ Can be seen as a derivative-free gradient flow
Variational inference: optimization based alternative to sampling (e.g.
Blei et al. 2016).
@ Choose a parametric family of distributions to approximate posterior,
e.g. qp(x*) = N(u,X?)
@ Solve
arg min D (g5 () [[m(x7[1y))
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If  is slow/costly to evaluate, standard methods such as MCMC are
impracticable.
o Inference must be based on ensemble & = {x,, f(x,)}\_;.



Surrogate modelling

E.g. Gramacy 2020

If  is slow/costly to evaluate, standard methods such as MCMC are
impracticable.

o Inference must be based on ensemble & = {x,, f(x,)}\_;.
Use a surrogate model / emulator / approximation of f, e.g.,

F() ~ GP(m(-), k(-,-))
Inference then based on f()|E

Prior

20 Posterior Prediction with Uncertainty

15[/
10f -~
/
0.5y
0.0f

—0.5}
-0.5}

-1.0}

-1.0}

=15 L L L L =15

Note that this adds an additional uncertainty =(f|£)
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Intrusive methods

Methods so far only query f(x, u). But if we can get into the internals
there may be model specific structures that can be exploited.
For example,
e Multi-fidelity or multi-level approaches: if we have fi, fp, ... that are
lower fidelity, but cheaper, versions of f, we can exploit this to
reduce costs (eg Peherstorfer et al. 2018).

@ Linear systems often admit (partially) closed form solution. E.g.

Lg=x

We can compute 7(x|y) analytically in some cases (eg Gahungu,
Lanyon et al. 2022)
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Amortized inference
Papamakarios et al. 2019, Radev et al. 2020

Train a model that predicts 7(x*|y) for any y:
@ Large upfront cost, rapid test time inference.
Neural posteriors. Eg use a normalizing flow:

@ Find invertible g such that
x* ~m(x*ly) <= g(x*;y) ~ N(0,/)

then g71(z;y) ~ m(x*|y) when z ~ N(0, /).
@ Model g as an invertible NN with easily computable Jacobian.

@ Can include an additional summary network S : y — RP to learn
optimal summary 7(x*|S(y))



i

Motivating example revisited

o

Coveney et al. 2020, 2021, cf Borovitskiv talk in workshop 1

4 50 60 70 80 90 100
LAT (ms)

LAT(X; W) ~ GP(m(X’ W)v k((X7 W)? (X/> W/)))

but standard kernels won't work when domain w € G is an atrial manifold
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Motivating example revisited

Coveney et al. 2020, 2021, cf Borovitskiv talk in workshop 1

4 50 60 70
LAT (ms)

LAT (x,w) ~ GP(m(x, w), k((x, w), (X', w")))
but standard kernels won't work when domain w € G is an atrial manifold
Solin et al. (2019) showed that if we use a Laplacian eigenbasis

—V2pj(w) = Ajgj(w)
then

weg
F(w) = zkg(w)

is a GP with spectral density S.

with z, ~ N(O,S(\/)\_j))
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Motivating example revisited
Mamajiwala et al. 2024
Can use EnKF with a GP emulator to approximate m(x*|y)
@ Homogenous parameters
@ Works in close to real time
e Can identify 2 (homogeneous) params, but sufficient for prediction of

@ Limited improvement in AF prediction.
Emulator: 10 Emulator: 15 Emulator: 50 Emulator: none
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Challenges

In digital twin settings, we often have populations of related simulators:

A, for ...~ w(F)

For example, f; = fg.(x, u).
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For example, f; = fg.(x, u).
How can we reuse simulations from fi, ..., f, to build a surrogate for
for1?
@ Learn a low dim shape model w; = w(G) and assume f; = f(x, u, w;)
@ Or learn a general low dim latent representation f; = f(x, u, z;)

@ Learn a discrepancy between instances and a reference model
fi = f"(x, u) + 0;(x, u) where §; is simple



Challenges

In digital twin settings, we often have populations of related simulators:

fi,fy...~mx(f)

For example, f; = fg.(x, u).
How can we reuse simulations from fi, ..., f, to build a surrogate for
foy1?

@ Learn a low dim shape model w; = w(G) and assume f; = f(x, u, w;)

@ Or learn a general low dim latent representation f; = f(x, u, z;)

@ Learn a discrepancy between instances and a reference model

fi = f"(x, u) + 0;(x, u) where §; is simple
°:

Can we train a single amortized calibration methods for the population?



Conclusions

@ High dimensional parameters and expensive simulations means we
need to compromise

e Estimating unknown physical values is challenging

@ How can we find regularities in the problem to allow us to reduce
dimension sufficiently in order to make inference possible?

@ How do we use more robust scores to calibrate models with
interpretable UQ?

@ Can we make amortized methods that work in practical examples?
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Thank you for listening!



