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Inverse problems/Calibration/Parameter estimation/...

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .

The inverse-problem: observe data D, estimate parameter values θ
which explain the data.

The Bayesian approach
is to find the posterior
distribution

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝
prior× likelihood



Introduction
Simulation from Andrea Sottoriva

E.g. Cellular Potts model for a human colon crypt

agent-based models, with proliferation, differentiation and migration
of cells

stem cells generate a compartment of transient amplifying cells that
produce colon cells.

want to infer number of stem cells by comparing patterns with real
data

Each simulation takes ∼ 1 hour
There are plenty of stochastic models which

have unknown parameters

are stochastic

have unknown likelihood function

are computationally expensive

are imperfect



Intractability

π(θ|D) =
π(D|θ)π(θ)

π(D)

usual intractability in Bayesian inference is not knowing π(D).

a problem is doubly intractable if π(D|θ) = cθp(D|θ) with cθ
unknown (cf Murray, Ghahramani and MacKay 2006)

a problem is completely intractable if π(D|θ) is unknown and can’t
be evaluated (unknown is subjective). I.e., if the analytic distribution
of the simulator, f (θ), run at θ is unknown.

Completely intractable models are where we need to resort to ABC
methods



Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian
computation) is one of the few approaches we can use to do inference.

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).



Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian
computation) is one of the few approaches we can use to do inference.

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).



Approximate Bayesian computation (ABC)

ABC methods are widely used in several scientific disciplines (particularly
comp bio + genetics), and has similarities with history-matching. They
are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied

First ABC paper candidates

Beaumont et al. 2002

Tavaré et al. 1997 or Pritchard et al. 1999

Or Diggle and Gratton 1984 or Rubin 1984

. . .



Plan

i. Basics

ii. Efficient sampling algorithms

iii. Regression adjustments/ post-hoc corrections

iv. Summary statistics

v. Accelerating ABC using meta-models

vi. Inference for misspecified models



Basics



‘Likelihood-Free’ Inference

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).

If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate X ∼ f (θ) from the computer model

Accept θ if D = X , i.e., if computer output equals observation

The acceptance rate is
∫
P(D|θ)π(θ)dθ = P(D).
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any θ. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).
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ε = 10
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θ ∼ U[−10, 10], X ∼ N(2(θ + 2)θ(θ − 2), 0.1 + θ2)

ρ(D,X ) = |D − X |, D = 2



ε = 7.5
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Rejection ABC

If the data are too high dimensional we never observe simulations that are
‘close’ to the field data - curse of dimensionality

Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(S(D), S(X )) < ε

If S is sufficient this is equivalent to the previous algorithm.

Simple → Popular with non-statisticians
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ABC as a probability model
W. 2008/13

We wanted to solve the inverse problem

D = f (θ)

but instead ABC solves
D = f (θ) + e.

ABC gives ‘exact’ inference under a different model!

We can show that

Proposition

If ρ(D,X ) = |D − X |, then ABC samples from the posterior distribution
of θ given D where we assume D = f (θ) + e and that

e ∼ U[−ε, ε]
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Generalized ABC (GABC)
W. 2008/13

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ)

2 Accept (θ,X ) if U ∼ U[0, 1] ≤ πε(D|X )
maxx πε(D|x)

In uniform ABC we take

πε(D|X ) =

{
1 if ρ(D,X ) ≤ ε
0 otherwise

which recovers the uniform ABC algorithm.

2’ Accept θ ifF ρ(D,X ) ≤ ε

We can use πε(D|x) to describe the relationship between the simulator
and reality, e.g., measurement error and simulator discrepancy.

We don’t need to assume uniform error!
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Key challenges for ABC

Scoring

The tolerance ε, distance ρ, summary S(D) (or variations thereof)
determine the theoretical ‘accuracy’ of the approximation

Computation

Computing the approximate posterior for any given score is usually
hard.

There is a trade-off between accuracy achievable in the
approximation (size of ε), and the information loss incurred when
summarizing



Efficient Algorithms

References:

Marjoram et al. 2003

Sisson et al. 2007

Beaumont et al. 2008

Toni et al. 2009

Del Moral et al. 2011

Drovandi et al. 2011



ABCifying Monte Carlo methods

Rejection ABC is the basic ABC algorithm

Inefficient as it repeatedly samples from prior

More efficient sampling algorithms allow us to make better use of the
available computational resource: spend more time in regions of
parameter space likely to lead to accepted values.

allows us to use smaller values of ε

Most Monte Carlo algorithms now have ABC versions for when we don’t
know the likelihood: IS, MCMC, SMC (×n), EM, EP etc



MCMC-ABC
Marjoram et al. 2003, Sisson and Fan 2011, Lee 2012

We are targeting the joint distribution

πABC (θ, x |D) ∝ πε(D|x)π(x |θ)π(θ)

To explore the (θ, x) space, proposals of the form

Q((θ, x), (θ′, x ′)) = q(θ, θ′)π(x ′|θ′)

seem to be inevitable (see Neal et al. 2014 for an alternative).

The Metropolis-Hastings (MH) acceptance probability is then

r =
πABC (θ′, x ′|D)Q((θ′, x ′), (θ, x))

πABC (θ, x |D)Q((θ, x), (θ′, x ′))

=
πε(D|x ′)π(x ′|θ′)π(θ′)q(θ′, θ)π(x |θ)

πε(D|x)π(x |θ)π(θ)q(θ, θ′)π(x ′|θ′)

=
πε(D|x ′)q(θ′, θ)π(θ′)

πε(D|x)q(θ, θ′)π(θ)
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Regression Adjustment

References:

Beaumont et al. 2003

Blum and Francois 2010

Blum 2010

Leuenberger and Wegmann 2010



Regression Adjustment
Beaumont et al. 2002

Post-hoc adjustment of the parameter values to try to weaken the effect
of the discrepancy between S(X ) = s and S(D) = sobs is often used as an
alternative to efficient sampling

Two key ideas

use non-parametric kernel density estimation to emphasise the best
simulations

learn a non-linear model for the conditional expectation E(θ|s) as a
function of s and use this to learn the posterior at sobs .

Allows us to use a larger tolerance, and can substantially improve
posterior accuracy.

Sequential algorithms (MCMC, SMC etc) can not easily be adapted, and
so only used with simple rejection sampling.
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In rejection ABC, the red points are used to approximate the histogram.
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Using regression-adjustment, we use the estimate of the posterior mean at
sobs and the residuals from the fitted line to form the posterior.



Models

Beaumont et al. 2003 used a local linear model for m(s) in the vicinity of
sobs

m(si ) = α + βT si

fit by minimising ∑
(θi −m(si ))2Kε(si − sobs)

so that observations nearest to sobs are given more weight in the fit.

The empirical residuals are then weighted so that the approximation to
the posterior is a weighted particle set

{θ∗i ,Wi = Kε(si − sobs)}

π(θ|sobs) = m̂(sobs) +
∑

wiδθ∗i (θ)



Models

Beaumont et al. 2003 used a local linear model for m(s) in the vicinity of
sobs

m(si ) = α + βT si

fit by minimising ∑
(θi −m(si ))2Kε(si − sobs)

so that observations nearest to sobs are given more weight in the fit.

The empirical residuals are then weighted so that the approximation to
the posterior is a weighted particle set

{θ∗i ,Wi = Kε(si − sobs)}

π(θ|sobs) = m̂(sobs) +
∑

wiδθ∗i (θ)



Normal-normal conjugate model, linear regression
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The same 200 data points in both approximations. The
regression-adjusted ABC gives a more confident posterior, as the θi have
been adjusted to account for the discrepancy between si and sobs



Extensions: Non-linear models
Blum and Francois 2010 proposed a nonlinear heteroscedastic model

θi = m(si ) + σ(su)ei

where m(s) = E(θ|s) and σ2(s) = Var(θ|s). They used neural networks
for both the conditional mean and variance.

  

Blum and OF (2009) suggest the use of non-linear 
conditional heteroscedastic regression models

θ∗i = m(sobs) + (θi − m̂(si ))
σ̂(sobs)

σ̂(si )

Blum 2010 contains estimates of the
bias and variance of these estimators:
properties of the ABC estimators
may seriously deteriorate as dim(s)
increases.

R package diyABC implements these methods.
Picture from Michael Blum



Summary Statistics

References:

Blum, Nunes, Prangle and Sisson 2012

Joyce and Marjoram 2008

Nunes and Balding 2010

Fearnhead and Prangle 2012

Robert et al. 2011



Choosing summary statistics
Blum, Nunes, Prangle, Fearnhead 2012

If S(D) = sobs is sufficient for θ, i.e., sobs contains all the information
contained in D about θ

π(θ|sobs) = π(θ|D),

then using summaries has no detrimental effect

However, low-dimensional sufficient statistics are rarely available.
How do we choose good low dimensional summaries?
Warning: automated methods are a poor replacement for expert
knowledge.
Instead ask what aspects of the data do we expect our model to be able
to reproduce?

S(D) may be highly restrictive about θ, but not necessarily
informative, particular if the model is mis-specified.
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Error trade-off
Fearnhead and Prangle 2012

The error in the ABC approximation can be broken into two parts

1 Choice of summary:

π(θ|D)
?
≈ π(θ|sobs)

2 Use of ABC acceptance kernel:

π(θ|sobs)
?
≈ πABC (θ|sobs)

The first approximation allows the matching between S(D) and S(X ) to
be done in a lower dimension. There is a trade-off

dim(S) small: π(θ|sobs) ≈ πABC (θ|sobs), but π(θ|sobs) 6≈ π(θ|D)

dim(S) large: π(θ|sobs) ≈ π(θ|D) but π(θ|sobs) 6≈ πABC (θ|sobs)
as curse of dimensionality forces us to use larger ε

Optimal (in some sense) to choose dim(s) = dim(θ)
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Machine learning invasion
ML algorithms are good at classification, usually better than humans.

ABC can be done via classification, albeit at the cost of abandoning the
Bayesian interpretation.

E.g. 1) Pudlo et al. 2015 and Marin et al. 2016 used random forests,
others have used (C)NNs etc

1 Train a ML model, m(X ), to predict θ from D using a large number
of simulator runs {θi ,Xi}

2 ABC then simulates θ from the prior and X from the simulator, and
accepts θ if m(X ) ≈ m(Dobs)

E.g. 2) Generative Adversarial Networks (GANs, Goodfellow 2014) play a
game between a generator and a discriminative classifier. The classifier
tries to distinguish between data and simulation, and the generator tries
to trick the classifier.
E.g. 3) Park et al. 2016, . . ., suggested using MMD in place of a vector
of summaries, avoiding summarization.
All work well in simulation studies where the model is well specified and
there is a true θ...
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Accelerating ABC
with surrogates



Limitations of Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee is costly and can require more simulation than is possible.

However,

Most methods sample naively - they don’t learn from previous
simulations.

They don’t exploit known properties of the likelihood function, such
as continuity

They sample randomly, rather than using careful design.

We can use methods that don’t suffer in this way, but at the cost of
losing the guarantee of success.
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Surrogate ABC

Wilkinson 2014

Meeds and Welling 2014

Gutmann and Corander 2015

Strathmann, Sejdinovic, Livingstone, Szabo, Gretton 2015
...

With obvious influence from emulator community (e.g. Sacks, Welch,
Mitchell, and Wynn 1989, Kennedy and O’Hagan 2001)

Constituent elements:

Target of approximation

Aim of inference and inference scheme

Choice of surrogate/emulator

Training/acquisition rule

∃ a relationship to probabilistic numerics



Target of approximation for the surrogate

Simulator output within synthetic likelihood (Meeds et al 2014) e.g.

µθ = Ef (θ) and Σθ = Varf (θ)

(ABC) Likelihood type function (W. 2014)

LABC (θ) = EX |θKε[ρ(T (D),T (X ))] ≡ EX |θπε(D|X )

Discrepancy function (Gutmann and Corander, 2015), for example

J(θ) = Eρ(S(D),S(X ))

Gradients (Strathmann et al 2015)

The difficulty of each approach depends on smoothness, dimension, focus
etc.



S ∼ N(2(θ + 2)θ(θ − 2), 0.1 + θ
2)

Synthetic likelihood:

ABC likelihood and
discrepancy:
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Inference
Directly use the surrogate to calculate the posterior (Kennedy and
O’Hagan 2001 etc) - over-utilizes the surrogate, sacrificing exact
sampling.
Correct for the use of a surrogate, e.g., using a Metropolis step
(Rasmussen 2003, Sherlock et al. 2015, etc), which requires
simulator evaluations at every stage - under-utilizes the surrogate,
sacrificing speed-up.

Instead, Conrad et al. 2015 developed an intermediate approach that
asymptotically samples from the exact posterior.

proposes new θ - if uncertainty in surrogate prediction is such that it
is unclear whether to accept or reject, then rerun simulator, else trust
surrogate.

It is inappropriate to be concerned about mice when there
are tigers abroad (Box 1976)

Model discrepancy, ABC approximations, sampling errors etc may mean it
is not worth worrying...
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Acquisition rules

The key determinant of emulator accuracy is the design used to train the
GP

Dn = {θi , f (θi )}Ni=1

Usual design choices are space-filling designs

Maximin latin hypercubes, Sobol sequences

Calibration doesn’t need a global approximation to the simulator - this is
wasteful.

Instead build a sequential design θ1, θ2, . . . using our current surrogate
model to guide the choice of design points according to some acquisition
rule.

Cf David’s talk
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History matching waves
Craig et al. 1997

The ABC log-likelihood l(θ) = log L(θ) typical ranges across a wide range
of values, consequently, most models struggle to accurately approximate
the log-likelihood across the entire parameter space.

But we only need to make good predictions near θ̂
Introduce waves of history matching.
In each wave, build a GP model that can rule out regions of space as
implausible.

We decide that θ is implausible if

P(l̃(θ) > max
θi

l(θi )− T ) ≤ 0.001

where l̃(θ) is the GP model of log π(D|θ)

Choose T so that if l(θ̂)− l(θ) > T then π(θ|y) ≈ 0.

Ruling θ to be implausible is to set π(θ|y) = 0
Equivalent to doing inference with log-likelihood L(θ)Il(θ̂)−l(θ)<T

Choice of T is problem specific; start conservatively with T large and
decrease
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Example: Ricker Model

The Ricker model is one of the prototypic ecological models.

used to model the fluctuation of the observed number of animals in
some population over time

It has complex dynamics and likelihood, despite its simple
mathematical form.

Ricker Model

Let Nt denote the number of animals at time t.

Nt+1 = rNte
−Nt+er

where et are independent N(0, σ2
e ) process noise

Assume we observe counts yt where

yt ∼ Po(φNt)

Used in Wood to demonstrate the synthetic likelihood approach.



Results - Design 1 - 128 pts



Diagnostics for GP 1 - threshold = 5.6



Results - Design 2 - 314 pts - 38% of space implausible



Diagnostics for GP 2 - threshold = -21.8



Design 3 - 149 pts - 62% of space implausible



Diagnostics for GP 3 - threshold = -20.7



Design 4 - 400 pts - 95% of space implausible



Diagnostics for GP 4 - threshold = -16.4



MCMC Results
Comparison with Wood 2010, synthetic likelihood approach
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Computational details

The Wood MCMC method used 105 × 500 simulator runs

The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs

I 1/100th of the number used by Wood’s method.

By the final iteration, the Gaussian processes had ruled out over 98% of
the original input space as implausible,

the MCMC sampler did not need to waste time exploring those
regions.



Inference for misspecified models



An appealing idea
Kennedy an O’Hagan 2001

Can we expand the class of models by adding a Gaussian process (GP) to
our simulator?

If fθ(x) is our simulator, y the observation, then perhaps we can correct f
by modelling

y = fθ∗(x) + δ(x) where δ ∼ GP

This greatly expands F into a non-parametric world.
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An appealing, but flawed, idea
Kennedy and O’Hagan 2001, Brynjarsdottir and O’Hagan 2014
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Dangers of non-parametric model extensions

There are (at least) two problems with this approach:

We may still find G 6∈ F
Identifiability

I A GP is an incredibly complex infinite dimensional model, which is not
necessarily identified even asymptotically. The posterior can
concentrate not on a point, but on some sub manifold of parameter
space, and the projection of the prior on this space continues to
impact the posterior even as more and more data are collected.

ie We never forget the prior, but the prior is to complex to understand
I Brynjarsdottir and O’Hagan 2014 try to model their way out of

trouble with prior information - which is great if you have it.
I Wong et al 2017 impose identifiability (for δ and θ) by giving up and

identifying

θ∗ = arg min
θ

∫
(ζ(x)− fθ(x))2dπ(x)
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History matching
ABC was proposed as a method of last resort, but there is evidence it
works particularly well for mis-specified models.

History matching was designed for inference in mis-specified models. It
seeks to find a NROY set

Pθ = {θ : SHM(F̂θ, y) ≤ 3}

where

SHM(Fθ, y) =
|EFθ(Y )− y |√

VarFθ(Y )

ABC approximates the posterior as

πε(θ) ∝ π(θ)E(IS(F̂θ,y)≤ε)

for some choice of S (typically S(F̂θ, y) = ρ(η(y), η(y ′)) where y ′ ∼ Fθ)
and ε.

They have thresholding of a score in common and are algorithmically
comparable (thresholding).
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History matching and ABC

These methods (anecdotally) seem to work better in mis-specified
situations.

Why?

They differ from likelihood based approaches in that

They only use some aspect of the simulator output

I Typically we hand pick which simulator outputs to compare, and
weight them on a case by case basis.

Potentially use generalised scores/loss-functions

The thresholding type nature potentially makes them somewhat
conservative

I Bayes/Max-likelihood estimates usually concentrate asymptotically. If
G 6∈ F can we hope to learn precisely about θ?
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Conclusions

ABC allows inference in models for which it would otherwise be
impossible.

not a silver bullet - if likelihood methods possible, use them instead
(unless you are misspecified...)

Algorithms and post-hoc regression can greatly improve computational
efficiency, but computation is still usually the limiting factor.

Challenge is to develop more efficient methods to allow inference in
more expensive models.

Machine learning approaches are now the largest area of research activity
in ABC

Thank you for listening!

r.d.wilkinson@sheffield.ac.uk
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