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Talk plan

(a) Emulation

(b) Calibration - history matching and ABC

(c) GP-ABC
I Design

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we estimate tunable parameters?

how do we deal with computational constraints?
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Surrogate/Meta-modelling
Emulation



Code uncertainty

For complex simulators, run times might be long, ruling out brute-force
approaches such as Monte Carlo methods.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , f (θi ))}i=1,...,N

If θ is not in the ensemble, then we are uncertain about the value of
f (θ).

Idea: If the simulator is expensive, build a cheap model (surrogate or
emulator) of it and use this in any analysis.

‘a model of the model’
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Gaussian Process Illustration
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Storage

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field) y

f (K )y
Outputs:

Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),
...
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CCS examples
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield
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Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.
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Calibration: history matching and
ABC



Inverse problems

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .

The inverse-problem: observe data D, estimate parameter values θ



Two approaches
Probabilistic calibration
Find the posterior distribution

π(θ|D) ∝ π(θ)π(D|θ)

for likelihood function
π(D|θ) =

∫
π(D|X , θ)π(X |θ)dX

which relates the simulator
output, to the data,e.g.,

D = X + e + ε

where e ∼ N(0, σ2
e ) represents

simulator discrepancy, and
ε ∼ N(0, σ2

ε ) represents
measurement error on the data

History matching
Find the plausible parameter set

Pθ = {θ : f (θ) ∈ PD}

where PD is some plausible set of
simulation outcomes that are
consistent with simulator
discrepancy and measurement
error, e.g.,

PD = {X : |D −X | ≤ 3(σe + σε)}

Calibration finds a distribution representing plausible parameter values;
History matching classifies parameter space as plausible or implausible.
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Calibration - Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).

ABC methods are popular in biological disciplines, particularly genetics.
They are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied



Rejection ABC

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).

Rejection sampling is inefficient, but we can adapt other MC samplers
such as MCMC and SMC.

Simple → Popular with non-statisticians
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ε = 7.5
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ε = 2.5
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ε = 1
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Limitations of Monte Carlo methods

(Non approximate) Monte Carlo methods are generally guaranteed to
succeed if we run them for long enough, but can require more simulation
than is possible.

Most MC methods

sample naively - they don’t learn from previous simulations.

don’t exploit known properties of the likelihood function, such as
continuity

sample randomly, rather than using careful design.

”Whenever there is a randomised way of doing something,
there is a non-randomised way which yields better results,
but requires more thinking” Jaynes

Using surrogate models we can avoid some of these ’weaknesses’.
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Target of approximation

What should we approximate with the surrogate model?

simulator output

I often easy to work with
I often high dimensional
I requires a global approximation, i.e., need to predict f (θ) at all θ of

interest.
I if the simulator is stochastic, the distribution of f (θ) at fixed θ is

often not Gaussian.

Likelihood function

I 1 dimensional surface
I allows us to focus on the data, i.e., predict log L(θ|Dobs) at all θ. The

data Dobs is fixed
I hard to model
I hard to gain physical insights - primarily useful for calibration
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Likelihood estimation
Wilkinson 2013

It can be shown that ABC replaces the true likelihood π(D|θ) by an ABC
likelihood

πABC (D|θ) =

∫
πε(D|X )π(X |θ)dX

where πε(D|X ) is the ABC acceptance kernel (often Iρ(D,X )<ε)

We can estimate this using repeated runs from the simulator

π̂ABC (D|θ) ≈ 1

N

∑
πε(D|Xi )

where Xi ∼ π(X |θ).

We can model log L(θ) = log πABC (D|θ) and use this to find the posterior.

Requires the likelihood to be continuous and smooth
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History matching waves
Wilkinson 2014

The log-likelihood l(θ) = log L(θ) typical ranges across too a range of
values, consequently, most models struggle to accurately approximate the
log-likelihood across the entire parameter space.

Introduce waves of history matching.

In each wave, build a GP model that can rule out regions of space as
implausible.

We decide that θ is implausible if

P(l̃(θ) > max
θi

l(θi )− T ) ≤ 0.001

where l̃(θ) is the GP model of log π(D|θ)

Choose T so that if l(θ̂)− l(θ) > T then π(θ|y) ≈ 0.

Ruling θ to be implausible is to set π(θ|y) = 0

The choice of T is problem specific, and we often start with a large T to
ensure a conservative criterion.
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Example: Ricker Model
Wood 2010

The Ricker model is one of the prototypic ecological models.

used to model the fluctuation of the observed number of animals in
some population over time

It has complex dynamics and likelihood, despite its simple
mathematical form.

Ricker Model

Let Nt denote the number of animals at time t.

Nt+1 = rNte
−Nt+er

where et are independent N(0, σ2
e ) process noise

Assume we observe counts yt where

yt ∼ Po(φNt)



Results - Design 1 - 128 pts



Diagnostics for GP 1 modelling log(− log l(θ))
Threshold = 5.6



Results - Design 2 - 314 pts - 38% of space implausible



Diagnostics for GP 2 modelling log l(θ)
threshold = -21.8



Design 3 - 149 pts - 62% of space implausible



Diagnostics for GP 3 modelling log l(θ)
Threshold = -20.7



Design 4 - 400 pts - 95% of space implausible



Diagnostics for GP 4 modelling log l(θ)
Threshold = -16.4



MCMC Results
Comparison with Wood 2010, synthetic likelihood approach
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Computational details

The Wood MCMC method used 105 × 500 simulator runs

The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs

I 1/100th of the number used by Wood’s method.

By the final iteration, the Gaussian processes had ruled out over 98% of
the original input space as implausible,

the MCMC sampler did not need to waste time exploring those
regions.



Design for calibration
with James Hensman



Implausibility

When using emulators for history-matching and ABC, the aim is to
accurately classify space as plausible or implausible by estimating the
probability

p(θ) = P(θ ∈ Pθ)

where Pθ = {θ : f (θ) ∈ PD}, based upon a GP model of the simulator or
likelihood

f (θ) ∼ GP(m(·), c(·, ·))

The key determinant of emulator accuracy is the design used to train the
GP

Dn = {θi , f (θi )}Ni=1

Usual design choices are space filling designs

Maximin latin hypercubes, Sobol sequences

Calibration doesn’t need a global approximation to the simulator - this is
wasteful



Implausibility

When using emulators for history-matching and ABC, the aim is to
accurately classify space as plausible or implausible by estimating the
probability

p(θ) = P(θ ∈ Pθ)

where Pθ = {θ : f (θ) ∈ PD}, based upon a GP model of the simulator or
likelihood

f (θ) ∼ GP(m(·), c(·, ·))

The key determinant of emulator accuracy is the design used to train the
GP

Dn = {θi , f (θi )}Ni=1

Usual design choices are space filling designs

Maximin latin hypercubes, Sobol sequences

Calibration doesn’t need a global approximation to the simulator - this is
wasteful



Implausibility

When using emulators for history-matching and ABC, the aim is to
accurately classify space as plausible or implausible by estimating the
probability

p(θ) = P(θ ∈ Pθ)

where Pθ = {θ : f (θ) ∈ PD}, based upon a GP model of the simulator or
likelihood

f (θ) ∼ GP(m(·), c(·, ·))

The key determinant of emulator accuracy is the design used to train the
GP

Dn = {θi , f (θi )}Ni=1

Usual design choices are space filling designs

Maximin latin hypercubes, Sobol sequences

Calibration doesn’t need a global approximation to the simulator - this is
wasteful



Entropic designs

Instead build a sequential design θ1, θ2, . . . using the current classification

p(θ) = P(θ ∈ Pθ|Dn)

to guide the choice of design points

First idea: add design points where we are most uncertain

The entropy of the classification surface is

E (θ) = −p(θ) log p(θ)− (1− p(θ)) log(1− p(θ))

Choose the next design point where we are most uncertain.

θn+1 = arg maxE (θ)
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Toy 1d example f (θ) = sin θ

Add a new design point (simulator evaluation) at the point of greatest
entropy



Toy 1d example f (θ) = sin θ
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Toy 1d example f (θ) = sin θ



Toy 1d example f (θ) = sin θ - After 10 and 20 iterations

This criterion spends too long resolving points at the edge of the
classification region.

not enough exploration



Expected average entropy
Chevalier et al. 2014

Instead, we can find the average entropy of the classification surface

En =

∫
E (θ)dθ

where n denotes it is based on the current design of size n.

Choose the next design point, θn+1, to minimise the expected
average entropy

θn+1 = arg min Jn(θ)

where
Jn(θ) = E(En+1|θn+1 = θ)



Toy 1d example f (θ) = sin θ - Expected entropy
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Toy 1d: min expected entropy vs max entropy
After 10 iterations, choosing the point of maximum entropy

we have found the plausible region to reasonable accuracy.

Whereas maximizing the entropy has not

In 1d, a simpler space filling criterion would work just as well.
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Solving the optimisation problem

Finding θ which minimises Jn(θ) = E(En+1|θn+1 = θ) is expensive.

Even for 3d problems, grid search is prohibitively expensive

Dynamic grids help

We can use Bayesian optimization to find the optima:

1 Evaluate Jn(θ) at a small number of locations

2 Build a GP model of Jn(·)
3 Choose the next θ at which to evaluate Jn so as to minimise the

expected-improvement (EI) criterion

4 Return to step 2.
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History match
Can we learn the following plausible set?

A sample from a GP on R2.
Find x s.t. −2 < f (x) < 0



Iteration 10
Left=p(θ), middle= E(θ), right = J̃(θ)
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Iteration 10
Left=p(θ), middle= E(θ), right = J̃(θ)



Iteration 15
Left=p(θ), middle= E(θ), right = J̃(θ)



Iterations 20 and 24

Video

http://youtu.be/FF3KhKh6NHg


EPm: climate model
3d problem
DTcrit conv - critical temperature gradient that triggers convection
GAMMA - emissivity parameter for water vapour
Calibrate to global average surface temperature
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Conclusions

For complex models, surrogate-modelling approaches are often
necessary

Target of approximation: likelihood vs simulator output
I likelihood is 1d surface, focussed on information in the data, but can

be hard to model
I Simulator output is multi-dimensional, and requires us to build a

global approximation, and can be poorly modelled by a GP. But can
be easier to model when Gaussian assumption appropriate.

Good design can lead to substantial improvements in accuracy
I Design needs to be specific to the task required - Space-filling designs

are inefficient for calibration
I Average entropy designs give good trade-off between exploration and

defining the plausible region

Thank you for listening!
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