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Air pollution

7 million people die every year from exposure to air pollution, the majority
in LMICs.



Kampala and AirQo

Accurate gravimetric sensors costs $10,000s.
AirQo have developed cheap (but less accurate) sensors that cost < $100
and have deployed them around Kampala.
The sensors measure PM2.5 and PM10.



Kampala: PM2.5 levels at 12pm on 4 Jan 2022

Bern: 7 µg/m3

Sheffield: 3 µg/m3

20 year average for Switzerland and UK is 11 µg/m3



Modelling air pollution
In order to take action, we need to be able to

infer air pollution (and predict future pollution levels)

infer pollution sources

Model pollution concentration c(x , t) as a GP

with standard kernels we cannot infer the pollution sources.

Instead build data models that know some physics

∂c

∂t
= ∇.(νc) +∇.(D∇c) +

∑
i

Si

Here

Si (x , t) are different pollution sources,

we may choose to model different pollution types (PM2.5, PM10 etc)

ν is related to the wind speed and D is the diffusion tensor.

Hypothesis: The inclusion of diffusive and advective behaviour will allow
us to infer sources, plan interventions, and predict better.
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Statistical problem

Given noisy measurements of pollution levels zi =
∫ t+

i

t−i
c(xi , t)dt + ei .

Can we infer

the concentration field c(x , t)?

the unknown source terms Si (x , t)?

the diffusion and advection parameters? Hyperparameters etc?

We will use Gaussian process priors for Si (x , t)

Si ∼ GP(mi (·), ki (·, ·))

where we carefully choose each prior mean and covariance function:

Industrial regions

Major roads and power stations

Varying affluence levels between regions (related to paving of roads,
burning of garbage, cooking on solid fuel stoves etc).



Statistical problem

Given noisy measurements of pollution levels zi =
∫ t+

i

t−i
c(xi , t)dt + ei .

Can we infer

the concentration field c(x , t)?

the unknown source terms Si (x , t)?

the diffusion and advection parameters? Hyperparameters etc?

We will use Gaussian process priors for Si (x , t)

Si ∼ GP(mi (·), ki (·, ·))

where we carefully choose each prior mean and covariance function:

Industrial regions

Major roads and power stations

Varying affluence levels between regions (related to paving of roads,
burning of garbage, cooking on solid fuel stoves etc).



General linear systems
Lpx = fq



Linear systems with unknown parameters
Cf. Niklas Wahlström’s talk

Consider

Lpx = fq,p

where

Lp = linear operator with non-linear dependence upon parameters p.

fq,p = forcing function, which depends linearly on parameters q.

x is the quantity being modelled, e.g. pollution concentration,
observed with noise

z = g(x) + N(0,Σ).

Finding x given p and q is the forward problem.

Inverse problem: infer x , q, p given z .

Note: MCMC likely to be prohibitively expensive: each iteration requires
a solution of the forward problem.



Linear systems with unknown parameters

Least squares/maximum-likelihood estimation:

min
p,q

(z − h(x))>(z − h(x))

subject to Lpx = fq.

Bayes: find
π(p, q|z).

In both cases it would be useful to marginalize parameters, and compute
derivatives with respect to the parameters.

Adjoints can help!
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What is an adjoint?
See Estep 2004

Let L : X 7→ Y be a linear operator between Banach spaces, and let X ∗

be the dual space of X : the space of bounded linear functionals on X .

Consider y∗ ∈ Y ∗ and define F : X → R by

F : x 7→ y∗(L(x)).

Then F is a bounded linear functional on X , i.e. F = x∗ for some
x∗ ∈ X ∗.

Thus for all y∗ ∈ Y ∗ we’ve associated a unique x∗ ∈ X ∗.

L∗ : y∗ 7→ x∗.

L∗ is the adjoint of L, and is itself a bounded linear operator.
By definition

y∗(L(x)) = L∗y∗(x)

which is known as the bilinear identity.
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Adjoints in Hilbert space
See Estep 2004

L∗ : y∗ 7→ x∗.

y∗(L(x)) = L∗y∗(x)

When X and Y are Hilbert spaces, then we can identify them with their
dual space:

by the Riesz representation theorem if y∗ ∈ Y ∗ there exists y ∈ Y
such that y∗ = 〈·, y〉Y (and vice versa...).

In this case, the bilinear identity reduces to

〈Lx , y〉Y = y∗(L(x)) = L∗y∗(x) = 〈x ,L∗y〉X .

where we now consider L∗ : Y → X .
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Benefits of adjoints

min
p,q

S(p, q) = (z − g(x))>(z − g(x))

subject to Lpx = fq.

1 If fq depends linearly on q we can easily compute the least squares
estimator

q̂(p) = arg min
q

S(p, q)

I If z = h(x) + N(0,Σ), and q ∼ N(m,C ) a priori, then

q | z , p = N(m∗,C∗)

2 We can compute dS
dp (p, q) and approximate dS

dp (p, q̂(p))

This may allow for efficient inference of p and q
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Example 1: Matrix system

Suppose X = Y = Rd . A linear operator Lp : X → Y can be written as

Lpx = Apx where Ap ∈ Rd

where Ap depends on unknown parameters p.

The forward problem is solving the square linear system Apx = f , i.e.,
xp,q = A−1

p f .

The adjoint operator is
L∗py = A>p y

as we can see that

〈Apx , y〉 = (Apx)>y

= x>(A>y)

= 〈x ,A>p y〉
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Sensitivity

Consider the quantity of interest (QoI)

g(x) ≡ 〈g , x〉 = g>x

for some g ∈ Rd , where x is the solution to h(x , p) := f − Ax = 0.

We want to compute dg
dp (as then we can compute dS

dp (p, q))

Define Lagrangian the

L = g>x + y>h(x , p)

Think of y ∈ Rd as Lagrange multipliers.
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L = g>x + y>h(x , p)

Differentiating with respect to p gives

dL

dp
= g>

dx

dp
+ y>(

dh

dx

dx

dp
+

dh

dp
)

This is true for all y , so if we set g> + y> dh
dx = 0 then we get

dL

dp
=

dg

dp
= y>

dh

dp

= y>(
df

dp
− dA

dp
x)

where A>y = g

This doesn’t require dx
dp , but does need solutions to the forward Ax = f

and adjoint systems A>y = g .

Autodiff software (eg TensorFlow, JAX etc) will give us this, but can
be unreliable for differential equations with long iterative loops
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Least squares

Suppose we are given n noisy observations

z = G>x + e where e ∼ N(0, σ2),

where

G =

 | . . . |
g1 . . . gn
| . . . |

 with Apx = fq

so that zi = g>i x + ei .

We can easily use z to infer parameters q.

Consider least squares, where we want to choose q to minimize

S(q) = (z − G>x)>(z − G>x) s.t. Axp = fq
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If we let A>y = g , then using the bilinear identity, we get

〈g , x〉 = 〈A>y , x〉 = 〈y ,Ax〉 = 〈y , fq〉

and so

G>x =

〈g1, x〉
...
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 =
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...
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where yi ∈ Rd are the solutions to the n adjoint systems

A>yi = gi

or in matrix notation
A>Y = G

where
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 | . . . |
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 ∈ Rd×n.



Now if fq = Φq, then
〈yi , fq〉 = 〈Φ>yi , q〉.

And so we have that

G>x = Y>Φq where q ∈ RQ .

We can then rewrite the sum of squares as

S(θ) = (z − G>x)>(z − G>x) = (z − Y>Φq)>(z − Y>Φq)

and thus we can see that the least squares estimator of q is

q̂ = (Φ>YY>Φ)−1Φ>Yz .

The conjugate Bayesian result follows similarly.
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Non-identifiable linear model
Let

Ap =

(
2 + p2

2 −1
1 1 + p2

1

)
and fq =

(
q1

q2

)
= q1

(
1
0

)
+ q2

(
0
1

)
and suppose we’re given 4 observations with

G =

(
2 1 0 1
1 2 1 0

)

Given any dataset we can learn q (given p) with a single adjoint solve.
We can also compute the gradient of S(p, q̂) wrt p, but in this case

dS

dp
= 0 ∀ p.

and so p is unidentifiable.
Consider the solution to the unconstrained optimization problem.

x∗ = arg min
x

(z − G>x)>(z − G>x)

The basis functions used for f form a complete basis for R2, and we can
always find a q so that Apx

∗ = fq (for all p as Ap is invertible).
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Parameterizing GPs

In infinite dimensional problems, we model unknown functions as
Gaussian processes (GPs).

f (x) ∼ GP(m(x), k(x , x ′)).

f ∈ Fk the RKHS associated with kernel k.

Let {φ1(x), φ2(x), . . .} be an orthonormal basis for F .

We then approximate f using a truncated basis expansion

f (x) ≈ fq(x) =
M∑
j=1

qiφi (x) where a priori qi ∼ N(0, λ2
i )

= Φq + e

We’ve reduced the GP to a linear model.
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Choice of basis
Mercer basis: Consider Tk(f )(·) =

∫
X k(x , ·)f (x)dx . Mercer’s

theorem gives
k(x , x ′) =

∞∑
i=1

λiφi (x)φi (x
′)

where λi , φi (·) are eigenpairs of Tk , i.e. Tk(φ)(·) = λφ(·)
Karhunen-Loève theorem says optimal mean square approximation is

f̂ (x) =
M∑
i=1

qi
√
λiφi (x)

Random Fourier features: If k stationary, Bochner’s theorem:

k(x − x ′) =

∫
exp(iw>(x − x ′))p(w)dw = Ew∼p exp(iw>(x − x ′))

≈ 1

M

M∑
i=1

(cos(w>i x), sin(w>i x))

(
cos(w>i x)
sin(w>i x)

)
if wi ∼ p(·)

f̂ (x) =
M∑
i=1

qicos(wix + bi )
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Example 2: Ordinary differential equation

Consider the ordinary differential equation

−Dẍ + uẋ + x = f (t)

with x(0) = ẋ(0) = 0.

Assume
f (t) ∼ GP(m, k).

Can we infer f (t) given z = g(x) + N(0,Σ2)?
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Example 2: finding the adjoint
Use the bilinear identity to find the adjoint of

Lx = (−D d2

dt2
+ u

d

dt
+ 1)x

〈Lx , y〉 =

∫ T

0
Lx(t)y(t)dt =

∫ T

0
(−Dẍ + uẋ + x)ydt

= [−Dẋy ]T0 +

∫ T

0
Dẋẏdt + [uxy ]T0 −

∫ T

0
uxẏdt +

∫ T

0
xydt

= [−Dxẏ ]T0 −
∫ T

0
Dxÿdt −

∫ T

0
uxẏdt +

∫ T

0
xydt

=

∫ T

0
(−Dÿ − uẏ + y)xdt when y(T ) = ẏ(T ) = 0

= 〈x ,L∗y〉 NB: the adjoint is solved backwards in time

So we have

L∗y = (−D d2

dt2
− u

d

dt
+ 1)y
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(−Dẍ + uẋ + x)ydt
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= [−Dẋy ]T0 +

∫ T

0
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Example 2: Bilinear identity

If the primal system is

Lx = f and we observe zi = 〈gi , x〉+ ei

then by the bilinear identity

zi = 〈yi , f 〉+ ei

where
L∗yi = gi .

Think of gi (x) = 〈gi , x〉 as linear sensor functions. Typical choices

Point value gi (x) = x(ti )

Temporal average gi (x) =
∫ ti+δ
ti−δ x(t)dt



Example 2: GP expansion

f (·) ∼ GP. If we write

f (t) =
M∑
j=1

qjφj(t) = Φq

then

zi = 〈yi , f 〉+ ei

=
M∑
j=1

〈yi , φj〉qj + ei

= y>i Φq + ei

Thus we can estimate q by

q̂ = (Φ>Y>YΦ)−1Φ>Y z



Example 2: Results
20 observations, each a noisy average over 0.025s. 100 Fourier features

These results require 20 adjoint solves: < 1 second.

MCMC works here for a small number of features. But even with 2
features, we need ∼ 1000s of ODE solves.
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Example 3: PDE
Advection-diffusion is a linear operator:

Lpc =
∂c

∂t
−∇.(νc)−∇.(D∇c)

Forward problem: solve (for some initial and boundary conditions)

Lpc = fq.

Inverse problem: assume

fq(x , t) ∼ GP(m, kλ((x , t), (x ′, t ′)))

≈
M∑
i=1

qiφi (x , t) where qi ∼ N(0, 1)

and estimate q, p = (ν,D, λ) given zi = 〈gi , c〉+ N(0, σ). Typically gi
will be a sensor function that might average the pollution at a specific
location over a short window

〈gi , c〉 =
1

|T |

∫
T
c(xi , t)dt
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Example 3: PDE adjoint

For n observations we need n adjoint equations!

−∂v
∂t
− ν∇v −∇.(D∇v) = gi in Ω× (T , 0)

along with initial (final) and boundary conditions

Initial conditions and boundary conditions can be tricky to compute...

Numerical issues can arise depending on the discretization vs the
sensor function gi vs diffusion rate etc

The cost of solving the adjoint is the same as solving the forward
problem.
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25 sensors, 3 observations from each, σ = 0.05, Domain = [0, 10]× [0, 10]2

These are best case results with known GP and PDE hyperparameters.

Note the negative values....
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Example 3: Results - posterior mean
4 sensors, 3 observations from each, σ = 0.05, Domain = [0, 10]× [0, 10]2

We’re currently working on using the adjoint to estimate the non-linear
parameters.
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Costs
Adjoint method:

For the linear forcing/source parameter, we require n solves of the
adjoint system to infer the posterior.

The method is essentially independent of the number of basis
functions used.

The non-linear parameters (GP hyperparameters, PDE parameters)
can be inferred in an outer-loop - each step requires a further n
adjoint solves (and another n forward solves if we want gradient
information).

MCMC:

All parameters inferred together.

Hard to say how many iterations will be required, but likely to grow
with the the number of parameters (and hence number of GP
features).

Number of iterations required largely independent of n.

Derivative information generally helps, but this is likely to be
unavailable.



Conclusions

Adjoints of linear systems

an intrusive method; development does require some mathematics...

Gives numerically stable derivatives

For linear parametric forcing models, leads to cheap inference
I May or may not be faster than MCMC depending on the number of

data points, and the dimension of the parameter.

GP models that know some physics can improve predictions over vanilla
GPs.

Lots of opportunities for finding efficiencies...

First paper to appear on arXiv soon.

Thank you for listening!
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