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The heart

The heart is an electrical-mechanical pump, which contracts under
electrical potential.
Focusing on the left atrium

left atrium receives oxygenated blood from the lungs

left atrium pumps this blood to the left ventricle

left ventricle pumps this oxygenated blood to the body
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Project overview
Atrial fibrillation

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.

Affects around 610,000 people in UK.

Catheter ablation removes/isolates pathological tissue that
sustain/initiate AF.

40% of patients subsequently experience atrial tachycardia (AT).

http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg
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Project overview II
Patient Specific Cardiac Models

Aim: predict whether an AF patient will develop AT following ablation,
infer the reentry pathways, and then guide the surgical ablation to treat
for both in a single procedure.

Each intervention: 6% risk of major complication; cost ∼£8000.

Personalised biophysical models have the ability to predict patient
response to treatment

models are currently deterministic - simulating a single outcome.

clinical diagnosis is rarely definitive
I we need to account for uncertainties
I consider costs and benefits across all potential outcomes weighted by

their probability.
e.g. if patient has 30% chance of complication - this should influence
decision making.
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Cardiac digital twinPrecision Cardiology through the Digital Twin

Complex	patient		

O
bservations	

Population	prior	knowledge	

Physics	and	Physiology	

Virtual Patient

Digital Twin

Clinical	Decision	

But how confident are we in our predictions?



Project overview III
To infer reentry pathways we

use a complex simulator (encoding scientific knowledge) to see
whether atrial tachycardia can be maintained

This requires

Left atrium geometry, spatially distributed tissue properties, fibre
directions, etc for the individual patient

all of which are unknown.

Workflow:

MRI: build patient specific left atrium mesh, identify fibrosis.

Electrophysiology study: learn electrical activation map

Interpolate to entire atrium: estimate conduction velocity and
restitution curves

Estimate spatially resolved tissue parameters

Predict atrial tachycardia pathways; make clinical recommendations

Requires us to track and account for uncertainty through all stages
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Uncertainty quantification
Project aim is characterize and combine the uncertainties to make
decisions that take our lack of knowledge into account.

Noisy data, recorded at a small number of sparse, uncertain locations

Large number of unknown parameters

Complex simulator (limited computational resource)

Misspecification/discrepancy

P(Event|Data) =

∫
P(E |θ, x , f )π(θ, x , f |D)dθdxdf

where
π(θ, x , f |D) ∝ π(D|θ, x , f )π(θ)π(x)π(f )

We need to characterize variability at the

population level π(θ), π(x) etc

individual level π(θ, x , f , ...|D) – may need to be done in real time

and the physics/simulator π(D|θ, x , f )

Pragmatic approach necessary.
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Problem 1: Uncertain anatomy (Corrado et al. MedIA 2019)

Image	artefact	

  Image	artefacts	
  Inter-operator	variability	
  Device	resolution	
  Noise	
  …	

Operator	1	

Minimizing Uncertainty through Standardized Workflows

Operator	2	
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  …	
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Minimizing Uncertainty through Standardized Workflows

Operator	2	

Measure shape xobs ∈ RD where D ∼ 105

xobs = xtrue + e ′ where e ′ ∼ N(0,Σ′)

How can we parsimoniously describe the variation in atrial shapes?

Aim: change to a basis allowing variation to be described in low dimension

xobs = µ+
d∑

i=1

λiui + e where e ∼ N(0,Σ)

where λ = (λ1, . . . , λd)> is the new coordinate describing variation for
basis {u1, . . . , ud}.
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PCA basis is optimal
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Quantifying Uncertainty in Shape on Model Predictions 

!"#$=!+%	
!∈ ​ℝ↑3​(↓*   ( ​(↓* ≈​10↑3 )	

observed	 true	 uncertainty	

!=,+-.+ ​%↓⊥ 	
.∈ ​ℝ↑​(↓/  ( ​(↓/ ≈​10↑1 )	

mean	 Modes	 coefficients	 Trunc.	error	

!"#$=,+-.+ ​%↓010 	

Combined	error	observed	 mean	 PCA	

Dataset (,,-)	 ​.↑23453 	PCA 

Population	Mean	and	
shape	(λ)	Priors	 New	Measure	 Update	Shape	(λ)	Posterior	

Distribution	

Derived	from	70	training	cases	

Quantifying Uncertainty in Shape on Model Predictions 
  12000	Samples	
  !["#$], $["#$]	with	Monte	Carlo	formula	

Expected	value	

Standard	deviation	



Problem 2: Interpolation of local activation time (LAT)
Coveney et al. IEEE TBME 2019

Think of electrical activation
as a wave spreading over the
atria

Red: ’active’ cardiac tissue
Blue: ’inactive’ cardiac tissue

We want to know the time of
arrival of the wave front - the
Local Activation Time (LAT).

Electrophysiology (EP) study: electrodes placed on the surface of the
atrium and electrical pacing applied at various frequencies. We measure
electrical activity across the atria.
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Estimating local activation times from electrograms
Coveney et al. IEEE TBME 2019

The literature is unclear about how
LAT should be inferred from a
bipolar electrogram.

Some methods more robust than
others (esp. for AF patients),
and few include uncertainty.

Method allows crude estimation of
LAT with uncertainty



Interpolation
We want to

estimate activation times at all locations on the atria (the LAT map)
estimate the conduction velocity (CV) of the wave (and the effective
refractory period (ERP)) giving a CV map
infer spatially resolved tissue properties

Typically, only able to measure LAT a small number (∼10s) of locations
on the atrium.

How can we interpolate to other locations?
LATobs(x) = LATtrue(x) + εEGM + εposition
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Aside: Gaussian processes (GP)
Regression: given data {xi , yi = f (xi )}ni=1 learn f .

x is location on the atrium, f (x) is activation time

GPs can be thought of as probabilistic models of functions.

a random process indexed by x ∈ X , such that for x1, . . . , xn,

f = (f (x1), . . . , f (xn)) ∼ Nm(m,K)

where Kij = k(xi , xj)

Key choice is the covariance/kernel function k(x , x ′) = Cov(f (x), f (x ′))
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Why use GPs?
Class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If L is a linear operator, then

Lf ∼ GP(Lm,LkL>)

e.g. df
dx ,

∫
f (x)dx , Af are all GPs. Can also analytically condition on

Lf = 0, e.g. incompressible flow ∇ · ∇f = 0
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GP interpolation

We want to model

LAT (x) ∼ GP(m(x), k(x , x ′))

but standard approaches won’t work on complex atrial manifolds

Typically covariance is a function of the Euclidean distance between
two points i.e. k(x , x ′) ≡ k(‖x − x ′‖2),

We want the interpolation to take into account distance on the manifold
travelled by electrical wave.

Defining a valid positive definite covariance function on the manifold
is hard!
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GP basis expansions

We can consider basis expansions of GPs

f (x) =
∞∑
i=1

wiφi (x)

where φ(x) are basis functions, and wi random coefficients.

If wi ∼ N(0, λi ), then f (x) is a zero-mean GP with covariance function

k(x , x ′) =
∑

λiφi (x)φi (x
′)

Usually, we choose a covariance function k , and try to find convenient
basis expansions

Karhunen-Loeve expansion is mean square optimal, but
inconvenient....

We want to avoid specifying k(x , x ′) explicitly, as it is difficult to do so on
the atrium.
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Approach 1: INLA-SPDE approach: Lindgren et al. 2011
Coveney et al. 2019

For Matern covariance functions, there is a link between GPs and
stochastic partial differential equations (SPDE):

(κ2 −∆)α/2f (x) = W (x)

Allows us to fit GPs using the machinery of finite element methods
(allows solution in O(n3/2) instead of O(n3)).

Makes it easy to work on irregular domains.

LAT (x) =
n∑

k=1

wkφk(x)

with wk ∼ N(0, Q̃−1) where Q̃ is sparse. Note

f (·) ∼ GP(0,Q−1)

for some Q



Approach 1: INLA-SPDE approach: Lindgren et al. 2011
Coveney et al. 2019

For Matern covariance functions, there is a link between GPs and
stochastic partial differential equations (SPDE):

(κ2 −∆)α/2f (x) = W (x)

Allows us to fit GPs using the machinery of finite element methods
(allows solution in O(n3/2) instead of O(n3)).

Makes it easy to work on irregular domains.

LAT (x) =
n∑

k=1

wkφk(x)

with wk ∼ N(0, Q̃−1) where Q̃ is sparse. Note

f (·) ∼ GP(0,Q−1)

for some Q



Approach 1: INLA-SPDE approach: Lindgren et al. 2011
Coveney et al. 2019

For Matern covariance functions, there is a link between GPs and
stochastic partial differential equations (SPDE):

(κ2 −∆)α/2f (x) = W (x)

Allows us to fit GPs using the machinery of finite element methods
(allows solution in O(n3/2) instead of O(n3)).

Makes it easy to work on irregular domains.

LAT (x) =
n∑

k=1

wkφk(x)

with wk ∼ N(0, Q̃−1) where Q̃ is sparse. Note

f (·) ∼ GP(0,Q−1)

for some Q



Results - mean



Results - standard deviation



S1-S2 interpolation

The electrical restitution curve describes the recovery of action
potential duration as a function of the interbeat interval.

During an EP study the heart is ’paced’ at a regular S1 interval.

Premature interbeats introduced at interval S2

As the S2 interval shortens the heart tissue will eventually cease to
recover in time to activate for both beats



S1-S2 interpolation

The EP study measures activation time at ∼30 locations and ∼ 10 S2
intervals. We use INLA-SPDE approach to interpolate LAT at the
locations for a given S2 value.

allows us to borrow strength from different S2 intervals to improve
the interpolation?

Simplest way is to add S2 as an input, and assume an AR(1) relationship
between LAT (x ,S2i+1) and LAT (x ,S2i )

LAT (x ,S2i+1) ∼ N(ρLAT (x ,S2i ), (1− ρ2)Q−1)

or more precisely

LAT (x ,S2) ∼ GP(0,Q−1
S2 ⊗ Q−1)
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Results: Cross validation

Opens interesting design questions around data collection protocols



Random samples

Unfortunately random samples produce unphysical (non-monotonic)
patterns. This isn’t a surprise - the GP doesn’t ’know’ it is modelling a
wave.
We can improve the situation by using a smoother covariance function
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Laplacian basis functions
Coveney et al. Phil. Trans. Roy. Soc. 2020

There is a duality between stationary covariance functions, and spectral
densities (Wiener-Khinchin):

S(ω) =

∫
k(r)e−iωrdr

Solin and Sarkka (2019) showed that if we use the Laplacian eigenbasis

−∇2φj(x) = λjφj(x) x ∈ Ω

φj(x) = 0 x ∈ ∂Ω

then

f (x) =
∑

wkφk(x) with wk ∼ N(0, S(
√
λj))

is a GP with spectral density S.
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This allows us to

specify a GP in terms of its spectral density, bypassing the need to
explicitly define a covariance function

work directly with processes on the atrial manifold

Note that
k(x , x ′) =

∑
S(

√
λj)φi (x)φi (x

′)

and that unlike many other expansions (e.g., Karhunen-Loeve), the
eigenfunctions don’t change if the hyper-parameters of the GP change (so
we only need compute them once).
Truncating the sum gives us an approximate low rank GP

k(x , x ′) ≈
M∑
i=1

S(
√
λj)φi (x)φi (x

′), f (x) ≈
M∑
i=1

wkφk(x)

for which inference can be done in O(M3) operations.
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Computing conduction velocities

Interest lies in conduction velocities, which are the inverse of the LAT
gradient. The Laplacian eigen expansion allows us to compute these

where

dk(x , x ′)

dx
=

M∑
i=1

S(
√
λj)

dφi
dx

(x)φi (x
′)

allowing us to compute variance estimates of the estimated conduction
velocities...



Results
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Problem 3: Learning tissue parameters from complex
simulators - ongoing
Incorporating physics

We model cellular electrophysiology using the Mitchell-Schaeffer (MS)
model that captures conduction velocity and refractory restitution
properties.

5 parameters

Electrical activation across the atrium is simulated using a monodomain
equation with local activation given by the MS model, isotropic tissue
conductivity, and infarcted, dense fibrotic and ablation regions modelled
as non-conducting tissue

ie 5 parameters at every location θ(x)

Think of the simulator as a black box S(θ) where θ ∈ R5Ncell , which
predicts the local activation time map for a given pacing.

We need to estimate the parameters from the EP data.
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Parameter estimation

At present we have a working heuristic approach

At each location xi , infer θ(xi ) using ABC with a look-up table of
simulations

Interpolate θ(x) across the atrium.



In-procedure calibration

In future we need to train a digital twin during a procedure.

MRI obtained pre-procedure to learn atrial geometry and fibrotic
regions

In-procedure, we record electrophysiology measurements D

Update prior belief about tissue parameters, and predict the result of
ablation therapy.

π(θ(·)|D) P(E |D)

in a ∼ 30 min window during the procedure

We can do as much computation as needed pre-procedure, but
inference/training in-procedure needs to be fast.



In procedure calibration

Some options

Approximate Bayesian computation: use a precomputed set of
simulations {θi ,S(θi )} and accept θi if |S(θi )− D| is small

History matching: train a GP emulator to predict S(θ) for any θ in
advance of surgery, and then in-procedure use the emulator to find
plausible values of θ.

Amortized-VAE: seek a variational approximation to the posterior

q(θ|D) = N (θ;m,Σ)

and train a neural net to predict this variational approximation for
any given dataset D

m(D), Σ(D)

All options will require effective dimension reduction of θ (e.g. using
sensitivity analysis/active subspaces etc)



Conclusions

At present, catheter ablation doesn’t use computer simulation to
guide therapy.

By building a digital twin of a patient, we may be able to improve
patient outcomes.

However, there are a huge number of uncertain parameters we need
to estimate from limited noisy data.

I need to find regularities in the problem to allow us to reduce
dimension sufficiently in order to make inference possible

I Unknown if we can constrain parameters sufficiently (either via better
data or better population priors) to accurately predict.

Will it be possible to do this in real time?

Thank you for listening!
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