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How should we do inference if the model is imperfect?
Data generating process
y~G

Model (complex simulator, finite dimensional parameter)
F={Fy:0€c0}

If G = Fp, € F then we know what to dol.

How should we proceed if
G¢F

Interest lies in inference of # not calibrated prediction.

1Even if we can't agree about it!
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If fy(x) is our simulator, y the observation, then perhaps we can correct f

by modelling
y = fg«(x) + (x) where §~ GP

This greatly expands F into a non-parametric world.



An appealing, but flawed, idea
Kennedy and O'Hagan 2001, Brynjarsdottir and O'Hagan 2014

Simulator Reality
Ox
fo(x) = Ox g(x) = T3 = 6 = 0.65,a =20
a

Frequency
0 200 400 600

0 100 200 300 400

Bolting on a GP can correct your predictions, but won't necessarily fix
your inference.
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Dangers of non-parametric model extensions
There are (at least) two problems with this approach:

e We may still find G ¢ F
o ldentifiability
» A GP is an incredibly complex infinite dimensional model, which is not
necessarily identified even asymptotically. The posterior can
concentrate not on a point, but on some sub manifold of parameter
space, and the projection of the prior on this space continues to
impact the posterior even as more and more data are collected.

ie We never forget the prior, but the prior is to complex to understand
» Brynjarsdottir and O'Hagan 2014 try to model their way out of
trouble with prior information - which is great if you have it.
» Wong et al 2017 impose identifiability (for 6 and ) by giving up and
identifying

0" = arg min / (C(x) — fo(x))2dr(x)
[0 S b

J.R. Statist. Soc. B (2017)
79, Part2, pp. 635-648

A frequentist approach to computer model
calibration
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Inferential approaches

e Maximum likelihood/minimum-distance
e Bayes(ish)
@ History matching (HM)/ABC type methods (thresholding)

We'll consider how they behave for well-specified and mis-specified
models.

Try to understand why (at least anecdotally) HM and ABC seem to work
well in mis-specified cases.

Big question? is what properties would we like our inferential approach to
possess.

2To which | have no answer
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Maximum likelihood estimator

A

0, = arg max I(y]0)

If G = Fg, € F, then (under some conditions)
é,, — 0y almost surely as n — oo
V(B — o) = N(0.Z(60))

Asymptotic consistency, efficiency, normality.
If G¢&F

0, — 0" = arg mein Dki(G, Fy) almost surely

dG
:argm@in/logdl__edG

V(6 — 06) 2 N(O, V1)
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7(0ly) 2 N(6o,Z72(60)) as  n — oo

Bernstein-von Mises theorem: we forget the prior, and get asymptotic
concentration and normality.
This also requires (a long list of) identifiability conditions to hold.

If G ¢ F, we still get asymptotic concentration (and possibly normality)
but to #* (the pseudo-true value).

“there is no obvious meaning for Bayesian analysis in this

17
case

Often with non-parametric models (eg GPs), we don't even get this
convergence to the pseudo-true value due to lack of identifiability.
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History matching seeks to find a NROY set
Po=1{0: Sum(Fo,) < 3}
where Er. (V) |
Stm(Fy) = IEF\T) VI
Varg, (Y)

ABC approximates the posterior as

me(0) x W(G)E(HS(ﬁg,y)ge)

for some choice of S (typically S(Fy,y) = p(n(y),n(y’)) where y’ ~ Fp)
and e.

They have thresholding of a score in common and are algorithmically
comparable.



History matching and ABC

These methods (anecdotally) seem to work better in mis-specified
situations.

Why?



History matching and ABC

These methods (anecdotally) seem to work better in mis-specified
situations.
Why?
They differ from likelihood based approaches in that
@ They only use some aspect of the simulator output

» Typically we hand pick which simulator outputs to compare, and
weight them on a case by case basis.

@ Potentially use generalised scores/loss-functions

@ The thresholding type nature potentially makes them somewhat
conservative



History matching and ABC

These methods (anecdotally) seem to work better in mis-specified
situations.
Why?
They differ from likelihood based approaches in that
@ They only use some aspect of the simulator output

» Typically we hand pick which simulator outputs to compare, and
weight them on a case by case basis.

@ Potentially use generalised scores/loss-functions

@ The thresholding type nature potentially makes them somewhat
conservative



What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?



What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?

o Consistency?



What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?

o Consistency?
» | don't want inconsistency.



What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?
o Consistency?
» | don't want inconsistency.

@ Asymptotic concentration or normality?



What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?

o Consistency?
» | don't want inconsistency.

o : . 2



What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?

o Consistency?
» | don't want inconsistency.

o : . 2

o Frequency properties?



What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?

o Consistency?
» | don't want inconsistency.
o A . . 2
o Frequency properties?
» | wouldn't object but seems impossible for subjective priors.



What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?

o Consistency?

» | don't want inconsistency.
o / . . 2
o Frequency properties?

» | wouldn't object but seems impossible for subjective priors.

@ Coherence?



What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?
o Consistency?
» | don't want inconsistency.
o / . . 2
o Frequency properties?
» | wouldn't object but seems impossible for subjective priors.

@ Coherence?

@ Robustness to small mis-specifications?
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Generalized scores

Likelihood based methods are notoriously sensitive to mis-specification.
Consider scoring rules instead. If we forecast F, observe y, then we
receive score

S(F,y)

S is a proper score if

G =arg mFin Ey.cS(F,Y)

i.e. predicting G gives the best possibly score.
@ Encourages honest reporting

Examples:
o Log-likelihood S(F,y) = —logf(y)
e Tsallis-score (y — 1) [ f(x)%dx — yf(y)*!
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Minimum scoring rule estimation (Dawid et al. 2014 etc) uses

A

0 =arg mein S(Fa,y)

For proper scores

0
E@ 5(F9> y)
9—90) 86 ’ 9:60

=0

so we have an unbiased estimating equation, and hence get asymptotic
consistency for well-specified models. We also get asymptotic normality.
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Note both ABC and HM are B-robust in this sense, but using the
log-likelihood is not.
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Advantages of this include
@ Allows focus solely on the quantities of interest.

» Full Bayesian inference requires us to model the complete data
distribution even when we're only interested in a low-dimensional
summary statistic of the population.

@ Deals better with mis-specification

Presumably the posterior may inherit some form of robustness from
certain choices for the loss function, e.g., the bounded robust proper
scores of Dawid et al. .

Relates to the Bayes linear approach of Goldstein and Wooff which is also
motivated by difficulties with specifying a complete model for the data.
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HM and ABC thresholding

History matching was an approach designed for inference for mis-specified

models. Er (V) |
-y
Srm(Fo) = =R\ T ) — V1

VarFe (y)

Often applied in a Bayes linear type setting, with Varg,(y) broken down
into constituent parts

VarFe (y) = Varsim + Vardiscrep + Varemulator
Combined with the thresholding nature
Py = {9 : SH/\//(ﬁg,y) < 3}

means we don't get asymptotic concentration.
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@ ABC shares similar properties if € fixed at something reasonable.

7)< 7O, 0
The indicator functions acts to add a ball of radius ¢ around the
data, so that we only need to get within it.
@ ¢ plays the same role as Vargjscrep in HM.

Both approaches also allow the user to focus on aspects/summaries of the
simulator output that either are of interest, or for which we believe the

simulator is better specified.

@ We discard information by only using some aspects of the simulator
output, but perhaps to benefit of the inference

Also
@ Allow for crude/simple discrepancy characterization.
@ Some form of robustness arises from the scores used.



Brynjarsdottir et al. revisited

Simulator

fo(x) = Ox

0 = 0.65,a

No MD GP prior on MD
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Recent work in ABC

Recent work on ABC has sought to move away from the use of summaries
@ Bernton et al. 2017 look at Bayes like procedures based on the
Wiasserstein distance (get different pseudo-true value)
@ Park et al. 2015 look at using kernel mean embeddings of
distributions to also avoid the need to summarize outputs.



Recent work in ABC

Recent work on ABC has sought to move away from the use of summaries
@ Bernton et al. 2017 look at Bayes like procedures based on the
Wiasserstein distance (get different pseudo-true value)
@ Park et al. 2015 look at using kernel mean embeddings of
distributions to also avoid the need to summarize outputs.
Several papers (Frazier et al. 2017, Ridgeway 2017, ...) have studied
asymptotic properties of ABC
@ Consider version of ABC where we accept or reject according to

p(n(y),n(¥"))
where y' ~ Fy(-)
Then if by is limit of n(y) and b(6) the limit of n(y’), then they've
studied convergence to

6" = arg inf p(bo, b(0))

as e — 0.
This focus is again on prediction not inference.
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What properties do we want our inference scheme to possess?
@ Is coherence the best we can hope for or is there a form of robustness
that is achievable and useful for slightly mis-specified models?

e If G & F can we ever hope to learn precisely about 67
If not we shouldn’t use methods that converge/concentrate
asymptotically.

@ Bayes linear type specification of discrepancies look attractive in most
cases. Use methods that allow for this type of simple specification?

Thank you for listening!



