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Model data comparison

Palaeoclimate data can provide us with insight into the dynamics of the
Earth system under conditions different from modern.

data allow us to test our theoretical understanding of the climate
through evaluation of Earth system models

palaeoclimate data are often ‘out of sample’ - not used in the tuning
or development of the models, and so provide a fairer test of model
performance.

Good performance in predicting past climate leads to confidence in
future model prediction, and poor performance can be used to
highlight deficiencies in models

Thus, careful data-model comparison is of great importance in the
verification of palaeoclimate simulations, particularly if used to rank, or
even reject, models or model simulations.



Palaeodata
Palaeoclimate data is different from the modern equivalent.

datasets of observations are often globally sparse and simultaneously
clustered in certain regions,

I e.g. PRISM Pliocene sea surface
temperature (SST) dataset (Dowsett et
al., 2010) has a preponderance of data in
the North Atlantic, and little or none in
the subtropical South Pacific.

Palaeoclimate data usually has high levels of observational
uncertainty (usually poorly specified) which are often significant in
relation to the climate signal being assessed.

Thus, the usual qualitative metrics developed in modern climate
assessments are often inappropriate

typically rely on observations with gridded, global coverage and do
not account for the uncertainties in those observations (Gleckler et
al., 2008).
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Current approach - Dan Lunt PEN talk 2015

Haywood and Valdes, 2007 
 

Cross-plots of  model temperatures 
vs. data, and RMS score. 

“The results demonstrate that, as a whole, the SSTs predicted by the model and those 
reconstructed from geological data are not statistically different (at a 95% statistical 
significance level).  An R2 value of 0.88 ... suggests that the two SST data sets are 
particularly similar.” 

Model 
simulation 
involves 
changing CO2, 
mountain height, 
vegetation, and 
ice sheet extent. 



Our approach

Want a robust method that is statistically sound, yet simple to apply and
understand, and which can be applied by the palaeoclimate community
without a statistician.

Ideally, it should

account for clustering,
I a statistical representation of the data is needed.
I use a Gaussian process approach to estimate spatial correlations
I we can control correlations in each direction

account for uncertainty
I Use scoring rules to evaluate model simulations relative to the

data-derived field.
I incorporate different (and uncertain) levels of measurement

uncertainty.

Our approach builds on Zammit-Mangion et al. 2014, but instead of
using labour and computer intensive Gauss-Markov random fields, we use
a simpler (and equivalent) Gaussian process approach.

All software available on github.
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Exemplar: Scoring HadCM3 Pliocene predictions
Extended PRISM3 SST observations

Shown as anomalies from the pre-industrial HadISST dataset.



Reconstruction/measurement errors

Qualitative assessment of data quality at each site based on five
criteria, giving a score between 5 and 18 (Dowsett et al., 2012).
We converted this to a numeric estimate of the uncertainty - to be
considered as a numerical construct to represent plausible uncertainty
values in the absence of any estimates.
Absolute values are not relevant, only the ratio between values.



280ppm

HadCM3 (Valdes et al., 2017) that follow the PlioMIP Experiment 2
protocol These simulations are identical except for being forced with a
range of pCO2 levels



315ppm



350ppm



375ppm



405ppm



475ppm



560ppm



1000ppm

Which simulation is closest to the data?

What do the data and model suggest the pCO2 level was?



Scoring rules
Suppose a forecaster makes a prediction in the form of a probability
distribution P about some quantity.

We wait and observe this quantity, recording value d . How good was the
prediction?

A score maps from a distribution and observations to R, that is
S : P × Rd → R, i.e., gives us a score

S(P, d)

S is a proper score if

arg max
P

ED∼Q [S(P,D)] = Q

e.g. log likelihood
S(P, d) = log p(d)

where p is the pdf corresponding to P.
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Problem
Suppose we are given model outputs

M1, . . . ,Mk

e.g., the SST fields from running a climate model with k different
boundary conditions.

These are not probabilistic predictions. Given data D how can we score
them? How do we get uncertainty into this story?

Idea: Fit a statistical model to the data, Pd(x), and score the model
evaluations (Zammit-Mangion et al. 2014).

S(Pd ,Mi )

As long as Pd is sufficiently sophisticated, this will allow us to account for

clustering in the data

varying uncertainty levels in the data

Note the philosophically backwards application of scoring rules.
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Gaussian process interpolation
We have noisy observations Di at locations xi for i = 1, . . . , n
Natural to use kriging to interpolate underlying surface D(x)

Think of these as probabilistic models of functions (or interpolation with
uncertainty).

A GP is a random process indexed by x ∈ X say, such that for every finite
set of indices, x1, . . . , xn,

f = (f (x1), . . . , f (xn))

has a multivariate Gaussian distribution. Why use GPs?
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Answer 1
Class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If L is a linear operator, then

Lf ∼ GP(Lm,LkL>)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs
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Answer 2: non-parametric/kernel regression
Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= X>(XX> + σ2I )−1y (the dual form)

We know that we can replace x by a feature vector in linear
regression, e.g., φ(x) = (1 x x2 cos(x))> etc.

For some features, inner product is equivalent to evaluating a kernel

φ(x)>φ(x ′) ≡ k(x , x ′)

where k : X × X → R is a semi-positive definite function.
Kernel trick: lift x into infinite dimensional feature space by
replacing inner products x>x ′ by k(x , x ′), but never evaluate these
features, only the n × n kernel matrix.

ŷ ′ = m(x ′) =
n∑

i=1

αik(x , xi )
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Generally, we don’t think about features, we just choose a kernel. But
choosing a kernel is implicitly choosing features, and our model only
includes functions that are linear combinations of this set of features (the
Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN )2

2λ2 )

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the simulator than any class of models that
contains only a finite number of features.
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Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods1.
If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It can been shown, that the best second-order inference we can do to
update our beliefs about X given Y is

E(X |Y ) = E(X ) + Cov(X ,Y )Var(Y )−1(Y − E(Y ))

which is exactly the Gaussian process update for the posterior mean.

So GPs are in some sense very natural approaches.

1

statistics without probability
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GP prediction



GP prediction - standard deviation

What’s wrong?



Interpolation on a sphere

Just giving the GP latitude and longitude coordinates of the observations,
means that it doesn’t know the data lie on a sphere.

fix by replacing Euclidean distance with haversine (great circle)
distance

Theoretically problematic for GPs,

only a very small set of covariance functions are positive semi-definite
on S2.

matters less in practice



Uncertain uncertainty
Heteroscedastic GPs

Observation vector
D = (D1, . . . ,Dn)

We’re assuming
Di = f (xi ) + εi

where f (x) is the underlying SST pattern, and ε = (ε1, . . . , εn)> is the
measurement error.

We use a heteroscedastic measurement model

ε ∼ Nn(0,V ) where Var(y) = τR

R is a diagonal matrix specifying the ratios of the measurement variances
from the qualitative assessment of data quality.
τ is a free parameter scaling the measurement errors which we estimate
from the data.



GP prediction

Two observations which are close count less than two far apart (according
to a length-scale ∼ 5000km).
Noisier observations are less influential on the model fit



GP prediction - standard deviation



Code

We’ve added this functionality to GPy.

GMRF requires 100s of lines of code in comparison.



Sensitivity to the uncertainty specification
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Scoring

Four scoring functions are tested here:

LLFC: Loglikelihood using full covariance matrix

LLVO: Loglikelihood using variance

RMSEgridded: Root-mean-square error calculated over the whole
Gaussian process grid

RMSEpoints: Root-mean-square error calculated at data locations
I Default current approach not requiring GP

Doing predictions on the full GCM grid is expensive (30,000 points).

We can thin it by taking every second value, every third value, etc.



Pseudo data from 405ppm simulation
RMSE - evaluated at data locations

‘pseudo-observations’ sampled from the GCM simulations at the 95
locations of the PRISM3D dataset using the standard deviation values at
each gridpoint calculated across the 30 year climate averaging period as
uncertainty estimates.



Pseudo data from 405ppm simulation
RMSE - gridded across GP prediction



Pseudo data from 405ppm simulation
Loglikelihood variance only



Pseudo data from 405ppm simulation
Loglikelihood full covariance



Scoring
Log-likelihood variance only



Scoring



Problems
The log-likelihood using the full covariance is unfortunately not stable
under subsampling of the GCM grid

Likely due to numerical problems

Likelihood also seems to give undue weight to short range correlations



Conclusions and outlook
Gaussian processes rather than Gauss Markov random fields

Conceptually and computationally simpler, better software

GPs limit the size of dataset we can consider (< 10, 000 data points)

GPs don’t allow for complex geometries, e.g., non-spherical earth,
continental disruptions to the teleconnection between Pacific and
Atlantic etc, but the more flexible GMRF approach would

Proper uncertainty quantification would be better.

a likelihood function of the data is philosophically backwards

Model predictions that incorporate uncertainty about what the
observations should be under a given scenario would be preferable
(forwards models)

UQ on data is terrible

Code on github (caveat emptor)
More thought on scoring needed

right feature but wrong place/time, better than no feature

Thank you for listening!
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