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Model data comparison

Palaeoclimate data can provide us with insight into the dynamics of the
Earth system under conditions different from modern.

@ data allow us to test our theoretical understanding of the climate
through evaluation of Earth system models

@ palaeoclimate data are often ‘out of sample’ - not used in the tuning
or development of the models, and so provide a fairer test of model
performance.

@ Good performance in predicting past climate leads to confidence in
future model prediction, and poor performance can be used to
highlight deficiencies in models

Thus, careful data-model comparison is of great importance in the
verification of palaeoclimate simulations, particularly if used to rank, or
even reject, models or model simulations.



Palaeodata
Palaeoclimate data is different from the modern equivalent.
@ datasets of observations are often globally sparse and simultaneously
clustered in certain regions,

> e.g. PRISM Pliocene sea surface
temperature (SST) dataset (Dowsett et
al., 2010) has a preponderance of data in =
the North Atlantic, and little or none in
the subtropical South Pacific.
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@ Palaeoclimate data usually has high levels of observational
uncertainty (usually poorly specified) which are often significant in
relation to the climate signal being assessed.

Thus, the usual qualitative metrics developed in modern climate
assessments are often inappropriate

@ typically rely on observations with gridded, global coverage and do
not account for the uncertainties in those observations (Gleckler et
al., 2008).



Current approach - Dan Lunt PEN talk 2015
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“The results demonstrate that, as a whole, the SSTs predicted by the model and those
reconstructed from geological data are not statistically different (at a 95% statistical
significance level). An R? value of 0.88 ... suggests that the two SST data sets are
particularly similar.”

Haywood and Valdes, 2007
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data-derived field.

» incorporate different (and uncertain) levels of measurement
uncertainty.



Our approach

Want a robust method that is statistically sound, yet simple to apply and
understand, and which can be applied by the palaeoclimate community
without a statistician. Ideally, it should
@ account for clustering,
> a statistical representation of the data is needed.
» use a Gaussian process approach to estimate spatial correlations
» we can control correlations in each direction
@ account for uncertainty
» Use scoring rules to evaluate model simulations relative to the
data-derived field.
» incorporate different (and uncertain) levels of measurement
uncertainty.
Our approach builds on Zammit-Mangion et al. 2014, but instead of
using labour and computer intensive Gauss-Markov random fields, we use
a simpler (and equivalent) Gaussian process approach.

All software available on github.



Exemplar: Scoring HadCM3 Pliocene predictions
Extended PRISM3 SST observations

Shown as anomalies from the pre-industrial HadISST dataset.

PlioMIP SST Observations
Anomalies from Pre-Industrial (° C)
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@ Qualitative assessment of data quality at each site based on five
criteria, giving a score between 5 and 18 (Dowsett et al., 2012).

@ We converted this to a numeric estimate of the uncertainty - to be
considered as a numerical construct to represent plausible uncertainty
values in the absence of any estimates.

@ Absolute values are not relevant, only the ratio between values.
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HadCM3 (Valdes et al., 2017) that follow the PlioMIP Experiment 2
protocol These simulations are identical except for being forced with a
range of pCO2 levels



315ppm

lat

Model SST
CO2_anom tczyi

o » bV O N B O RS

e
=]



350ppm

lat

Model SST
C0O2_anom tdgtj

o » bV O N B O RS

e
=]



375ppm

lat

Model SST
CO2_anom tczyj

o » bV O N B O RS

e
=]



405ppm

lat

Model SST
CO2_anom tdgtg

o » bV O N B O RS

e
=]



475ppm

lat

Model SST
CO2_anom tczyk

o » bV O N B O RS

e
=]



560ppm

Model SST
CO2_anom tdgtk

!
o T N R O I - I I

DHa



1000ppm

Model SST
CO2_anom tdgti

Which simulation is closest to the data?

What do the data and model suggest the pCO2 level was?
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Suppose a forecaster makes a prediction in the form of a probability
distribution P about some quantity.

We wait and observe this quantity, recording value d. How good was the
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Scoring rules

Suppose a forecaster makes a prediction in the form of a probability
distribution P about some quantity.

We wait and observe this quantity, recording value d. How good was the
prediction?

A score maps from a distribution and observations to R, that is
S:PxRY R, ie., gives us a score

5(P,d)
S is a proper score if

arg max Epq[S(P,D)]|=Q

e.g. log likelihood
5(P, d) = log p(d)

where p is the pdf corresponding to P.
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Problem
Suppose we are given model outputs

My, ..., My
e.g., the SST fields from running a climate model with k different
boundary conditions.

These are not probabilistic predictions. Given data D how can we score
them? How do we get uncertainty into this story?

Idea: Fit a statistical model to the data, Py(x), and score the model
evaluations (Zammit-Mangion et al. 2014).

S(Py, M;)
As long as Py is sufficiently sophisticated, this will allow us to account for
@ clustering in the data
@ varying uncertainty levels in the data
Note the philosophically backwards application of scoring rules.
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Natural to use kriging to interpolate underlying surface D(x)

Prior Beliefs Posterior beliefs

Think of these as probat;ilistic models of functionsx(or interpolation with
uncertainty).

A GP is a random process indexed by x € X’ say, such that for every finite
set of indices, x1,...,Xn,

f=(f(x1),...,f(xn))

has a multivariate Gaussian distribution. Why use GPs?



Answer 1

Class of models is closed under various operations.



Answer 1
Class of models is closed under various operations.

@ Closed under addition

f(:),f(-) ~ GP then (fi+ fH)(:)~ GP



Answer 1
Class of models is closed under various operations.

@ Closed under addition
A()H()~ GP  then (A +h)()~ GP
@ Closed under Bayesian conditioning, i.e., if we observe
D = (f(x1),...,f(xn))

then
f|D ~ GP

but with updated mean and covariance functions.



Answer 1
Class of models is closed under various operations.

@ Closed under addition
f(:),L(:) ~ GP then (fi+fH)(:)~ GP
@ Closed under Bayesian conditioning, i.e., if we observe
D = (f(x1),...,f(xn))

then
f|D ~ GP

but with updated mean and covariance functions.

@ Closed under any linear operation. If £ is a linear operator, then
Lf ~ GP(Lm,LkLT)

e.g. %, J f(x)dx, Af are all GPs
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Answer 2: non-parametric/kernel regression

o Linear regression y = x ' 3 + € can be written solely in terms of inner

products x ' x.

3 = argmin|ly — XB|[5 + o?||8]]5
= XT(XXT +0%)7y (the dual form)

@ We know that we can replace x by a feature vector in linear
regression, e.g., ¢(x) = (1 x x? cos(x)) " etc.
@ For some features, inner product is equivalent to evaluating a kernel
T _
¢(x) ¢(x) = k(x,X)
where k: X x X — R is a semi-positive definite function.
Kernel trick: lift x into infinite dimensional feature space by

replacing inner products x ' x” by k(x,x’), but never evaluate these
features, only the n x n kernel matrix.

P =mKx)= Za,-k(x,x,-)
i=1
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includes functions that are linear combinations of this set of features (the
Reproducing Kernel Hilbert Space (RKHS) of k).
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Generally, we don’t think about features, we just choose a kernel. But
choosing a kernel is implicitly choosing features, and our model only
includes functions that are linear combinations of this set of features (the
Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

(x=c1)?

o) = (e B .. B )

then as N — oo then

60" 00x) = erp (-5

Although our simulator may not lie in the RKHS defined by k, this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the simulator than any class of models that
contains only a finite number of features.
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Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods!.
If we only knew the expectation and variance of some random variables,
X and Y, then how should we best do statistics?

It can been shown, that the best second-order inference we can do to
update our beliefs about X given Y is

E(X]Y) = E(X) + Cov(X, Y)Var(Y) (Y —E(Y))
which is exactly the Gaussian process update for the posterior mean.

So GPs are in some sense very natural approaches.

Istatistics without probability



GP prediction

Predict mean SST anomaly - standard GP, constant error
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GP prediction - standard deviation

Standard deviation of the prediction
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lon

What's wrong?



Interpolation on a sphere

Just giving the GP latitude and longitude coordinates of the observations,
means that it doesn’t know the data lie on a sphere.

e fix by replacing Euclidean distance with haversine (great circle)
distance
Theoretically problematic for GPs,

@ only a very small set of covariance functions are positive semi-definite
2
on 5°.

@ matters less in practice



Uncertain uncertainty

Heteroscedastic GPs

Observation vector
D= (Ds,...,Dp)

We're assuming

D; = f(X,') + €;
where f(x) is the underlying SST pattern, and € = (e1,...,¢,)" is the
measurement error.

We use a heteroscedastic measurement model

€ ~ Np(0, V) where Var(y) = 7R

R is a diagonal matrix specifying the ratios of the measurement variances
from the qualitative assessment of data quality.

T is a free parameter scaling the measurement errors which we estimate
from the data.



GP prediction

Predict mean SST anomaly - spherical GP, heteroscedastic error

lat

lon

Two observations which are close count less than two far apart (according
to a length-scale ~ 5000km).
Noisier observations are less influential on the model fit



GP prediction - standard deviation

Standard deviation of the prediction

lat
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Code

We've added this functionality to GPy.

from scaledheteroscedasticgaussian import ScaledHeteroscedasticGaussian
from gp_heteroscedastic_ratios import ScaledHeteroscedasticRegression

k3
m3

Exponentialhaversine(2, lengthscale=2000)
ScaledHeteroscedasticRegression(X=X_obs, Y=y obs, kernel=k3,
noise_mult=1., known_variances=var_ratios)

m3.optimize restarts(10)

GMREF requires 100s of lines of code in comparison.



Sensitivity to the uncertainty specification
PRISM SD
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Scoring

Four scoring functions are tested here:

o LLFC: Loglikelihood using full covariance matrix
@ LLVO: Loglikelihood using variance

@ RMSEgridded: Root-mean-square error calculated over the whole
Gaussian process grid
@ RMSEpoints: Root-mean-square error calculated at data locations
» Default current approach not requiring GP

Doing predictions on the full GCM grid is expensive (30,000 points).

@ We can thin it by taking every second value, every third value, etc.



Pseudo data from 405ppm simulation
RMSE - evaluated at data locations

‘pseudo-observations’ sampled from the GCM simulations at the 95
locations of the PRISM3D dataset using the standard deviation values at
each gridpoint calculated across the 30 year climate averaging period as
uncertainty estimates.

scalex scale thinby 280 315 350 375 405 475 560

thinby ppm ppm ppm ppm ppm ppm ppm
RMSE - Points 075 075 1 1.46 133 1.30 125 1.28 1.58 1.98
RMSE - Points 1 1 1 145 132 1.26 127 1.28 1.55 1.93
RMSE - Points 15 0.75 2 1.48 134 1.28 127 129 1.56 1.94
RMSE - Points 2 1 2 145 132 131 1.26 1.32 1.60 1.99
RMSE - Points 2 2 1 1.48 1.36 132 1.30 132 1.59 1.96
RMSE - Points 3 0.75 4 1.46 134 1.29 124 1.28 1.56 1.89
RMSE - Points 4 1 4 1.50 138 1.50 1.38 1.47 1.85 225
RMSE - Points 4 2 2 1.48 134 127 125 1.26 1.51 1.83
RMSE - Points 4 4 1 1.46 132 125 123 127 1.54 1.91
RMSE - Points 8 2 4 1.50 136 1.38 131 133 1.63 1.98
RMSE - Points 8 4 2 1.57 138 130 127 1.24 1.50 1.83
RMSE - Points 16 4 4 1.56 139 127 126 121 1.41 1.68




Pseudo data from 405ppm simulation
RMSE - gridded across GP prediction

scalex scale  thinby 280 315 350 375 405 475 560

thinby ppm ppm ppm ppm ppm ppm ppm
RMSE - Gridded 075 0.75 1 1.25 1.02 0.85 0.77 0.70 0.86 1.20
RMSE - Gridded 1 1 1 1.25 1.02 0.87 0.78 0.73 0.89 1.22
RMSE - Gridded 1.5 0.75 2 1.21 0.96 0.80 0.69 0.65 0.84 1.22
RMSE - Gridded 2 1 2 121 0.96 0.80 0.71 0.67 0.85 1.23
RMSE - Gridded 2 2 1 1.22 0.97 0.81 0.70 0.66 0.84 121
RMSE - Gridded 3 0.75 4 1.21 0.96 0.79 0.69 0.64 0.84 1.22
RMSE - Gridded 4 1 4 1.21 0.96 0.80 0.70 0.66 0.85 1.23
RMSE - Gridded 4 2 2 1.22 0.97 0.80 0.70 0.67 0.84 1.21
RMSE - Gridded 4 4 1 1.20 0.95 0.78 0.68 0.64 0.82 1.20
RMSE - Gridded 8 2 4 1.21 0.95 0.78 0.67 0.61 0.79 1.15
RMSE - Gridded 8 4 2 121 0.94 0.76 0.66 0.59 0.78 1.15
RMSE - Gridded 16 4 4 1.25 1.00 0.79 0.71 0.58 0.75 1.13



Pseudo data from 405ppm simulation

Loglikelihood variance only

scalex  scale thinby, 280 315 350 375 405 475 560

thinby ppm ppm ppm ppm ppm ppm ppm
LL-VO 0.75  0.75 1 -120846  -83701  -63621 -54034 -48544 -71898  -127044
LL-VO 1 1 1 271698 -50000 -38500 -32893  -29864 -43999  -76907
LL-VO 1.5 0.75 2 224086 -17390  -14177  -12241 -11512  -16221 27422
LL-VO 2 1 2 -14431  -10351  -8491  -7310  -6876  -9593 -16209
LL-VO 2 2 1 213044 9443 7692 6632 6226  -8645 -14462
LL-VO 3 0.75 4 6063  -4346  -3511  -3020  -2857  -4086 -6987
LL-VO 4 1 4 3635 -2581 2143 -1818  -1709  -2478 4191
LL-VO 4 2 2 3282 2389 -1956  -1693  -1604  -2206 3639
LL-VO 4 4 1 3372 2462 -1993  -1756  -1682  -2301 -3858
LL-VO ] 2 4 -749 -549 -449 -398 -378 -519 -854
LL-VO 8 4 2 -826 -594 -469 -427 -414 -581 -991
LL-VO 16 4 4 270 -179 -123 -107 -83 -132 250



Pseudo data from 405ppm simulation

Loglikelihood full covariance

scalex  scale thinby 280 315 350 375 405 475 560

thinby ppm ppm ppm ppm ppm ppm ppm
LL-FC 0.75 0.75 1 38589 37946 36990 36627 35157 32783 30779
LL-FC 1 1 1 9529 8319 6567 5826 3204 -468 3038
LL-FC 1.5 0.75 2 990 1530 1581 1797 1549 476 -1136
LL-FC 2 1 2 -1557 -941 -856 -606 960  -1915 3432
LL-FC 2 2 1 -930 -558 -573 -400 672  -1477 2637
LL-FC 3 0.75 4 1123 -793 =725 -600 676 -1184 2071
LL-FC 4 1 4 -1194 -837 -810 -644 -694  -1123 -1838
LL-FC 4 2 2 -935 -704 -680 -572 -646 956 -1491
LL-FC 4 4 1 -886 -689 -614 -563 -614 -906 -1468
LL-FC 8 2 4 -393 -307 279 251 -258 -368 -575
LL-FC 8 4 2 -437 -332 277 270 -285 -418 -676
LL-FC 16 4 4 -193 -130 97 91 75 -132 225



Scoring

Log-likelihood variance only

(b) Normalised Log-Likelihood: Variance Only
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Scoring

Normalised Log-Likelihood: Full Covariance
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G

£ 8 B B -

°

Normalised Log-Likelihood: Variance Only

o ! H
280 305 330 355 380 405 430 455 480 505 530 555 580 280 305 330 355 380 405 430 455 480 505 530 555 580
0z (ppm) 0 (ppim)

RIVSE-Gridded

RMSE-Gridded

RNSE-Points

{d

21

g

&

RMSE-Points

455 480 505 530 555 580

05 a0
CO; (ppm)

—®—0.75: thin-1 scale-0.75

—®— 4:thin-4 scale-1

1:thin-1 scale-1 1.5:thin-2 scale-0.75

—®—4:thin-2 scale-2 == 4: thin-1 scale-4

—®— 2:thin-2 scale-1

—&— 8:thin-4 scale-2

—®— 2:thin-1 scale-2 —®—3:thin-4 scale-0.75

—®— 8:thin-2 scale-4 —eo— 16:thin-4 scale-4




Problems

The log-likelihood using the full covariance is unfortunately not stable
under subsampling of the GCM grid

o Likely due to numerical problems
o Likelihood also seems to give undue weight to short range correlations

(a ) Normalised Log-Likelihood: Full Covariance
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Conclusions and outlook
Gaussian processes rather than Gauss Markov random fields
@ Conceptually and computationally simpler, better software
@ GPs limit the size of dataset we can consider (< 10,000 data points)
@ GPs don't allow for complex geometries, e.g., non-spherical earth,
continental disruptions to the teleconnection between Pacific and
Atlantic etc, but the more flexible GMRF approach would
Proper uncertainty quantification would be better.
@ a likelihood function of the data is philosophically backwards
@ Model predictions that incorporate uncertainty about what the
observations should be under a given scenario would be preferable
(forwards models)
e UQ on data is terrible
Code on github (caveat emptor)
More thought on scoring needed
@ right feature but wrong place/time, better than no feature
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Thank you for listening!



