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What is Uncertainty Quantification (UQ)
Uncertainty Quantification (UQ) ≡ statistics with complex models

determining statistical information about the uncertainty in an
output of interest that depends upon the complex model
A ’complex model’ is one that is expensive to evaluate.

Typical tasks

Uncertainty propagation

θ ∼ π(·), and Y = f (θ), then Y ∼?

Parameter estimation

ObserveY = f (θ) + ε, then θ =?

Sensitivity analysis: θ = (θ1, . . . θp)> ∼ π(·). If we can measure one
component of θ, which should we choose to minimize Var(Y )?
Design: what data should we collect to learn θ, improve f , etc?
Decision making: my model is uncertain, the parameters are
uncertain, the data is noisy, but I need to make a decision...

UQ should be a synergy between statistics, applied mathematics and
domain sciences
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Mechanistic models
Models describe hypothesised relationships between variables.

Mechanistic model

explains how/why the variables interact the way they do.

parameters may have physically meaning

e.g. ODE/PDE models

...

Phenomenological/statistical/empirical/machine learning models

the model seeks only to best describe the relationships

models don’t explain why the variables interact the way they do

e.g. Regression models

Typical problems with mechanistic models

computationally expensive

difficult to work with, e.g., black boxes

often inaccurate - model misspecification

often deterministic
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Why do we need UQ?
Atrial fibrillation

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.

Affects around 610,000 people in UK.

Catheter ablation removes/isolates pathological tissue that
sustain/initiate AF.

40% of patients subsequently experience atrial tachycardia (AT).

http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg


UQ in Patient Specific Cardiac Models
With Sam Coveney, Richard Clayton, Steve Neiderer, Jeremy Oakley, . . .

Aim: predict which AF patients will develop AT following ablation, and
then treat for both in a single procedure.

Use complex electrophysiology
simulation using monodomain
eqn on shell anatomy.

Accurate predictions require
patient specific models, but
clinical data is sparse and
noisy.

We need to

Estimate conduction velocity on the atrium using ECG measurements

Infer tissues properties, including regions of fibrotic material

Predict AT pathways

Aid clinical decision making (accounting for uncertainty)



Inference under discrepancy

How should we do inference if the model is imperfect?

Data generating process
y ∼ G

Model (complex simulator, finite dimensional parameter)

F = {Fθ : θ ∈ Θ}

If G = Fθ0 ∈ F then we know what to do1.

How should we proceed if
G 6∈ F

Interest lies in inference of θ not calibrated prediction.

1

Even if we can’t agree about it!
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An appealing idea
Kennedy and O’Hagan 2001

Most models are imperfect. . .

Can we expand the class of models by adding a Gaussian process (GP) to
our simulator?

If fθ(x) is our simulator, y the observation, then perhaps we can correct f
by modelling

y = fθ∗(x) + δ(x) where δ(·) ∼ GP

This greatly expands F into a non-parametric world.
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An appealing, but flawed, idea
Kennedy and O’Hagan 2001, Brynjarsdottir and O’Hagan 2014

Simulator Reality

fθ(x) = θx g(x) =
θx
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An appealing, but flawed, idea
Bolting on a GP can correct your predictions, but won’t necessarily fix
your inference,

e.g.

No discrepancy:

y = fθ(x) + N(0, σ2),

θ ∼ N(0,100), σ2 ∼ Γ−1(0.001, 0.001)

GP discrepancy:

y = fθ(x) + δ(x) + N(0, σ2),

δ(·) ∼ GP(·, ·) with objective priors

No MD
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Dangers of non-parametric model extensions

There are (at least) two problems with this approach:

We may still find G 6∈ F
Identifiability

I A GP is an incredibly complex infinite dimensional model, which is not
necessarily identified even asymptotically. The posterior can
concentrate not on a point, but on some sub manifold of parameter
space, and the projection of the prior on this space continues to
impact the posterior even as more and more data are collected.

ie We never forget the prior, but the prior is too complex to understand
I Brynjarsdottir and O’Hagan 2014 try to model their way out of

trouble with prior information - which is great if you have it.
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We can also have problems finding the true optima for the
hyperparameters, even in 1d problems:

Wong et al 2017 impose identifiability (for δ and θ) by giving up and
identifying

θ∗ = arg min
θ

∫
(ζ(x)− fθ(x))2dπ(x)

© 2016 Royal Statistical Society 1369–7412/17/79635

J. R. Statist. Soc. B (2017)
79, Part 2, pp. 635–648

A frequentist approach to computer model
calibration
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Summary. The paper considers the computer model calibration problem and provides a gen-
eral frequentist solution. Under the framework proposed, the data model is semiparametric
with a non-parametric discrepancy function which accounts for any discrepancy between phys-
ical reality and the computer model. In an attempt to solve a fundamentally important (but often
ignored) identifiability issue between the computer model parameters and the discrepancy func-
tion, the paper proposes a new and identifiable parameterization of the calibration problem. It
also develops a two-step procedure for estimating all the relevant quantities under the new
parameterization. This estimation procedure is shown to enjoy excellent rates of convergence
and can be straightforwardly implemented with existing software. For uncertainty quantifica-
tion, bootstrapping is adopted to construct confidence regions for the quantities of interest. The
practical performance of the methodology is illustrated through simulation examples and an
application to a computational fluid dynamics model.

Keywords: Bootstrap; Inverse problem; Model misspecification; Semiparametric modelling;
Surrogate model; Uncertainty analysis

1. Introduction

In many scientific studies, complex mathematical models, implemented as computer code, are
often used to model physical reality (see, for example, Santner et al. (2003) and Fang et al.
(2010)). Such computer codes are also known as computer models and can only be executed
when certain model parameters are prespecified. The goal of computer model calibration is to
find the model parameter values that allow the computer model to reproduce physical reality
best.

In the computer model calibration problem (Kennedy and O’Hagan, 2001), an output y is
observed from physical reality ζ at n locations of a p-variate input x = .x1, : : : , xp/T:

yi = ζ.xi/+ "i, i=1, : : : , n,

where "i is the measurement error for the ith observation. It is assumed that the user can

Address for correspondence: Thomas C. M. Lee, Department of Statistics, University of California at Davis,
One Shields Avenue, Davis, CA 95616, USA.
E-mail: tcmlee@ucdavis.edu
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Inferential approaches

Maximum likelihood/minimum-distance

Bayes(ish)

History matching (HM)/ABC type methods (thresholding)

We’ll consider how they behave for well-specified and mis-specified
models.

Try to understand why (at least anecdotally) HM and ABC seem to work
well in mis-specified cases.

Big question2 is what properties would we like our inferential approach to
possess.

2

To which I have no answer
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Maximum likelihood
Maximum likelihood estimator

θ̂n = arg max
θ

l(y |θ)

If G = Fθ0 ∈ F , then (under some conditions)

θ̂n → θ0 almost surely as n→∞
√
n(θ̂n − θ0)

d
=⇒ N(0, I−1(θ0))

Asymptotic consistency, efficiency, normality.

If G 6∈ F

θ̂n → θ∗ = arg min
θ

DKL(G ,Fθ) almost surely

= arg min
θ

∫
log

dG

dFθ
dG

√
n(θ̂n − θ0)

d
=⇒ N(0,V−1)
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Bayes
Bayesian posterior

π(θ|y) ∝ π(y |θ)π(θ)

If G = Fθ0 ∈ F

π(θ|y)
d

=⇒ N(θ0, n
−1I−1(θ0)) as n→∞

Bernstein-von Mises theorem: we forget the prior, and get asymptotic
concentration and normality.
This also requires (a long list of) identifiability conditions to hold.

If G 6∈ F , we still get asymptotic concentration (and possibly normality)
but to θ∗ (the pseudo-true value).

“there is no obvious meaning for Bayesian analysis in this
case”

Often with non-parametric models (eg GPs), we don’t even get this
convergence to the pseudo-true value due to lack of identifiability.
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ABC (Approximate Bayesian computation)

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability ∝ π(y | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).

If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate y ′ ∼ π(y |θ) from the computer model

Accept θ if y = y ′, i.e., if computer output equals observation
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any θ. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate y ′ ∼ π(y |θ)

Accept θ if ρ(y , y ′) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | y).
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ε = 7.5
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ε = 5
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History matching and ABC
History matching seeks to find a NROY set

Pθ = {θ : SHM(F̂θ, y) ≤ 3}

where

SHM(Fθ, y) =
|EFθ

(Y )− y |√
VarFθ

(Y )

ABC approximates the posterior as

πε(θ) ∝ π(θ)E(IS(F̂θ,y)≤ε)

for some choice of S and ε, and where F̂θ is estimated from the simulated
y ′.
For ABC, typically S(F̂θ, y) = ρ(η(y), η(y ′)), and η(·) is a lower
dimensional summary.

They have thresholding of a score in common and are algorithmically
comparable.
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History matching and ABC

These methods (anecdotally) seem to work better in mis-specified
situations.

Why?

They differ from likelihood based approaches in that

They only use some aspect of the simulator output

I Typically we hand pick which simulator outputs to compare, and
weight them on a case by case basis.

Potentially use generalised scores/loss-functions

The thresholding type nature potentially makes them somewhat
conservative

They don’t require a fully specified discrepancy model.
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What properties do we want?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?

Consistency?

I I don’t want inconsistency.

Frequency properties?

I I wouldn’t object but seems impossible for subjective priors.

Coherence?

Robustness to small mis-specifications?

Ease of specification?
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Generalized scores

Likelihood based methods are notoriously sensitive to mis-specification.

Consider scoring rules instead. If we forecast F , observe y , then we
receive score

S(F , y)

S is a proper score if

G = arg min
F

EY∼GS(F ,Y )

i.e. predicting G gives the best possibly score.

Encourages honest reporting

Examples:

Log-likelihood S(F , y) = − log f (y)

Tsallis-score (γ − 1)
∫
f (x)αdx − γf (y)α−1
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Minimum scoring rule estimation (Dawid et al. 2014 etc) uses

θ̂ = arg min
θ

S(Fθ, y)

For proper scores

Eθ0

(
∂

∂θ
S(Fθ, y)

∣∣∣∣
θ=θ0

)
=

∂

∂θ
Eθ0S(Fθ, y)

∣∣∣∣
θ=θ0

= 0

so we have an unbiased estimating equation, and hence get asymptotic
consistency for well-specified models. We also get asymptotic normality.
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Dawid et al. 2014 show that if

∇θfθ(x) is bounded in x for all θ

Bregman gauge of scoring rule is locally bounded

then the minimum scoring rule estimator θ̂ is B-robust

i.e. it has bounded influence function

IF (x ; θ̂,Fθ) = lim
ε→0

θ̂(εδx + (1− ε)Fθ)− θ̂(Fθ)

ε

i.e. if Fθ is infected by outlier at x , this doesn’t unduly affect the
inference.

Note both ABC and HM are B-robust in this sense, but using the
log-likelihood is not.

What type of robustness do we want here?
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Bayes like approaches

What about Bayes like approaches with generalized scores?
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Summary. We propose a framework for general Bayesian inference. We argue that a valid up-
date of a prior belief distribution to a posterior can be made for parameters which are connected
to observations through a loss function rather than the traditional likelihood function, which is
recovered as a special case. Modern application areas make it increasingly challenging for
Bayesians to attempt to model the true data-generating mechanism. For instance, when the
object of interest is low dimensional, such as a mean or median, it is cumbersome to have to
achieve this via a complete model for the whole data distribution. More importantly, there are
settings where the parameter of interest does not directly index a family of density functions
and thus the Bayesian approach to learning about such parameters is currently regarded as
problematic. Our framework uses loss functions to connect information in the data to function-
als of interest. The updating of beliefs then follows from a decision theoretic approach involving
cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when
a true likelihood is known yet provides coherent subjective inference in much more general
settings. Connections to other inference frameworks are highlighted.

Keywords: Decision theory; General Bayesian updating; Generalized estimating equations;
Gibbs posteriors; Information; Loss function; Maximum entropy; Provably approximately
correct Bayes methods; Self-information loss function

1. Introduction

Data sets are increasing in size and modelling environments are becoming more complex. This
presents opportunities for Bayesian statistics but also major challenges, perhaps the greatest
of which is the requirement to define the true sampling distribution, or likelihood, for the
data generator f0.x/, regardless of the study objective. Even if the task is inference for a low
dimensional parameter, Bayesian analysis is required to model the complete data distribution
and, moreover, to assume that the model is ‘true’.

In this paper we present a coherent procedure for general Bayesian inference which is based
on the updating of a prior belief distribution to a posterior when the parameter of interest is
connected to observations via a loss function. Briefly here, and in the simplest scenario, suppose
that interest is in the θ minimizing the expected loss
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Bissiri et al. 2016 consider updating prior beliefs when parameter θ is
connected to observations via a loss function L(θ, y).
They argue the update must be of the form

π(θ|x) ∝ exp(−L(θ, x))π(θ)

via coherency arguments.
Note using log-likelihood as the loss function (L(θ, x) = − log fθ(x))
recovers Bayes.
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Advantages of this include

Allows focus solely on the quantities of interest.
I Full Bayesian inference requires us to model the complete data

distribution even when we’re only interested in a low-dimensional
summary statistic of the population.

Deals better with mis-specification

Presumably the posterior may inherit some form of robustness from
certain choices for the loss function, e.g., the bounded robust proper
scores of Dawid et al. .

Relates to the Bayes linear approach of Goldstein and Wooff which is also
motivated by difficulties with specifying a complete model for the data.



Advantages of this include

Allows focus solely on the quantities of interest.
I Full Bayesian inference requires us to model the complete data

distribution even when we’re only interested in a low-dimensional
summary statistic of the population.

Deals better with mis-specification

Presumably the posterior may inherit some form of robustness from
certain choices for the loss function, e.g., the bounded robust proper
scores of Dawid et al. .

Relates to the Bayes linear approach of Goldstein and Wooff which is also
motivated by difficulties with specifying a complete model for the data.



Advantages of this include

Allows focus solely on the quantities of interest.
I Full Bayesian inference requires us to model the complete data

distribution even when we’re only interested in a low-dimensional
summary statistic of the population.

Deals better with mis-specification

Presumably the posterior may inherit some form of robustness from
certain choices for the loss function, e.g., the bounded robust proper
scores of Dawid et al. .

Relates to the Bayes linear approach of Goldstein and Wooff which is also
motivated by difficulties with specifying a complete model for the data.



HM and ABC thresholding

History matching was an approach designed for inference for mis-specified
models.

SHM(Fθ) =
|EFθ

(Y )− y |√
VarFθ

(y)

Often applied in a Bayes linear type setting, with VarFθ
(y) broken down

into constituent parts

VarFθ
(y) = Varsim + Vardiscrep + Varemulator

Combined with the thresholding nature

Pθ = {θ : SHM(F̂θ,y ) ≤ 3}

means we don’t get asymptotic concentration.
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ABC shares similar properties if ε fixed at something reasonable.

πε(θ) ∝ π(θ)IS(F̂θ,y)≤ε

The indicator functions acts to add a ball of radius ε around the
data, so that we only need to get within it.

ε plays the same role as Vardiscrep in HM.

Both approaches also allow the user to focus on aspects/summaries of the
simulator output that either are of interest, or for which we believe the
simulator is better specified.

We discard information by only using some aspects of the simulator
output, but perhaps to benefit of the inference

Also

Allow for crude/simple discrepancy characterization.

Some form of robustness arises from the scores used.
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Brynjarsdottir et al. revisited
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Recent work in ABC
Recent work on ABC has sought to move away from the use of summaries

Bernton et al. 2017 look at Bayes like procedures based on the
Wasserstein distance (get different pseudo-true value)
Park et al. 2015 look at using kernel mean embeddings of
distributions to also avoid the need to summarize outputs.

Several papers (Frazier et al. 2017, Ridgeway 2017, ...) have studied
asymptotic properties of ABC

Consider version of ABC where we accept or reject according to

ρ(η(y), η(y ′))

where y ′ ∼ Fθ(·)
Then if b0 is limit of η(y) and b(θ) the limit of η(y ′), then they’ve
studied convergence to

θ∗ = arg inf
θ
ρ(b0, b(θ))

as ε→ 0.
This focus is again on prediction not inference.
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Discussion
What properties do we want our inference scheme to possess?

Is coherence the best we can hope for or is there a form of robustness
that is achievable and useful for slightly mis-specified models?

If G 6∈ F can we ever hope to learn precisely about θ?
If not we shouldn’t use methods that converge/concentrate
asymptotically.

Whilst modelling our way out of trouble sounds attractive, in practice
it often fails (rarely works?) due to lack of identifiability.

I Simple specification of discrepancies (Bayes linear?) look attractive in
most cases. Should we just use inferential approaches that allow for
this type of simple specification (ie which allow us to avoid full
probabilistic models)?

No one trusts a model except the person who wrote it; everyone trusts an
observation except the person who made it, Harlow Shapely.

Thank you for listening!
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