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Glacial-Interglacial cycle

We’re currently in the quaternary ice age
Last glacial period ended about 10,000 years ago (start of the Holocene)



Glacial-Interglacial cycle

Cycle characterised by saw-toothed behaviour: slow accumulation and
rapid terminations.
Approx 100 kyr period between cycles, but previously a 40 kyr period was
observed.



Milankovitch theory

Eccentricity: orbital departure from a circle, controls duration of the seasons
Obliquity: axial tilt, controls amplitude of seasonal cycle
Precession: variation in Earth’s axis of rotation, affects difference between
seasons

Insolation at 65◦ north: combination of these three terms, considered important.



100kyr problem

Spectral analysis suggest the climate response has a period of ≈ 100kyr,
but the orbital forcing at this period is small.

Eccentricity has 95 and 125kyr periods, but accounts for only 2% of the
variation compared to the shifts caused by obliquity (41kyr period) and
precession (21kyr period).

Explanatory hypotheses

Earth’s climate may have a natural frequency of 100kyr caused by
natural feedback processes

100kyr eccentricity cycle acts as a ”pacemaker” to the system,
amplifying the effect of precession and obliquity at key moments,
triggering a termination.

21kyr precession cycles are solely responsible, with ice building up
over several precession cycles, only melting after four or five such
cycles.
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Current practice

Climate scientists want to use palaeo-data to gather evidence for different
hypotheses. They typically want to

Compare models (and estimate parameters)

Compare effects of different aspects of the solar forcing (all
components have been argued for)

Produce climate reconstructions (temperature chronologies)

. . .

Current approaches tend to be statistically naive

Models fit by eye,

Model selection rarely tackled in a statistical manner, and when it is,
questionable approaches are taken.
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Example
Huybers and Wunsch 2005 argue that obliquity is the primary driver of
glacial cycle

forcing14,15, but this approach assumes the validity of the hypothesis
being tested. Instead, we use an age-model devoid of orbital
assumptions and apply it to the leading empirical orthogonal
function (EOF1) of ten well-resolved marine d18O records13, a
proxy for ice volume and ocean temperature (Fig. 1a).
Most simple models of the late Pleistocene glacial cycles have at

least four degrees of freedom2, and some have as many as twelve3.
Unsurprisingly then, the seven observed quasi-100-kyr glacial cycles
are insufficient to distinguish between the skill of the various
models16. Models with minimal degrees of freedom are necessary.
Other requirements for a useful test include the ability to cope with
noisy records, age-model uncertainty and (possibly) nonlinear
interactions. Here we test for stability in the phase of the orbital
parameters during glacial terminations using Rayleigh’s R (see
Methods).
To proceed, we must estimate the probability distribution func-

tion associated with H0. Of the five estimation methods explored,
the one adopted gives the highest critical value and thus makes H0

the most difficult to reject—a modified random walk8 representing
ice-volume variability:

Vtþ1 ¼ Vt þ ht and if Vt $ To; terminate: ð1Þ
This highly simplified model posits 1-kyr steps in ice volume, Vt, of
random length, h t, independently drawn from a normal distri-
bution with standard deviation j ¼ 2 and mean m ¼ 1. The non-
zero mean biases the Earth toward glaciation. Once Vt reaches a
threshold, To ¼ 90, a termination is triggered, and ice-volume is
linearly reset to zero over 10 kyr. If the model were deterministic
with j ¼ 0 and m ¼ 1, glacial cycles would last exactly 100 kyr, but
with j ¼ 2, glacial cycle duration is approximately normally dis-
tributed at (100 ^ 20) kyr, a spread consistent with observations11.
Initial ice volume is randomly set between 0 and To with equal
probability. From aMonte Carlo technique (seeMethods), we find a
critical value of R ¼ 0.60.
The observed obliquity phases produce R ¼ 0.70, and H0 is

rejected (Fig. 1b). This rejection of H0 is robust to all plausible

reformulations of the test. Thus, the phase of obliquity has a
statistically significant relationship with the timing of deglaciation.
The mean phase at deglaciation is indistinguishable from zero and
is associated with maxima in obliquity. We estimate the H 1

probability density function by assuming that terminations always
initiate at the same phase of obliquity, but that termination timing is
subject to identification and age-model uncertainties (see
Methods). The maximum-likelihood value of H1 is R ¼ 0.69, very
near the observed value, further supporting the conclusion that
glacial terminations are paced by variations in obliquity. Hypoth-
eses not accounting for the obliquity pacing are unlikely to be
correct.

Analogous hypothesis tests for precession and eccentricity pro-
duce different results (Fig. 1c, d). Age-model uncertainty
approaches half a precession cycle, so that the power of the
precession test is negligible—even if present, precession pacing of
the glacial cycles cannot be discerned. In the case of eccentricity, H0

is not rejected using the random-walk probability estimate
(equation (1)), but is rejected using weaker formulations of the
eccentricity null hypothesis. The discrepancy arises because null

Figure 1 The Rayleigh test for phase directionality. a, d18O EOF1 normalized so that

negative values indicate more ice. Dots indicate onset of a termination and horizontal bars

indicate one-standard-deviation age-model uncertainties13. Termination 3 is split

between events 3a and 3b. Vertical lines indicate the time of maxima in obliquity. Note that

time runs from right to left in the palaeoclimate convention. b, The obliquity phase (dots)
sampled at each termination and plotted on a unit circle. The vector average has a

magnitude R ¼ 0.70 (cross mark) exceeding the critical value c ¼ 0.60 (filled circle), so

that H0 is rejected. Furthermore, R is near H1’s maximum-likelihood value (dashed circle).

The direction is indistinguishable from maximum obliquity (top of the circle).

c, d, Analogous tests are made for precession (R ¼ 0.43, c ¼ 0.60) (c) and eccentricity
(R ¼ 0.66, c ¼ 0.84) (d), but in neither case can the corresponding H0 be rejected. See
the Supplementary Information for more details.

Figure 2 Deterministic and stochastic descriptions of the late-Pleistocene glacial

variability. a, Deterministic model results (red) with an obliquity-dependent threshold
(black) plotted over EOF1 (brown). b, Periodograms of the deterministic model results (red)
and EOF1 (brown). Concentrations of energy are centred on the 1/41-kyr obliquity

frequency and the 1/100-kyr glacial band; as well as combination tones at 1/70, 1/29 and

1/23 kyr. The approximate 95% confidence interval is indicated by the vertical bar on the

right. c, A realization of the stochastic model. d, Histogram of the time between

terminations, derived from many runs of the stochastic model. The observed duration

between terminations (triangles, using termination 3a not 3b) coincide with the dominant

80- and 120-kyr modes. e, Histogram of Rayleigh’s R from the stochastic model with the

observed obliquity value, R ¼ 0.70, indicated by the triangle.
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Reduce the dataset to 7 termination times

Look at the consistency of the phase of each component at terminations

They propose a random walk model of ice volume with a 100kyr period

Vt+1 = Vt + N(1, 2) and if Vt > 90, terminate

and estimate the distribution of the test statistics under H0



Our aim
Most simple models of the [...] glacial cycles have at least

four degrees of freedom [parameters], and some have as many
as twelve. Unsurprisingly [...this is] insufficient to distinguish
between the skill of the various models (Roe and Allen 1999)

Can we do any better?

Aim to demonstrate that a full Bayesian analysis is feasible
Use all the data, not just the termination times
Estimate parameters rather than using hand tuned models
Deal with noisy records and age-model uncertainty
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δ18O time-series

18O is heavier than 16O,
and so its circulation
behaviour varies with
temperature

Variation in the ratio
δ18O provides
information about
historic ocean
temperatures and ice
volume.

The raw measurements are of δ18O as a function of depth in a core: age
must be inferred. The data are noisy, often contain hiatuses, are
compacted etc.



Models
A phenomenological approach is taken: idealised simple models based on a few
hypothesised relationships that capture some aspect of the climate system.

Let Xt ∈ Rp be the state of the climate at time t. Typically X1,t = ice volume,
and other components many represent CO2, ocean temp, etc, or be left
undefined.

Oscillators synchronised on the solar forcing (Saltzman and Maasch 1991),

dX1 = − (X1 + X2 + vX3 + F (γP , γC , γE )) dt + σ1dW1

dX2 =
(
rX2 − pX3 − sX 2

2 − X 3
2

)
dt + σ2dW2

dX3 = −q (X1 + X3) dt + σ3dW3

Models with switches in the ice volume (Tziperman 2006)

dX1 = ((p0 − KX1) (1− αX2)− (s + F (γP , γC , γE ))) dt + σ1dW1

X2 : switches from 0 to 1 when X1 exceeds some threshold Xu

X2 : switches from 1 to 0 when X1 decreases below Xl

Models with switches dependent upon thresholds in the forcing (Parrenin and
Paillard 2012)

The prevailing view is that these should be distinguished between on the basis of
scientific principles, not data. Parameters fit by eye.
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Statistical model

These models are forced with some aspect of the solar forcing

dXt

dt
= g(Xt , θ) + F (t, γ)

where γ = (γP , γC , γE ) controls the combination of precession, obliquity
and eccentricity.

Embed these models within a statistical state space model relating
climate to observations

dXt = g(Xt , θ)dt + F (t, γ)dt + ΣdW

Yt = d + sX1,t + εt

where we have ’noised-up’ the models turning them into SDEs to account
for model discrepancies.
Typically these models have 10-15 parameters that need to be estimated
from the data.
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Bayesian basics

We use probability distributions π(θ) to represent our knowledge
about all quantities.

Use conditional probabilities to describe relationships/models, e.g.
I π(x |θ) = distribution of output x from your simulator when run using

parameter θ
I π(y |x) = model describing relationship between observations y and

simulator prediction x .

Use Bayes theorem to describe our knowledge about quantities of
interest

posterior = π(θ|y) =
π(y |θ)π(θ)

π(y)
∝ likelihood× prior

=

∫
π(y |x)π(x |θ)dx π(θ)∫∫
π(y |x)π(x |θ)π(θ)dxdθ

Added difficulty: π(x |θ) is usually unknown!
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Bayesian basics
The quantities we need to calculate are

Climate reconstruction (filtering)

π(x1:T |y1:T , θm,Mm) ∝ π(x1:T−1|y1:T−1, θ)π(xT |xT−1, θ)π(yT |xT )

where x1:T = (x1, . . . , xT )

Model calibration (marginal parameter posterior)

π(θm|y1:T ,Mm)

Model selection (model evidence/Bayes factors)

π(y1:T |Mm)

These are progressively more difficult to calculate, particularly as

π(Xt+1|Xt , θm,Mm)

is unknown.
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Filtering
Sequential Monte Carlo (SMC) methods are the natural approach for
finding the filtering distributions π(x1:T |y1:T , θ)

Represent all distributions by
collection of weighted particles
{x (i),w (i)}, e.g.,

p(x) ≈
∑

w
(i)
0 δx(i)(x)

Sequentially build up
approximation to π(x1:t |y1:t , θ)
one step at a time.

From Pierre Del Moral’s
webpage



SMC

At time t − 1, suppose (X n
1:t−1,W

n
t−1)Nn=1 is a collection of weighted

particles approximating π(X1:t−1|Y1:t−1, θ)

Sample ancestor particle index An
t−1 ∼ F(W n

t−1)

Propagate state particles X n
t ∼ qt(·|X

An
t−1

t−1 , θ,Yt)

Weight state particles

wn
t (X n

1:t) =
π(X n

t |X
An

t−1

t−1 , θ)π(Yt |X n
t )

qt(X n
t |X

An
t−1

t−1 , θ,Yt)
, W n

t =
wn
t (X n

1:t)∑
n w

n
t (X n

1:t)

We need π(Xt |Xt−1, θ) to cancel, but setting q = π can lead to extreme
degeneracy, as too many proposals are in regions of low-posterior
probability

We use an adapted Golightly and Wilkinson (2006) approach to nudge
the proposals towards the data.
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Parameter estimation
SMC provides an unbiased estimate of the marginal likelihood

π(y1:T |θ) = π(y1|θ)
T∏

t=2

π(yt |y1:t−1, θ)

when we substitute the estimate

π̃(yt |y1:t−1, θ) =
1

M

∑
wn
t

for π(yt |y1:t−1, θ).

We can then use these estimates in a pseudo marginal scheme such as
PMCMC (Andrieu et al. 2010) to estimate

π(θ, x1:T |y1:T )

and
π(θ|y1:T )
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We can then use these estimates in a pseudo marginal scheme such as
PMCMC (Andrieu et al. 2010) to estimate

π(θ, x1:T |y1:T )

and
π(θ|y1:T )



SMC2

We’ve found that SMC2 (Chopin et al. 2013) works well for our problem

Basic idea:

Introduce M parameter particles θ1, . . . , θM
For t = 1, . . . ,T

I For each θi run a particle filter targeting π(X1:t |y1:t , θi )
I Recalculate all the importance weights and resample if necessary

Note that to avoid particle degeneracy, it is still usually necessary to run a
PMCMC sampler targeting π(θ,X1:t |y1:t) at each resampling step.

This takes 3-4 days on a standard server, or 4-6 hours on a GPU with
1000 θ particles and 1000 X particles.
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SMC2 to sample from π(θ,X1:T |y1:T )

Assume that at stage t we have particles {θi ,X 1:Nx ,i
1:t }Nθ

i=1 with weights
{W i

t } that approximates π(θ,X1:t |y1:t)
For t = 1, . . . ,T :

If effective sample size is too small, resample by running a PMCMC
algorithm targeting π(θ,X1:t |y1:t)

Sample {θi ,X 1:Nx ,i
1:t+1 } by performing iteration t + 1 of the PF

Estimate π̂(yt+1|yt , θi )
Reweight by setting

w i
t+1 = w i

t π̂(yt+1|yt , θi )

and W i
t+1 =

w i
t+1∑

i w
i
t+1

In total, this requires the use of Nθ × Nx particles.



Results - simulation study
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Figure 3.6: Posterior results for SMC2 in the simulation study. Vertical lines indicate the val-
ues used to generate the data. Dashed line shows the prior distribution.

68



Results - simulation study

γ = (γP , γE , γC ) controls the relative contribution of the three
components of the orbital variations in the forcing.
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Bayes factors
Consider comparing two models, M1 and M2.

Bayes factors (BF) are the Bayesian approach to model selection.

P(M1|D)

P(M2|D)
=
π(M1)

π(M2)

P(D|M1)

P(D|M2)

posterior odds = prior odds × Bayes factor

where

B12 =
P(D|M1)

P(D|M2)
=

∫
π(θ1|M1)P (D|θ1,M1)dθ1∫
π(θ2|M2)P(D|θ2,M2)dθ2

B12 range P(M1|D) range Interpretation

1–3 0.5-0.75 Barely worth mentioning
3–10 0.75 - 0.91 Substantial
10–30 0.91-0.97 Strong
30–100 0.97- 0.99 Very strong
> 100 0.99-1 Decisive
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Model selection

To compare models M1 and M2, we want to find the Bayes factor

B12 =
π(y1:T |M1)

π(y1:T |M2)

Values of B12 > 100 indicate ‘decisive’ evidence in favour of M1.

SMC2 can be used to provide an unbiased estimate of

π(y1:T |M)

for any model.

However, the variance of our estimates are typically an order of
magnitude, so don’t consider B12 to be large until we see values > 1000.
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Results

We generate simulated data from SM91, using both the astronomically
forced and unforced version of the model

Model Evidence π(y1:N |Mm)
SM91-unforced SM91-forced

SM91 Forced 5.6× 1028 1.4× 1041

Unforced 1.1× 1030 2.4× 1018

T06 Forced 3.6× 1020 2.6× 1030

Unforced 1.1× 1022 2.9× 1014

PP12 Forced 2.8× 108 2.1× 1018

Strongest evidence for the true model found each time

Unforced model is special case of forced model with 3 parameters set
to zero, so we expect it to be harder to select the unforced model.

For the data generated from the forced model, the forced version of
the wrong model is preferred.



Results: ODP677 - δ18O from foraminifera
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We use the ODP677 stack (a composite record from multiple cores),
which has been dated by two authors:

Lisiecki and Raymo (2005) used orbital tuning

Huybers 2007 used a depth-derived age model (no orbital tuning)



Results: ODP677

Model Evidence
ODP677: H07(unforced) ODP677: LR04(forced)

SM91 Forced 4.0× 1024 1.1× 1028

Unforced 3.5× 1026 1.6× 1018

T06 Forced 3.3× 1025 4.5× 1029

Unforced 1.7× 1028 3.3× 1021

PP12 Forced 1.5× 1022 1.8× 1034

The dating method applied changes the answer

Using Huybers’ non-orbitally tuned data, we find evidence in favour of the
unforced T06 model.

Using Lisiecki’s orbitally tuned data, we find strong evidence for PP12 a
tuned model (PP12)

Moreover, orbitally tuned data leads us to strongly prefer the orbitally tuned
version of each model (and vice versa)

The age model used to date the stack (often taken as a given) has a strong

effect on model selection conclusions
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Alternative approaches

ABC

Instead of approximating the likelihood (as in SMC2), we try to find
θ that give good match between observed and simulated data

Allows us to calibrate on carefully chosen aspects of the system
(period, volatility, etc), rather than just on the data.

The loss of information from the ABC approximation is large, so the
posteriors are usually much wider than with SMC2.
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Figure 4.2: Marginal posterior distributions of the parameters of CR14-a in the ABC-PRC

model comparison simulation study. Vertical lines show the true values. Dashed
lines show the prior distributions.
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Alternative approaches

Instead of using the particle filter (SMC) to do the filtering, we would like
to use the unscented Kalman filter (UKF) or EnKF.

Assumes π(xt |y1:t) is Gaussian and uses Sigma-point particles to
estimate mean and variance.

Much cheaper than SMC or MCMC approaches.

We found the UKF works well for filtering (location), less well for
parameter estimation, and terribly for model selection.
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Figure 3: Ignore the axes. Plots of the log-likelihood vs G for the non-linear model for
four di↵erent simulated data-sequences. Red curve is the particle filter estimate with
N = 104 particles. Black curve is the UKF estimate with  = 0.
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Figure 4: Ignore the axes. Plots of the log-likelihood vs W (top row) or V (bottom row)
for the non-linear model. Red curve is the particle filter estimate with N = 104 particles.
Black curve is the UKF estimate with  = 0.

6

A further discredited alternative is the idea of augmenting the state vector
with the parameter, and inferring the joint distribution using the particle
filter.
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Age model

Can we also quantify chronological uncertainty?

Target
π(θ,T1:N ,X1:N |y1:N)

where T1:N are the times of the observation Y1:N , which were previously
taken as given.

Propose a simple age model for sediment accumulation:
Let H be the depth in the core, with HN = 0 at TN = 0

dH = −µsdT + σdW

Slices are then taken through the core at specific depths H1, . . . ,HN .
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Age Model

Begin by considering a simple model for sediment (S) accumulation:

dS = µsdT + �sdW

mean sediment rate is constant, stochastic contributions account for periods of errosion
etc. We assume that a sediment core is constructed from this model. To model time
variation according to core depth we also need to consider how a core is sampled:
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D
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Figure 1: Demonstration of core sampling. Line represesents change in sediment over
time, horizontal lines are sampling depths, and vertical lines are the sampled times.

Firstly, we know that the top of the core (which we will assume is the final observation)
is sampled in the present, such that TM = 0 at HM = 0 (where depth is represented by
H). The change in depth is the negative of the change in sediment accumulation:

dH = �µsdT + �sdW

Slices are then taken through the core at specific depths. According to our depth model
there may have been multiple times in the past at which this depth was reached. We are
interested in the most recent time; if sediment accumulated beyond this point before that
time then the information has been eroded away. In other words we have a first passage
time problem, which is solvable for our linear model. Given depth Hm the distribution
of the first passage time of Hm�1 is inverse Gaussian:

Tm�1 ⇠ IG

✓
Tm � Hm�1 � Hm

µs

,
(Hm�1 � Hm)2

�2
s

◆

At this point we should also consider accounting for compaction. Compaction is often
modelled as the expulsion of water due to the load of the above sediment. This can

2

There may have been multiple times when a certain depth was reached: the
most recent time is the age of that slice, i.e., it is a first passage problem.
Given (Tm,Hm), then Tm−1 is the first passage time of Hm−1 with

Tm−1|Tm ∼ IG

(
Tm −

Hm−1 − Hm

µs
,

(Hm−1 − Hm)2

σ2
s

)

We then add a model to account for compaction in the core, and apply Bayes

theorem to find π(Tm|Tm−1) so that we can run the model forward in time
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theorem to find π(Tm|Tm−1) so that we can run the model forward in time



Simulation study results (n = 321) - age vs depth
Dots = truth, black line = estimate, grey = 95% CI

We use simulated data from the CR12 model, with parameter values, and
initial conditions comparable to real data. We consider the period 780 kyr
to the present.
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Simulation study results - age vs depth (trend removed)
Dots = truth, black line = estimate, grey = 95% CI
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Simulation study results - climate reconstruction
Dots = truth, black line = estimate, grey = 95% CI
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Simulation study results - parameter estimation
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We’ve estimated 17 parameters, the age depth relationship, and the
hidden state trajectory from 321 observations.



Results for ODP846 and ODP677 cores

Cores contain markers for the Brunhes-Matuyama magnetic reversal
at 780kyr, allowing us to give a strong prior for T1 (±2kyr).

Date estimates provided by two groups
I Lisiekci and Raymo (LR04): graphical correlation of 57 cores. The

stack is then orbitally tuned
I Huybers and Wunsch 2004 (HW04) use a depth-derived age model.

They decompact each core, fit a linear age model, then average over
many several realisations and to get a distribution for 17 age control
points(ACPS) , such as terminations. Average ages for the the ACP
events are then found, and a linear age model is fitted between
consecutive ACPs



Results for ODP846 - age vs depth
Black = posterior mean, grey = 95%CI, red = H07, blue = LR04
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Our results come with uncertainty bounds (HW04 estimate accuracy of
±9kyr for all ages). Moreover, the full joint distribution for all quantities
is available if required.



Results for ODP677 - age vs depth (trend removed)
Grey = 95%HDR for observation ages, red = H07, blue = LR04
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Note that these age estimates now depend explicitly on the model CR12.



Results for ODP846 - age vs depth (trend removed)
Grey = 95%HDR for observation ages, red = H07, blue = LR04
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Climate reconstructions that account for age uncertainty
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95% HDRs for the normalised ice volume over time for ODP677 (top)
and ODP846 (bottom). LR04 (blue) H07 (red).



Results for ODP846 - parameter estimates
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Bayes factors
Advantages:

Provide evidence in favour of a model
Provides an automatic form of Occam’s razor.
Do not require models to be nested
Asymptotic consistency

Disadvantages

Hard to calculate
Sensitive to choice of prior
Integrated likelihood may not be desirable treatment

I believe the statistical estimates, but what is the correct scientific
interpretation of a BF of 109?
Bayes factors are an M-closed tool - this is an M-open problem.

None of the models are correct.
Are the estimates of the relevant astronomical forcing meaningful?
Is the phenomenological motivation of the preferred model relevant?
Does model selection give any insight into the true dynamics? How
complex must a model be to do so?
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Extensions

Latent force models

Grey box models

Using GCMs



Conclusions

The data do contain enough information to partially discriminate
between models

However, the results are very sensitive to the age model applied to
the data.

I If we don’t do joint estimation of all uncertain quantities, the results
are over confident and can lead to contradictory conclusions.

Methodology and computer power now sufficiently advanced that we
can tackle the joint reconstruction, age model, and model selection
problems in a fully Bayesian manner

I but it remains computationally expensive. The age model results take
∼ 1 week to compute per model.

Thank you for listening!
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