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Glacial-Interglacial cycle

We're currently in the quaternary ice age
Last glacial period ended about 10,000 years ago (start of the Holocene)
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Glacial-Interglacial cycle

Glacial-interglacial cycles over the past 450,000 years
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Cycle characterised by saw-toothed behaviour: slow accumulation and
rapid terminations.

Approx 100 kyr period between cycles, but previously a 40 kyr period was
observed.



Milankovitch theory
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Eccentricity
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Solar Forcing
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Eccentricity: orbital departure from a circle, controls duration of the seasons
Obliquity: axial tilt, controls amplitude of seasonal cycle

Precession: variation in Earth’s axis of rotation, affects difference between
seasons

Insolation at 65° north: combination of these three terms, considered important.



100kyr problem

Spectral analysis suggest the climate response has a period of ~ 100kyr,
but the orbital forcing at this period is small.

Eccentricity has 95 and 125kyr periods, but accounts for only 2% of the
variation compared to the shifts caused by obliquity (41kyr period) and
precession (21kyr period).



100kyr problem

Spectral analysis suggest the climate response has a period of ~ 100kyr,
but the orbital forcing at this period is small.

Eccentricity has 95 and 125kyr periods, but accounts for only 2% of the
variation compared to the shifts caused by obliquity (41kyr period) and
precession (21kyr period).
Explanatory hypotheses
@ Earth's climate may have a natural frequency of 100kyr caused by
natural feedback processes
@ 100kyr eccentricity cycle acts as a " pacemaker” to the system,
amplifying the effect of precession and obliquity at key moments,
triggering a termination.
@ 21kyr precession cycles are solely responsible, with ice building up
over several precession cycles, only melting after four or five such
cycles.



Current practice

Climate scientists want to use palaeo-data to gather evidence for different
hypotheses. They typically want to
e Compare models (and estimate parameters)

e Compare effects of different aspects of the solar forcing (all
components have been argued for)

@ Produce climate reconstructions (temperature chronologies)



Current practice

Climate scientists want to use palaeo-data to gather evidence for different
hypotheses. They typically want to
e Compare models (and estimate parameters)

e Compare effects of different aspects of the solar forcing (all
components have been argued for)

@ Produce climate reconstructions (temperature chronologies)

° ...
Current approaches tend to be statistically naive
@ Models fit by eye,

@ Model selection rarely tackled in a statistical manner, and when it is,
questionable approaches are taken.



Example

Huybers and Wunsch 2005 argue that obliquity is the primary driver of
glacial cycle
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@ Reduce the dataset to 7 termination times

@ Look at the consistency of the phase of each component at terminations

@ They propose a random walk model of ice volume with a 100kyr period
Viyr = Ve + N(1,2) and if V; > 90, terminate

and estimate the distribution of the test statistics under Hg



Our aim

Most simple models of the [...] glacial cycles have at least
four degrees of freedom [parameters|, and some have as many
as twelve. Unsurprisingly [...this is] insufficient to distinguish
between the skill of the various models (Roe and Allen 1999)
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between the skill of the various models (Roe and Allen 1999)

Can we do any better?
@ Aim to demonstrate that a full Bayesian analysis is feasible
@ Use all the data, not just the termination times
o Estimate parameters rather than using hand tuned models
@ Deal with noisy records and age-model uncertainty



Our aim

Most simple models of the [...] glacial cycles have at least
four degrees of freedom [parameters|, and some have as many
as twelve. Unsurprisingly [...this is] insufficient to distinguish
between the skill of the various models (Roe and Allen 1999)

Can we do any better?
@ Aim to demonstrate that a full Bayesian analysis is feasible
@ Use all the data, not just the termination times
o Estimate parameters rather than using hand tuned models
@ Deal with noisy records and age-model uncertainty
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5180 time-series

180 is heavier than 190,
and so its circulation
behaviour varies with
temperature

Variation in the ratio
5180 provides
information about
historic ocean
temperatures and ice
volume.

must be inferred. The data are noisy, often contain hiatuses, are
compacted etc.



Models

A phenomenological approach is taken: idealised simple models based on a few
hypothesised relationships that capture some aspect of the climate system.

Let X; € RP be the state of the climate at time t. Typically X; ; = ice volume,
and other components many represent CO,, ocean temp, etc, or be left
undefined.
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A phenomenological approach is taken: idealised simple models based on a few
hypothesised relationships that capture some aspect of the climate system.

Let X; € RP be the state of the climate at time t. Typically X; ; = ice volume,
and other components many represent CO,, ocean temp, etc, or be left
undefined.

@ Oscillators synchronised on the solar forcing (Saltzman and Maasch 1991),

dXi, = —(Xi+ Xo+ vXs + F(yp,7yc,ve)) dt + o1dW4
dX, = (er X5 — sXZ — X23) dt + o2dWs
dXs = —q(Xi+ X3)dt+ o3dWs
@ Models with switches in the ice volume (Tziperman 2006)
dXi = ((po — KX1) (1 = aX2) = (s + F(vp,7c,7E))) dt + 01dWA
X2 switches from 0 to 1 when X; exceeds some threshold X,
X switches from 1 to 0 when X; decreases below X

@ Models with switches dependent upon thresholds in the forcing (Parrenin and
Paillard 2012)



Models

A phenomenological approach is taken: idealised simple models based on a few
hypothesised relationships that capture some aspect of the climate system.

Let X; € RP be the state of the climate at time t. Typically X; ; = ice volume,
and other components many represent CO,, ocean temp, etc, or be left
undefined.

@ Oscillators synchronised on the solar forcing (Saltzman and Maasch 1991),

dXi, = —(Xi+ Xo+ vXs + F(yp,7yc,ve)) dt + o1dW4
dX, = (er X5 — sXZ — X23) dt + o2dWs
dXs = —q(Xi+ X3)dt+ o3dWs
@ Models with switches in the ice volume (Tziperman 2006)
dXi = ((po — KX1) (1 = aX2) = (s + F(vp,7c,7E))) dt + 01dWA
X2 switches from 0 to 1 when X; exceeds some threshold X,
X switches from 1 to 0 when X; decreases below X

@ Models with switches dependent upon thresholds in the forcing (Parrenin and
Paillard 2012)

The prevailing view is that these should be distinguished between on the basis of
scientific principles, not data. Parameters fit by eye.



Statistical model
These models are forced with some aspect of the solar forcing

dX
Lt g%, 0) + F(t.7)
t
where v = (vp, ¢, 7e) controls the combination of precession, obliquity

and eccentricity.



Statistical model
These models are forced with some aspect of the solar forcing

X,

—t = g(X F
L = g(X,0) + F(£,)

where v = (vp, ¢, 7e) controls the combination of precession, obliquity
and eccentricity.

Embed these models within a statistical state space model relating
climate to observations

Yt =d+ 5)(171L + €+

where we have 'noised-up’ the models turning them into SDEs to account
for model discrepancies.

Typically these models have 10-15 parameters that need to be estimated
from the data.
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Bayesian basics

@ We use probability distributions () to represent our knowledge
about all quantities.

e Use conditional probabilities to describe relationships/models, e.g.

» m(x|6) = distribution of output x from your simulator when run using
parameter 6

» m(y|x) = model describing relationship between observations y and
simulator prediction x.

@ Use Bayes theorem to describe our knowledge about quantities of
interest

(y[0)m(6)
(y)

[ r(ylx)m(x]0)dx 7(0)
= RO

posterior = 7(f|y) =  likelihood X prior

Added difficulty: 7(x|@) is usually unknown!



Bayesian basics
The quantities we need to calculate are

e Climate reconstruction (filtering)

(X1 71y1:7, Omy Mm) o< m(x1.7-1|y1: -1, O)m(x7|x7-1, 0) (Y7 |XT)

where x1.7 = (x1,...,xT)
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Bayesian basics
The quantities we need to calculate are

e Climate reconstruction (filtering)

(X1 71y1:7, Omy Mm) o< m(x1.7-1|y1: -1, O)m(x7|x7-1, 0) (Y7 |XT)

where x1.7 = (x1,...,xT)
@ Model calibration (marginal parameter posterior)

7T(¢9m|)/1:T, Mm)

@ Model selection (model evidence/Bayes factors)

7T(yl:T|-/\/lm)

These are progressively more difficult to calculate, particularly as
ﬂ.(XH-l‘Xfa ema Mm)

is unknown.



Filtering
Sequential Monte Carlo (SMC) methods are the natural approach for
finding the filtering distributions 7(x1.7|y1.7,0)

@ Represent all distributions by
collection of weighted particles .y

{x(i), W(i)}, e.g., " B \\

~ 3 w80 (x
o ///m/

@ Sequentially build up
approximation to 7(x1:¢|y1:t, 0)
one step at a time. _r"f \-\_. --f--""’_\u.




SMC

At time t — 1, suppose (X{,_;, W/ ;)N is a collection of weighted
particles approximating m(X1.¢—1| Y1:¢-1,0)

@ Sample ancestor particle index Af_; ~ F(W{ ;)
@ Propagate state particles X/ ~ qt(~|Xit1’1, 0, Y:)

@ Weight state particles

n 'A;’_ n n n
Wn(xn ) _ Tr(Xt ‘Xt—l lvo)ﬂ(ytp(t ) W — M
o xox 0y CXwi(XT)
qt( t‘ t—1 »Y t) n 1:t



SMC

At time t — 1, suppose (X{,_;, W/ ;)N is a collection of weighted
particles approximating m(X1.¢—1| Y1:¢-1,0)

@ Sample ancestor particle index Af_; ~ F(W{ ;)
@ Propagate state particles X/ ~ qt(~|Xit1’1, 0, Y:)
@ Weight state particles
n ‘A?—l n
(X7 | X2 O)m(Ye| XY)

w (X{e) = Ar ) W =
qt(Xg‘thtfl797 Yt)

w{ (XTe)
Zn W{T(Xft)

We need 7(X¢|X:—1,0) to cancel, but setting ¢ = 7 can lead to extreme
degeneracy, as too many proposals are in regions of low-posterior
probability

We use an adapted Golightly and Wilkinson (2006) approach to nudge
the proposals towards the data.



Parameter estimation
SMC provides an unbiased estimate of the marginal likelihood

T

7T(ylz'l'w) = 77()/1|9) H 7T(yt|y1:t717 9)
t=2

when we substitute the estimate

y 1 n
7t (yelyre—1,0) = M Z Wi

for w(ye|y1:t-1,0).



Parameter estimation
SMC provides an unbiased estimate of the marginal likelihood

T
7T(ylz'l'w) = 77()/1|0) H 7T(yt|y1:t717 9)

t=2

when we substitute the estimate

y 1 n
7t (yelyre—1,0) = M Z Wi

for w(ye|y1:t-1,0).
We can then use these estimates in a pseudo marginal scheme such as
PMCMC (Andrieu et al. 2010) to estimate

7r(9y Xl:T|_y1:T)

and
77(9\)/17)



SMC?

We've found that SMC2 (Chopin et al. 2013) works well for our problem
Basic idea:
@ Introduce M parameter particles 01,...,0y
@ Fort=1,..., T
» For each 6, run a particle filter targeting 7(X1.¢|y1:¢, 0;)
» Recalculate all the importance weights and resample if necessary
Note that to avoid particle degeneracy, it is still usually necessary to run a
PMCMC sampler targeting (60, X1.¢|y1.+) at each resampling step.



SMC?

We've found that SMC2 (Chopin et al. 2013) works well for our problem

Basic idea:
@ Introduce M parameter particles 01,...,0y
@ Fort=1,..., T

» For each 6, run a particle filter targeting 7(X1.¢|y1:¢, 0;)
» Recalculate all the importance weights and resample if necessary

Note that to avoid particle degeneracy, it is still usually necessary to run a
PMCMC sampler targeting (60, X1.¢|y1.+) at each resampling step.

This takes 3-4 days on a standard server, or 4-6 hours on a GPU with
1000 6 particles and 1000 X particles.



SMC? to sample from (6, X1.7|y1.7)

Assume that at stage t we have particles {07, X! Nrd }f\i’l with weights
{W}} that approximates (6, X1.¢|y1.¢)
Fort=1,...,T:

o If effective sample size is too small, resample by running a PMCMC
algorithm targeting 7(6, X1.¢|y1:t)

e Sample {0’ XlltN_:l’} by performing iteration t + 1 of the PF
o Estimate 7(yer1lys,0)

@ Reweight by setting

Wt+1 = Wt A(Ves1lye, 0 )

. wi
and W/, , =
t+1 2 Wi

In total, this requires the use of Ny x N, particles.



Results - simulation
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Results - simulation study

v = (7vp,7E,Yc) controls the relative contribution of the three
components of the orbital variations in the forcing.
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Bayes factors
Consider comparing two models, M7 and M.
Bayes factors (BF) are the Bayesian approach to model selection.
P(M;|D) _ m(Mi) P(D|M;)
P(Mz|D)  7(M2) P(D|M:)
posterior odds = prior odds x Bayes factor

where

P(D|IM1) [ w(61|M1)P (D61, M1)d6;
P(DIMy) [ m(62[M2)P(D]|b2, M2)d0,

B =



Bayes factors

Consider comparing two models, M7 and M.

Bayes factors (BF) are the Bayesian approach to model selection.

P(Mi|D) _ n(My) P(D|M,)

P(Mz|D)  7(M2) P(D|M:)
posterior odds = prior odds x Bayes factor

where
By, P(D|M;) _ fw(ell/\/ll)IP’ (D61, M1)db1

P(DIMz) [ w(62] M2)P(D|62, M>2)db-
Bijy range P(M;]|D) range Interpretation
1-3 0.5-0.75 Barely worth mentioning
3-10 0.75-0.91 Substantial
10-30 0.91-0.97 Strong
30-100 0.97- 0.99 Very strong

> 100 0.99-1 Decisive




Model selection

To compare models M; and M5, we want to find the Bayes factor

_ m(y1.7|M1)
(y1: 7| M2)

Values of Bis > 100 indicate ‘decisive’ evidence in favour of Mj.

B>



Model selection

To compare models M; and M5, we want to find the Bayes factor

_ m(yur|Mi)
m(y1.7|M2)
Values of Bis > 100 indicate ‘decisive’ evidence in favour of Mj.

B>

SMC? can be used to provide an unbiased estimate of

m(y1.7IM)
for any model.

However, the variance of our estimates are typically an order of
magnitude, so don't consider By to be large until we see values > 1000.



Results

We generate simulated data from SM91, using both the astronomically
forced and unforced version of the model

Model Evidence 7(y1.n| M)
SMO91-unforced SM91-forced
SM91  Forced 5.6 x 10% 1.4 x 10*1
Unforced 1.1 x 10%° 2.4 x 108
T06 Forced 3.6 x 10% 2.6 x 10%0
Unforced 1.1 x 10% 2.9 x 10
PP12  Forced 2.8 x 108 2.1 x 1018

@ Strongest evidence for the true model found each time

@ Unforced model is special case of forced model with 3 parameters set
to zero, so we expect it to be harder to select the unforced model.

@ For the data generated from the forced model, the forced version of
the wrong model is preferred.



Results: ODP677 - 680 from foraminifera

800

Time (kyr BP)

We use the ODP677 stack (a composite record from multiple cores),
which has been dated by two authors:

o Lisiecki and Raymo (2005) used orbital tuning
@ Huybers 2007 used a depth-derived age model (no orbital tuning)



Results: ODP677

Model Evidence
ODP677: HO7(unforced) ODP677: LRO4(forced)
SM91  Forced 4.0 x 10% 1.1 x 10%
Unforced 3.5 x 10% 1.6 x 1018
T06 Forced 3.3 x10% 4.5 x 10%°
Unforced 1.7 x 108 3.3 x 102
PP12  Forced 1.5 x 10?2 1.8 x 103

The dating method applied changes the answer

@ Using Huybers' non-orbitally tuned data, we find evidence in favour of the
unforced T06 model.

@ Using Lisiecki's orbitally tuned data, we find strong evidence for PP12 a
tuned model (PP12)

Moreover, orbitally tuned data leads us to strongly prefer the orbitally tuned
version of each model (and vice versa)



Results: ODP677

Model Evidence
ODP677: HO7(unforced) ODP677: LRO4(forced)
SM91  Forced 4.0 x 10% 1.1 x 10%
Unforced 3.5 x 10% 1.6 x 1018
T06 Forced 3.3 x10% 4.5 x 10%°
Unforced 1.7 x 108 3.3 x 102
PP12  Forced 1.5 x 10?2 1.8 x 103

The dating method applied changes the answer

@ Using Huybers' non-orbitally tuned data, we find evidence in favour of the
unforced T06 model.

@ Using Lisiecki's orbitally tuned data, we find strong evidence for PP12 a
tuned model (PP12)

Moreover, orbitally tuned data leads us to strongly prefer the orbitally tuned
version of each model (and vice versa)

The age model used to date the stack (often taken as a given) has a strong
effect on model selection conclusions



Alternative approaches

ABC
o Instead of approximating the likelihood (as in SMC?), we try to find
0 that give good match between observed and simulated data
@ Allows us to calibrate on carefully chosen aspects of the system
(period, volatility, etc), rather than just on the data.

@ The loss of information from the ABC approximation is large, so the
posteriors are usually much wider than with SMC?.
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Alternative approaches
Instead of using the particle filter (SMC) to do the filtering, we would like
to use the unscented Kalman filter (UKF) or EnKF.
@ Assumes m(x¢|y1:¢) is Gaussian and uses Sigma-point particles to
estimate mean and variance.
@ Much cheaper than SMC or MCMC approaches.

e We found the UKF works well for filtering (location), less well for
parameter estimation, and terribly for model selection.
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Alternative approaches
Instead of using the particle filter (SMC) to do the filtering, we would like
to use the unscented Kalman filter (UKF) or EnKF.
@ Assumes m(x¢|y1:¢) is Gaussian and uses Sigma-point particles to
estimate mean and variance.
@ Much cheaper than SMC or MCMC approaches.

e We found the UKF works well for filtering (location), less well for
parameter estimation, and terribly for model selection.
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A further discredited alternative is the idea of augmenting the state vector
with the parameter, and inferring the joint distribution using the particle
filter.
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Can we also quantify chronological uncertainty?
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where Ty.p are the times of the observation Yi.n, which were previously
taken as given.



Age model

Can we also quantify chronological uncertainty?

Target
7r(9, 7—1:N7 Xl:N|y1:N)

where Ty.p are the times of the observation Yi.n, which were previously
taken as given.

Propose a simple age model for sediment accumulation:
Let H be the depth in the core, with Hy =0 at Ty =0

dH = —pdT + odW

Slices are then taken through the core at specific depths Hy, ..., Hy.



Depth (m)

Time (kyr 8P)

There may have been multiple times when a certain depth was reached: the
most recent time is the age of that slice, i.e., it is a first passage problem.
Given (T, Hpy), then T,,_q is the first passage time of H,_1 with

_ _ 2
Tmfl‘Tm ~ 1G (Tm - Hmil Hmv (Hm71 H"") )

2
Hs Os




Depth (m)

Time (kyr 8P)

There may have been multiple times when a certain depth was reached: the
most recent time is the age of that slice, i.e., it is a first passage problem.
Given (T, Hpy), then T,,_q is the first passage time of H,_1 with

Hmfl - Hm (Hmfl - Hm)z)

Tim-1|Tm ~ IG (Tm— , 5
Hs Os

We then add a model to account for compaction in the core, and apply Bayes
theorem to find 7( Tp,| Trn—1) so that we can run the model forward in time



Simulation study results (n = 321) - age vs depth

Dots = truth, black line = estimate, grey = 95% Cl
We use simulated data from the CR12 model, with parameter values, and
initial conditions comparable to real data. We consider the period 780 kyr
to the present.
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Simulation study results - age vs depth (trend removed)
Dots = truth, black line = estimate, grey = 95% Cl

Time (drift removed, kyr)




Simulation study results - climate reconstruction
Dots = truth, black line = estimate, grey = 95% Cl




Simulation study results - parameter estimation

We've estimated 17 parameters, the age depth relationship, and the
hidden state trajectory from 321 observations.



Results for ODP846 and ODP677 cores

@ Cores contain markers for the Brunhes-Matuyama magnetic reversal
at 780kyr, allowing us to give a strong prior for Ty (32kyr).

@ Date estimates provided by two groups

» Lisiekci and Raymo (LR04): graphical correlation of 57 cores. The
stack is then orbitally tuned

» Huybers and Wunsch 2004 (HWO04) use a depth-derived age model.
They decompact each core, fit a linear age model, then average over
many several realisations and to get a distribution for 17 age control
points(ACPS) , such as terminations. Average ages for the the ACP
events are then found, and a linear age model is fitted between
consecutive ACPs



Results for ODP846 - age vs depth

Black = posterior mean, grey = 95%Cl, red = H07, blue = LR04
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Our results come with uncertainty bounds (HWO04 estimate accuracy of
+9kyr for all ages). Moreover, the full joint distribution for all quantities
is available if required.



Results for ODP677 - age vs depth (trend removed)
Grey = 95%HDR for observation ages, red = H07, blue = LR04
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Note that these age estimates now depend explicitly on the model CR12.



Results for ODP846 - age vs depth (trend removed)
Grey = 95%HDR for observation ages, red = H07, blue = LR04
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Climate reconstructions that account for age uncertainty

0 1 2 3

Ice Volume Anomaly

Ice Volume Anomaly

800 600 400 200 0
Time (kya)

95% HDRs for the normalised ice volume over time for ODP677 (top)
and ODP846 (bottom). LR04 (blue) HO7 (red).



Results for ODP846 - parameter estimates




Bayes factors

Advantages:
@ Provide evidence in favour of a model
@ Provides an automatic form of Occam’s razor.
@ Do not require models to be nested
@ Asymptotic consistency

Disadvantages

o Hard to calculate
@ Sensitive to choice of prior
o Integrated likelihood may not be desirable treatment
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Bayes factors
Advantages:
@ Provide evidence in favour of a model
@ Provides an automatic form of Occam’s razor.
@ Do not require models to be nested
@ Asymptotic consistency
Disadvantages
o Hard to calculate
@ Sensitive to choice of prior
o Integrated likelihood may not be desirable treatment
| believe the statistical estimates, but what is the correct scientific
interpretation of a BF of 10°?
Bayes factors are an M-closed tool - this is an M-open problem.
@ None of the models are correct.
@ Are the estimates of the relevant astronomical forcing meaningful?
@ Is the phenomenological motivation of the preferred model relevant?
Does model selection give any insight into the true dynamics? How
complex must a model be to do so?



Extensions

@ Latent force models
@ Grey box models
@ Using GCMs



Conclusions

@ The data do contain enough information to partially discriminate
between models
@ However, the results are very sensitive to the age model applied to
the data.
» If we don’t do joint estimation of all uncertain quantities, the results
are over confident and can lead to contradictory conclusions.
@ Methodology and computer power now sufficiently advanced that we

can tackle the joint reconstruction, age model, and model selection
problems in a fully Bayesian manner

» but it remains computationally expensive. The age model results take
~ 1 week to compute per model.
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@ The data do contain enough information to partially discriminate
between models
@ However, the results are very sensitive to the age model applied to
the data.
» If we don’t do joint estimation of all uncertain quantities, the results
are over confident and can lead to contradictory conclusions.

@ Methodology and computer power now sufficiently advanced that we
can tackle the joint reconstruction, age model, and model selection
problems in a fully Bayesian manner

» but it remains computationally expensive. The age model results take
~ 1 week to compute per model.

Thank you for listening!
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