What drives the glacial-interglacial cycle? A Bayesian approach to a long-standing model selection problem

Jake Carson

Michel Crucifix Simon Preston
Richard Wilkinson

University of Sheffield
Southampton 2019

Glacial-Interglacial cycle

We're currently in the quaternary ice age
Last glacial period ended about 10,000 years ago (start of the Holocene)

Glacial-Interglacial cycle

Glacial-interglacial cycles over the past 450,000 years

Cycle characterised by saw-toothed behaviour: slow accumulation and rapid terminations.
Approx 100 kyr period between cycles, but previously a 40 kyr period was observed.

Milankovitch theory

Eccentricity: orbital departure from a circle, controls duration of the seasons Obliquity: axial tilt, controls amplitude of seasonal cycle Precession: variation in Earth's axis of rotation, affects difference between seasons Insolation at 65° north: combination of these three terms, considered important.

100kyr problem

Spectral analysis suggest the climate response has a period of $\approx 100 \mathrm{kyr}$ ， but the orbital forcing at this period is small．

Eccentricity has 95 and 125 kyr periods，but accounts for only 2% of the variation compared to the shifts caused by obliquity（41kyr period）and precession（21kyr period）．

100kyr problem

Spectral analysis suggest the climate response has a period of $\approx 100 \mathrm{kyr}$, but the orbital forcing at this period is small.

Eccentricity has 95 and 125 kyr periods, but accounts for only 2% of the variation compared to the shifts caused by obliquity (41kyr period) and precession (21kyr period).

Explanatory hypotheses

- Earth's climate may have a natural frequency of 100 kyr caused by natural feedback processes
- 100kyr eccentricity cycle acts as a "pacemaker" to the system, amplifying the effect of precession and obliquity at key moments, triggering a termination.
- 21 kyr precession cycles are solely responsible, with ice building up over several precession cycles, only melting after four or five such cycles.

Current practice

Climate scientists want to use palaeo－data to gather evidence for different hypotheses．They typically want to
－Compare models（and estimate parameters）
－Compare effects of different aspects of the solar forcing（all components have been argued for）
－Produce climate reconstructions（temperature chronologies）
－．．．

Current practice

Climate scientists want to use palaeo-data to gather evidence for different hypotheses. They typically want to

- Compare models (and estimate parameters)
- Compare effects of different aspects of the solar forcing (all components have been argued for)
- Produce climate reconstructions (temperature chronologies)
- ...

Current approaches tend to be statistically naive

- Models fit by eye,
- Model selection rarely tackled in a statistical manner, and when it is, questionable approaches are taken.

Example

Huybers and Wunsch 2005 argue that obliquity is the primary driver of glacial cycle

- Reduce the dataset to 7 termination times
- Look at the consistency of the phase of each component at terminations
- They propose a random walk model of ice volume with a 100 kyr period

$$
V_{t+1}=V_{t}+N(1,2) \text { and if } V_{t}>90 \text {, terminate }
$$

and estimate the distribution of the test statistics under H_{0}

Our aim

Most simple models of the [..] glacial cycles have at least four degrees of freedom [parameters], and some have as many as twelve. Unsurprisingly [...this is] insufficient to distinguish between the skill of the various models (Roe and Allen 1999)

Our aim

Most simple models of the [..] glacial cycles have at least four degrees of freedom [parameters], and some have as many as twelve. Unsurprisingly [...this is] insufficient to distinguish between the skill of the various models (Roe and Allen 1999)

Can we do any better?

- Aim to demonstrate that a full Bayesian analysis is feasible
- Use all the data, not just the termination times
- Estimate parameters rather than using hand tuned models
- Deal with noisy records and age-model uncertainty

Our aim

Most simple models of the [..] glacial cycles have at least four degrees of freedom [parameters], and some have as many as twelve. Unsurprisingly [...this is] insufficient to distinguish between the skill of the various models (Roe and Allen 1999)

Can we do any better?

- Aim to demonstrate that a full Bayesian analysis is feasible
- Use all the data, not just the termination times
- Estimate parameters rather than using hand tuned models
- Deal with noisy records and age-model uncertainty
(a)
(b)
(c)
(d)
(e)

Inverse Problem

$\delta^{18} \mathrm{O}$ time-series

${ }^{18} \mathrm{O}$ is heavier than ${ }^{16} \mathrm{O}$, and so its circulation behaviour varies with temperature

Variation in the ratio $\delta^{18} O$ provides information about historic ocean temperatures and ice volume.

The raw measurements are of $\delta^{18} \mathrm{O}$ as a function of depth in a core: age must be inferred. The data are noisy, often contain hiatuses, are compacted etc.

Models

A phenomenological approach is taken: idealised simple models based on a few hypothesised relationships that capture some aspect of the climate system.
Let $X_{t} \in \mathbb{R}^{p}$ be the state of the climate at time t. Typically $X_{1, t}=$ ice volume, and other components many represent CO_{2}, ocean temp, etc, or be left undefined.

Models

A phenomenological approach is taken: idealised simple models based on a few hypothesised relationships that capture some aspect of the climate system.
Let $X_{t} \in \mathbb{R}^{p}$ be the state of the climate at time t. Typically $X_{1, t}=$ ice volume, and other components many represent CO_{2}, ocean temp, etc, or be left undefined.

- Oscillators synchronised on the solar forcing (Saltzman and Maasch 1991),

$$
\begin{aligned}
& d X_{1}=-\left(X_{1}+X_{2}+v X_{3}+F\left(\gamma_{P}, \gamma_{c}, \gamma_{E}\right)\right) d t+\sigma_{1} d W_{1} \\
& d X_{2}=\left(r X_{2}-p X_{3}-s X_{2}^{2}-X_{2}^{3}\right) d t+\sigma_{2} d W_{2} \\
& d X_{3}=-q\left(X_{1}+X_{3}\right) d t+\sigma_{3} d W_{3}
\end{aligned}
$$

- Models with switches in the ice volume (Tziperman 2006)

$$
d X_{1}=\left(\left(p_{0}-K X_{1}\right)\left(1-\alpha X_{2}\right)-\left(s+F\left(\gamma_{P}, \gamma_{C}, \gamma_{E}\right)\right)\right) d t+\sigma_{1} d W_{1}
$$

X_{2} : switches from 0 to 1 when X_{1} exceeds some threshold X_{u}
X_{2} : switches from 1 to 0 when X_{1} decreases below X_{1}

- Models with switches dependent upon thresholds in the forcing (Parrenin and Paillard 2012)

Models

A phenomenological approach is taken: idealised simple models based on a few hypothesised relationships that capture some aspect of the climate system.
Let $X_{t} \in \mathbb{R}^{p}$ be the state of the climate at time t. Typically $X_{1, t}=$ ice volume, and other components many represent CO_{2}, ocean temp, etc, or be left undefined.

- Oscillators synchronised on the solar forcing (Saltzman and Maasch 1991),

$$
\begin{aligned}
& d X_{1}=-\left(X_{1}+X_{2}+v X_{3}+F\left(\gamma_{P}, \gamma_{c}, \gamma_{E}\right)\right) d t+\sigma_{1} d W_{1} \\
& d X_{2}=\left(r X_{2}-p X_{3}-s X_{2}^{2}-X_{2}^{3}\right) d t+\sigma_{2} d W_{2} \\
& d X_{3}=-q\left(X_{1}+X_{3}\right) d t+\sigma_{3} d W_{3}
\end{aligned}
$$

- Models with switches in the ice volume (Tziperman 2006)

$$
\begin{aligned}
d X_{1} & =\left(\left(p_{0}-K X_{1}\right)\left(1-\alpha X_{2}\right)-\left(s+F\left(\gamma_{P}, \gamma_{C}, \gamma_{E}\right)\right)\right) d t+\sigma_{1} d W_{1} \\
X_{2} & : \quad \text { switches from } 0 \text { to } 1 \text { when } X_{1} \text { exceeds some threshold } X_{u} \\
X_{2} & : \text { switches from } 1 \text { to } 0 \text { when } X_{1} \text { decreases below } X_{1}
\end{aligned}
$$

- Models with switches dependent upon thresholds in the forcing (Parrenin and Paillard 2012)
The prevailing view is that these should be distinguished between on the basis of scientific principles, not data. Parameters fit by eye.

Statistical model

These models are forced with some aspect of the solar forcing

$$
\frac{\mathrm{d} X_{t}}{\mathrm{~d} t}=g\left(X_{t}, \theta\right)+F(t, \gamma)
$$

where $\gamma=\left(\gamma_{P}, \gamma_{C}, \gamma_{E}\right)$ controls the combination of precession, obliquity and eccentricity.

Statistical model

These models are forced with some aspect of the solar forcing

$$
\frac{\mathrm{d} X_{t}}{\mathrm{~d} t}=g\left(X_{t}, \theta\right)+F(t, \gamma)
$$

where $\gamma=\left(\gamma_{P}, \gamma_{C}, \gamma_{E}\right)$ controls the combination of precession, obliquity and eccentricity.

Embed these models within a statistical state space model relating climate to observations

$$
\begin{aligned}
\mathrm{d} X_{t} & =g\left(X_{t}, \theta\right) \mathrm{d} t+F(t, \gamma) \mathrm{d} t+\Sigma \mathrm{dW} \\
Y_{t} & =d+s X_{1, t}+\epsilon_{t}
\end{aligned}
$$

where we have 'noised-up' the models turning them into SDEs to account for model discrepancies.
Typically these models have 10-15 parameters that need to be estimated from the data.

Bayesian basics

- We use probability distributions $\pi(\theta)$ to represent our knowledge about all quantities.

Bayesian basics

- We use probability distributions $\pi(\theta)$ to represent our knowledge about all quantities.
- Use conditional probabilities to describe relationships/models, e.g.
- $\pi(x \mid \theta)=$ distribution of output x from your simulator when run using parameter θ
- $\pi(y \mid x)=$ model describing relationship between observations y and simulator prediction x.

Bayesian basics

- We use probability distributions $\pi(\theta)$ to represent our knowledge about all quantities.
- Use conditional probabilities to describe relationships/models, e.g.
- $\pi(x \mid \theta)=$ distribution of output x from your simulator when run using parameter θ
- $\pi(y \mid x)=$ model describing relationship between observations y and simulator prediction x.
- Use Bayes theorem to describe our knowledge about quantities of interest

$$
\text { posterior }=\pi(\theta \mid y)=\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(y)} \propto \text { likelihood } \times \text { prior }
$$

Bayesian basics

- We use probability distributions $\pi(\theta)$ to represent our knowledge about all quantities.
- Use conditional probabilities to describe relationships/models, e.g.
- $\pi(x \mid \theta)=$ distribution of output x from your simulator when run using parameter θ
- $\pi(y \mid x)=$ model describing relationship between observations y and simulator prediction x.
- Use Bayes theorem to describe our knowledge about quantities of interest

$$
\begin{aligned}
\text { posterior }=\pi(\theta \mid y) & =\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(y)} \propto \text { likelihood } \times \text { prior } \\
& =\frac{\int \pi(y \mid x) \pi(x \mid \theta) \mathrm{d} x \pi(\theta)}{\iint \pi(y \mid x) \pi(x \mid \theta) \pi(\theta) \mathrm{d} x \mathrm{~d} \theta}
\end{aligned}
$$

Added difficulty: $\pi(x \mid \theta)$ is usually unknown!

Bayesian basics

The quantities we need to calculate are

- Climate reconstruction (filtering)

$$
\begin{aligned}
& \pi\left(x_{1: T} \mid y_{1: T}, \theta_{m}, \mathcal{M}_{m}\right) \propto \pi\left(x_{1: T-1} \mid y_{1: T-1}, \theta\right) \pi\left(x_{T} \mid x_{T-1}, \theta\right) \pi\left(y_{T} \mid x_{T}\right) \\
& \text { where } x_{1: T}=\left(x_{1}, \ldots, x_{T}\right)
\end{aligned}
$$

Bayesian basics

The quantities we need to calculate are

- Climate reconstruction (filtering)

$$
\pi\left(x_{1: T} \mid y_{1: T}, \theta_{m}, \mathcal{M}_{m}\right) \propto \pi\left(x_{1: T-1} \mid y_{1: T-1}, \theta\right) \pi\left(x_{T} \mid x_{T-1}, \theta\right) \pi\left(y_{T} \mid x_{T}\right)
$$

where $x_{1: T}=\left(x_{1}, \ldots, x_{T}\right)$

- Model calibration (marginal parameter posterior)

$$
\pi\left(\theta_{m} \mid y_{1: T}, \mathcal{M}_{m}\right)
$$

Bayesian basics

The quantities we need to calculate are

- Climate reconstruction (filtering)

$$
\pi\left(x_{1: T} \mid y_{1: T}, \theta_{m}, \mathcal{M}_{m}\right) \propto \pi\left(x_{1: T-1} \mid y_{1: T-1}, \theta\right) \pi\left(x_{T} \mid x_{T-1}, \theta\right) \pi\left(y_{T} \mid x_{T}\right)
$$

where $x_{1: T}=\left(x_{1}, \ldots, x_{T}\right)$

- Model calibration (marginal parameter posterior)

$$
\pi\left(\theta_{m} \mid y_{1: T}, \mathcal{M}_{m}\right)
$$

- Model selection (model evidence/Bayes factors)

$$
\pi\left(y_{1: T} \mid \mathcal{M}_{m}\right)
$$

Bayesian basics

The quantities we need to calculate are

- Climate reconstruction (filtering)

$$
\begin{aligned}
& \pi\left(x_{1: T} \mid y_{1: T}, \theta_{m}, \mathcal{M}_{m}\right) \propto \pi\left(x_{1: T-1} \mid y_{1: T-1}, \theta\right) \pi\left(x_{T} \mid x_{T-1}, \theta\right) \pi\left(y_{T} \mid x_{T}\right) \\
& \text { where } x_{1: T}=\left(x_{1}, \ldots, x_{T}\right)
\end{aligned}
$$

- Model calibration (marginal parameter posterior)

$$
\pi\left(\theta_{m} \mid y_{1: T}, \mathcal{M}_{m}\right)
$$

- Model selection (model evidence/Bayes factors)

$$
\pi\left(y_{1: T} \mid \mathcal{M}_{m}\right)
$$

These are progressively more difficult to calculate, particularly as

$$
\pi\left(X_{t+1} \mid X_{t}, \theta_{m}, \mathcal{M}_{m}\right)
$$

is unknown.

Filtering

Sequential Monte Carlo (SMC) methods are the natural approach for finding the filtering distributions $\pi\left(x_{1: T} \mid y_{1: T}, \theta\right)$

- Represent all distributions by collection of weighted particles $\left\{x^{(i)}, w^{(i)}\right\}$, e.g.,

$$
p(x) \approx \sum w_{0}^{(i)} \delta_{x^{(i)}}(x)
$$

- Sequentially build up approximation to $\pi\left(x_{1: t} \mid y_{1: t}, \theta\right)$ one step at a time.

SMC

At time $t-1$, suppose $\left(X_{1: t-1}^{n}, W_{t-1}^{n}\right)_{n=1}^{N}$ is a collection of weighted particles approximating $\pi\left(X_{1: t-1} \mid Y_{1: t-1}, \theta\right)$

- Sample ancestor particle index $\mathcal{A}_{t-1}^{n} \sim \mathcal{F}\left(W_{t-1}^{n}\right)$
- Propagate state particles $X_{t}^{n} \sim q_{t}\left(\cdot \mid X_{t-1}^{\mathcal{A}_{t-1}^{n}}, \theta, Y_{t}\right)$
- Weight state particles

$$
w_{t}^{n}\left(X_{1: t}^{n}\right)=\frac{\pi\left(X_{t}^{n} \mid X_{t-1}^{\mathcal{A}_{t-1}^{n}}, \theta\right) \pi\left(Y_{t} \mid X_{t}^{n}\right)}{q_{t}\left(X_{t}^{n} \mid X_{t-1}^{\mathcal{A}_{t-1}^{n}}, \theta, Y_{t}\right)}, \quad W_{t}^{n}=\frac{w_{t}^{n}\left(X_{1: t}^{n}\right)}{\sum_{n} w_{t}^{n}\left(X_{1: t}^{n}\right)}
$$

SMC

At time $t-1$, suppose $\left(X_{1: t-1}^{n}, W_{t-1}^{n}\right)_{n=1}^{N}$ is a collection of weighted particles approximating $\pi\left(X_{1: t-1} \mid Y_{1: t-1}, \theta\right)$

- Sample ancestor particle index $\mathcal{A}_{t-1}^{n} \sim \mathcal{F}\left(W_{t-1}^{n}\right)$
- Propagate state particles $X_{t}^{n} \sim q_{t}\left(\cdot \mid X_{t-1}^{\mathcal{A}_{t-1}^{n}}, \theta, Y_{t}\right)$
- Weight state particles

$$
w_{t}^{n}\left(X_{1: t}^{n}\right)=\frac{\pi\left(X_{t}^{n} \mid X_{t-1}^{\mathcal{A}_{t-1}^{n}}, \theta\right) \pi\left(Y_{t} \mid X_{t}^{n}\right)}{q_{t}\left(X_{t}^{n} \mid X_{t-1}^{\mathcal{A}_{t-1}^{n}}, \theta, Y_{t}\right)}, \quad W_{t}^{n}=\frac{w_{t}^{n}\left(X_{1: t}^{n}\right)}{\sum_{n} w_{t}^{n}\left(X_{1: t}^{n}\right)}
$$

We need $\pi\left(X_{t} \mid X_{t-1}, \theta\right)$ to cancel, but setting $q=\pi$ can lead to extreme degeneracy, as too many proposals are in regions of low-posterior probability

We use an adapted Golightly and Wilkinson (2006) approach to nudge the proposals towards the data.

Parameter estimation

SMC provides an unbiased estimate of the marginal likelihood

$$
\pi\left(y_{1: T} \mid \theta\right)=\pi\left(y_{1} \mid \theta\right) \prod_{t=2}^{T} \pi\left(y_{t} \mid y_{1: t-1}, \theta\right)
$$

when we substitute the estimate

$$
\tilde{\pi}\left(y_{t} \mid y_{1: t-1}, \theta\right)=\frac{1}{M} \sum w_{t}^{n}
$$

for $\pi\left(y_{t} \mid y_{1: t-1}, \theta\right)$.

Parameter estimation

SMC provides an unbiased estimate of the marginal likelihood

$$
\pi\left(y_{1: T} \mid \theta\right)=\pi\left(y_{1} \mid \theta\right) \prod_{t=2}^{T} \pi\left(y_{t} \mid y_{1: t-1}, \theta\right)
$$

when we substitute the estimate

$$
\tilde{\pi}\left(y_{t} \mid y_{1: t-1}, \theta\right)=\frac{1}{M} \sum w_{t}^{n}
$$

for $\pi\left(y_{t} \mid y_{1: t-1}, \theta\right)$.
We can then use these estimates in a pseudo marginal scheme such as PMCMC (Andrieu et al. 2010) to estimate

$$
\pi\left(\theta, x_{1: T} \mid y_{1: T}\right)
$$

and

$$
\pi\left(\theta \mid y_{1: T}\right)
$$

$S M C^{2}$

We've found that SMC² (Chopin et al. 2013) works well for our problem Basic idea:

- Introduce M parameter particles $\theta_{1}, \ldots, \theta_{M}$
- For $t=1, \ldots, T$
- For each θ_{i} run a particle filter targeting $\pi\left(X_{1: t} \mid y_{1: t}, \theta_{i}\right)$
- Recalculate all the importance weights and resample if necessary

Note that to avoid particle degeneracy, it is still usually necessary to run a PMCMC sampler targeting $\pi\left(\theta, X_{1: t} \mid y_{1: t}\right)$ at each resampling step.

$S M C^{2}$

We've found that SMC ${ }^{2}$ (Chopin et al. 2013) works well for our problem
Basic idea:

- Introduce M parameter particles $\theta_{1}, \ldots, \theta_{M}$
- For $t=1, \ldots, T$
- For each θ_{i} run a particle filter targeting $\pi\left(X_{1: t} \mid y_{1: t}, \theta_{i}\right)$
- Recalculate all the importance weights and resample if necessary

Note that to avoid particle degeneracy, it is still usually necessary to run a PMCMC sampler targeting $\pi\left(\theta, X_{1: t} \mid y_{1: t}\right)$ at each resampling step.

This takes 3-4 days on a standard server, or 4-6 hours on a GPU with 1000θ particles and $1000 X$ particles.

SMC^{2} to sample from $\pi\left(\theta, X_{1: T} \mid y_{1: T}\right)$

Assume that at stage t we have particles $\left\{\theta^{i}, X_{1: t}^{1: N_{x}, i}\right\}_{i=1}^{N_{\theta}}$ with weights $\left\{W_{t}^{i}\right\}$ that approximates $\pi\left(\theta, X_{1: t} \mid y_{1: t}\right)$
For $t=1, \ldots, T$:

- If effective sample size is too small, resample by running a PMCMC algorithm targeting $\pi\left(\theta, X_{1: t} \mid y_{1: t}\right)$
- Sample $\left\{\theta^{i}, X_{1: t+1}^{1: N_{x}, i}\right\}$ by performing iteration $t+1$ of the PF
- Estimate $\hat{\pi}\left(y_{t+1} \mid y_{t}, \theta^{i}\right)$
- Reweight by setting

$$
w_{t+1}^{i}=w_{t}^{i} \hat{\pi}\left(y_{t+1} \mid y_{t}, \theta^{i}\right)
$$

$$
\text { and } W_{t+1}^{i}=\frac{w_{t+1}^{i}}{\sum_{i} w_{t+1}^{i}}
$$

In total, this requires the use of $N_{\theta} \times N_{x}$ particles.

Results - simulation study

Results - simulation study

$\gamma=\left(\gamma_{P}, \gamma_{E}, \gamma_{C}\right)$ controls the relative contribution of the three components of the orbital variations in the forcing.

Bayes factors

Consider comparing two models, \mathcal{M}_{1} and \mathcal{M}_{2}.
Bayes factors (BF) are the Bayesian approach to model selection.

$$
\frac{\mathbb{P}\left(\mathcal{M}_{1} \mid \mathcal{D}\right)}{\mathbb{P}\left(\mathcal{M}_{2} \mid \mathcal{D}\right)}=\frac{\pi\left(\mathcal{M}_{1}\right)}{\pi\left(\mathcal{M}_{2}\right)} \frac{\mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{1}\right)}{\mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{2}\right)}
$$

posterior odds $=$ prior odds \times Bayes factor
where

$$
B_{12}=\frac{\mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{1}\right)}{\mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{2}\right)}=\frac{\int \pi\left(\theta_{1} \mid \mathcal{M}_{1}\right) \mathbb{P}\left(\mathcal{D} \mid \theta_{1}, \mathcal{M}_{1}\right) d \theta_{1}}{\int \pi\left(\theta_{2} \mid \mathcal{M}_{2}\right) \mathbb{P}\left(\mathcal{D} \mid \theta_{2}, \mathcal{M}_{2}\right) d \theta_{2}}
$$

Bayes factors

Consider comparing two models, \mathcal{M}_{1} and \mathcal{M}_{2}.
Bayes factors (BF) are the Bayesian approach to model selection.

$$
\frac{\mathbb{P}\left(\mathcal{M}_{1} \mid \mathcal{D}\right)}{\mathbb{P}\left(\mathcal{M}_{2} \mid \mathcal{D}\right)}=\frac{\pi\left(\mathcal{M}_{1}\right)}{\pi\left(\mathcal{M}_{2}\right)} \frac{\mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{1}\right)}{\mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{2}\right)}
$$

posterior odds $=$ prior odds \times Bayes factor
where

$$
B_{12}=\frac{\mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{1}\right)}{\mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{2}\right)}=\frac{\int \pi\left(\theta_{1} \mid \mathcal{M}_{1}\right) \mathbb{P}\left(\mathcal{D} \mid \theta_{1}, \mathcal{M}_{1}\right) d \theta_{1}}{\int \pi\left(\theta_{2} \mid \mathcal{M}_{2}\right) \mathbb{P}\left(\mathcal{D} \mid \theta_{2}, \mathcal{M}_{2}\right) d \theta_{2}}
$$

B_{12} range	$\mathbb{P}\left(\mathcal{M}_{1} \mid D\right)$ range	Interpretation
$1-3$	$0.5-0.75$	Barely worth mentioning
$3-10$	$0.75-0.91$	Substantial
$10-30$	$0.91-0.97$	Strong
$30-100$	$0.97-0.99$	Very strong
>100	$0.99-1$	Decisive

Model selection

To compare models \mathcal{M}_{1} and \mathcal{M}_{2} ，we want to find the Bayes factor

$$
B_{12}=\frac{\pi\left(y_{1: T} \mid \mathcal{M}_{1}\right)}{\pi\left(y_{1: T} \mid \mathcal{M}_{2}\right)}
$$

Values of $B_{12}>100$ indicate＇decisive＇evidence in favour of \mathcal{M}_{1} ．

Model selection

To compare models \mathcal{M}_{1} and \mathcal{M}_{2}, we want to find the Bayes factor

$$
B_{12}=\frac{\pi\left(y_{1: T} \mid \mathcal{M}_{1}\right)}{\pi\left(y_{1: T} \mid \mathcal{M}_{2}\right)}
$$

Values of $B_{12}>100$ indicate 'decisive' evidence in favour of \mathcal{M}_{1}.
SMC ${ }^{2}$ can be used to provide an unbiased estimate of

$$
\pi\left(y_{1: T} \mid \mathcal{M}\right)
$$

for any model.
However, the variance of our estimates are typically an order of magnitude, so don't consider B_{12} to be large until we see values >1000.

Results

We generate simulated data from SM91, using both the astronomically forced and unforced version of the model

Model		Evidence $\pi\left(y_{1: N} \mid \mathcal{M}_{m}\right)$	
		SM91-unforced	SM91-forced
SM91	Forced	5.6×10^{28}	1.4×10^{41}
	Unforced	1.1×10^{30}	2.4×10^{18}
T06	Forced	3.6×10^{20}	2.6×10^{30}
	Unforced	1.1×10^{22}	2.9×10^{14}
PP12	Forced	2.8×10^{8}	2.1×10^{18}

- Strongest evidence for the true model found each time
- Unforced model is special case of forced model with 3 parameters set to zero, so we expect it to be harder to select the unforced model.
- For the data generated from the forced model, the forced version of the wrong model is preferred.

Results: ODP677- $\delta^{18} \mathrm{O}$ from foraminifera

We use the ODP677 stack (a composite record from multiple cores), which has been dated by two authors:

- Lisiecki and Raymo (2005) used orbital tuning
- Huybers 2007 used a depth-derived age model (no orbital tuning)

Results: ODP677

Model		Evidence	
		ODP677: H07(unforced)	ODP677: LR04(forced)
SM91	Forced	4.0×10^{24}	$1.1 \times 10^{0^{28}}$
	Unforced	3.5×10^{26}	1.6×10^{18}
T06	Forced	3.3×10^{25}	4.5×10^{29}
	Unforced	1.7×10^{28}	3.3×10^{21}
PP12	Forced	1.5×10^{22}	1.8×10^{34}

The dating method applied changes the answer

- Using Huybers' non-orbitally tuned data, we find evidence in favour of the unforced T06 model.
- Using Lisiecki's orbitally tuned data, we find strong evidence for PP12 a tuned model (PP12)

Moreover, orbitally tuned data leads us to strongly prefer the orbitally tuned version of each model (and vice versa)

Results: ODP677

Model		Evidence	
		ODP677: H07(unforced)	ODP677: LR04(forced)
SM91	Forced	4.0×10^{24}	$1.1 \times 10^{0^{28}}$
	Unforced	3.5×10^{26}	1.6×10^{18}
T06	Forced	3.3×10^{25}	4.5×10^{29}
	Unforced	1.7×10^{28}	3.3×10^{21}
PP12	Forced	1.5×10^{22}	1.8×10^{34}

The dating method applied changes the answer

- Using Huybers' non-orbitally tuned data, we find evidence in favour of the unforced T06 model.
- Using Lisiecki's orbitally tuned data, we find strong evidence for PP12 a tuned model (PP12)

Moreover, orbitally tuned data leads us to strongly prefer the orbitally tuned version of each model (and vice versa)

The age model used to date the stack (often taken as a given) has a strong effect on model selection conclusions

Alternative approaches

ABC

- Instead of approximating the likelihood (as in SMC^{2}), we try to find θ that give good match between observed and simulated data
- Allows us to calibrate on carefully chosen aspects of the system (period, volatility, etc), rather than just on the data.
- The loss of information from the ABC approximation is large, so the posteriors are usually much wider than with SMC^{2}.

Alternative approaches

Instead of using the particle filter (SMC) to do the filtering, we would like to use the unscented Kalman filter (UKF) or EnKF.

- Assumes $\pi\left(x_{t} \mid y_{1: t}\right)$ is Gaussian and uses Sigma-point particles to estimate mean and variance.
- Much cheaper than SMC or MCMC approaches.
- We found the UKF works well for filtering (location), less well for parameter estimation, and terribly for model selection.

Alternative approaches

Instead of using the particle filter (SMC) to do the filtering, we would like to use the unscented Kalman filter (UKF) or EnKF.

- Assumes $\pi\left(x_{t} \mid y_{1: t}\right)$ is Gaussian and uses Sigma-point particles to estimate mean and variance.
- Much cheaper than SMC or MCMC approaches.
- We found the UKF works well for filtering (location), less well for parameter estimation, and terribly for model selection.

A further discredited alternative is the idea of augmenting the state vector with the parameter, and inferring the joint distribution using the particle filter.

Age model

Can we also quantify chronological uncertainty?

Age model

Can we also quantify chronological uncertainty?
Target

$$
\pi\left(\theta, T_{1: N}, X_{1: N} \mid y_{1: N}\right)
$$

where $T_{1: N}$ are the times of the observation $Y_{1: N}$, which were previously taken as given.

Age model

Can we also quantify chronological uncertainty?
Target

$$
\pi\left(\theta, T_{1: N}, X_{1: N} \mid y_{1: N}\right)
$$

where $T_{1: N}$ are the times of the observation $Y_{1: N}$, which were previously taken as given.

Propose a simple age model for sediment accumulation:
Let H be the depth in the core, with $H_{N}=0$ at $T_{N}=0$

$$
\mathrm{d} H=-\mu_{s} \mathrm{~d} T+\sigma \mathrm{d} W
$$

Slices are then taken through the core at specific depths H_{1}, \ldots, H_{N}.

There may have been multiple times when a certain depth was reached: the most recent time is the age of that slice, i.e., it is a first passage problem. Given $\left(T_{m}, H_{m}\right)$, then T_{m-1} is the first passage time of H_{m-1} with

$$
T_{m-1} \left\lvert\, T_{m} \sim I G\left(T_{m}-\frac{H_{m-1}-H_{m}}{\mu_{s}}, \frac{\left(H_{m-1}-H_{m}\right)^{2}}{\sigma_{s}^{2}}\right)\right.
$$

There may have been multiple times when a certain depth was reached: the most recent time is the age of that slice, i.e., it is a first passage problem. Given $\left(T_{m}, H_{m}\right)$, then T_{m-1} is the first passage time of H_{m-1} with

$$
T_{m-1} \left\lvert\, T_{m} \sim I G\left(T_{m}-\frac{H_{m-1}-H_{m}}{\mu_{s}}, \frac{\left(H_{m-1}-H_{m}\right)^{2}}{\sigma_{s}^{2}}\right)\right.
$$

We then add a model to account for compaction in the core, and apply Bayes theorem to find $\pi\left(T_{m} \mid T_{m-1}\right)$ so that we can run the model forward in time

Simulation study results $(n=321)$ - age vs depth
 Dots $=$ truth, black line $=$ estimate, grey $=95 \% \mathrm{Cl}$

We use simulated data from the CR12 model, with parameter values, and initial conditions comparable to real data. We consider the period 780 kyr to the present.

Simulation study results - age vs depth (trend removed)

 Dots $=$ truth, black line $=$ estimate, grey $=95 \% \mathrm{Cl}$

Simulation study results - climate reconstruction

Dots $=$ truth, black line $=$ estimate, grey $=95 \% \mathrm{Cl}$

Simulation study results - parameter estimation

We've estimated 17 parameters, the age depth relationship, and the hidden state trajectory from 321 observations.

Results for ODP846 and ODP677 cores

- Cores contain markers for the Brunhes-Matuyama magnetic reversal at 780 kyr , allowing us to give a strong prior for $T_{1}(\pm 2 \mathrm{kyr})$.
- Date estimates provided by two groups
- Lisiekci and Raymo (LR04): graphical correlation of 57 cores. The stack is then orbitally tuned
- Huybers and Wunsch 2004 (HW04) use a depth-derived age model. They decompact each core, fit a linear age model, then average over many several realisations and to get a distribution for 17 age control points(ACPS), such as terminations. Average ages for the the ACP events are then found, and a linear age model is fitted between consecutive ACPs

Results for ODP846-age vs depth

Black $=$ posterior mean, grey $=95 \% \mathrm{CI}$, red $=\mathrm{H} 07$, blue $=$ LR04

Our results come with uncertainty bounds (HW04 estimate accuracy of $\pm 9 \mathrm{kyr}$ for all ages). Moreover, the full joint distribution for all quantities is available if required.

Results for ODP677 - age vs depth (trend removed)

Grey $=95 \%$ HDR for observation ages, red $=\mathrm{H} 07$, blue $=$ LR04

Note that these age estimates now depend explicitly on the model CR12.

Results for ODP846-age vs depth (trend removed)

Grey $=95 \%$ HDR for observation ages, red $=\mathrm{H} 07$, blue $=$ LR04

Depth (m)

Climate reconstructions that account for age uncertainty

95\% HDRs for the normalised ice volume over time for ODP677 (top) and ODP846 (bottom). LR04 (blue) H07 (red).

Results for ODP846－parameter estimates

Bayes factors

Advantages：
－Provide evidence in favour of a model
－Provides an automatic form of Occam＇s razor．
－Do not require models to be nested
－Asymptotic consistency
Disadvantages
－Hard to calculate
－Sensitive to choice of prior
－Integrated likelihood may not be desirable treatment

Bayes factors

Advantages：
－Provide evidence in favour of a model
－Provides an automatic form of Occam＇s razor．
－Do not require models to be nested
－Asymptotic consistency
Disadvantages
－Hard to calculate
－Sensitive to choice of prior
－Integrated likelihood may not be desirable treatment
I believe the statistical estimates，but what is the correct scientific interpretation of a BF of 10^{9} ？

Bayes factors

Advantages:

- Provide evidence in favour of a model
- Provides an automatic form of Occam's razor.
- Do not require models to be nested
- Asymptotic consistency

Disadvantages

- Hard to calculate
- Sensitive to choice of prior
- Integrated likelihood may not be desirable treatment

I believe the statistical estimates, but what is the correct scientific interpretation of a BF of 10^{9} ?
Bayes factors are an M-closed tool - this is an M-open problem.

- None of the models are correct.
- Are the estimates of the relevant astronomical forcing meaningful?
- Is the phenomenological motivation of the preferred model relevant?

Does model selection give any insight into the true dynamics? How complex must a model be to do so?

Extensions

- Latent force models
- Grey box models
- Using GCMs

Conclusions

- The data do contain enough information to partially discriminate between models
- However, the results are very sensitive to the age model applied to the data.
- If we don't do joint estimation of all uncertain quantities, the results are over confident and can lead to contradictory conclusions.
- Methodology and computer power now sufficiently advanced that we can tackle the joint reconstruction, age model, and model selection problems in a fully Bayesian manner
- but it remains computationally expensive. The age model results take ~ 1 week to compute per model.

Conclusions

- The data do contain enough information to partially discriminate between models
- However, the results are very sensitive to the age model applied to the data.
- If we don't do joint estimation of all uncertain quantities, the results are over confident and can lead to contradictory conclusions.
- Methodology and computer power now sufficiently advanced that we can tackle the joint reconstruction, age model, and model selection problems in a fully Bayesian manner
- but it remains computationally expensive. The age model results take ~ 1 week to compute per model.

> Thank you for listening!

References

- Carson, Crucifix, Preston, W. Quantifying Age and Model Uncertainties in Palaeoclimate Data and Dynamical Climate Models with a Joint Inferential Analysis, Proc. Roy. Soc. A 2019.
- Carson, Crucifix, Preston, W. Bayesian model selection for the glacial-interglacial cycle. J. Roy. Stat. Soc. C 2018.
- Chopin et al. SMC ${ }^{2}$ an efficient algorithm for sequential analysis of state-space models. J. Roy. Stat. Soc. C 2013.
- Holden, Edwards, Ridgwell, W., et al. Climate-carbon cycle uncertainties and the Paris Agreement, Nature Climate Change, 2018.
- Holden, Edwards, Garthwaite, W. Emulation and interpretation of high-dimensional climate model outputs. J. App. Stat., 2015.
- Bounceur, Crucifix, W. Global sensitivity analysis of the climate vegetation system to astronomical forcing: an emulator-based approach. Earth Syst. Dynam. Discuss, 2015.

