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Talk plan

Today - tutorial

Approximate Bayesian computation (ABC) for complex models

Accelerating ABC via sampling and summaries

Surrogate models for ABC

Tomorrow - speculation

Inference for misspecified models

Variational inference and generalizations



Bayesian inverse problems
Calibration, tuning, model fitting, parameter estimation, inference....

Components:

Simulator (mechanistic model) f that takes unknown parameters θ as an input (as well as
ICs, control variables etc.) and generates output X

X = f (θ).

May be stochastic (f (θ) = f (θ,U)) or deterministic.

Statistical model that relates f to the observed data D, e.g.,

D = f (θ) + e

The inverse-problem: find parameter values θ which are consistent with the data and the
model

The Bayesian approach is to find the posterior distribution

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝ prior× likelihood
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Examples
Atrial fibrillation

Simulation of electrical activation on
the left atrium. Unknown tissue
properties need to be estimated from
noisy sparse ECG and MRI data.
Estimates used to guide surgery.

Simulation of primate evolution, with
unknown origination time to be
estimated from fossil and genetic
record.

http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg


Intractability

π(θ|D) =
π(D|θ)π(θ)

π(D)

usual intractability in Bayesian inference is not knowing π(D).

a problem is doubly intractable if π(D|θ) = cθp(D|θ) with cθ unknown (cf Murray,
Ghahramani and MacKay 2006)

a problem is completely intractable if π(D|θ) is unknown and can’t be evaluated
(unknown is subjective). I.e., if the analytic distribution of the simulator, f (θ), run at θ is
unknown.

Completely intractable models are where we need to resort to ABC methods



Intractability

π(θ|D) =
π(D|θ)π(θ)

π(D)

usual intractability in Bayesian inference is not knowing π(D).

a problem is doubly intractable if π(D|θ) = cθp(D|θ) with cθ unknown (cf Murray,
Ghahramani and MacKay 2006)

a problem is completely intractable if π(D|θ) is unknown and can’t be evaluated
(unknown is subjective). I.e., if the analytic distribution of the simulator, f (θ), run at θ is
unknown.

Completely intractable models are where we need to resort to ABC methods



Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian computation) is one
of the few approaches we can use to do inference.

ABC algorithms are a collection of Monte Carlo methods used for calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are ‘likelihood-free’).

ABC methods are widely used primarily because they are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied
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Basics of ABC



‘Likelihood-Free’ Inference

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution, π(θ | D).

If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate X ∼ f (θ) from the computer model

Accept θ if D = X , i.e., if computer output equals observation

The acceptance rate is
∫
P(D|θ)π(θ)dθ = P(D).
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any θ. Instead, there is an
approximate version:

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).
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ε = 10
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θ ∼ U[−10, 10], X ∼ N(2(θ + 2)θ(θ − 2), 0.1 + θ2)

ρ(D,X ) = |D − X |, D = 2



ε = 7.5
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ρ(D,X ) = |D − X |, D = 2



ε = 2.5
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θ ∼ U[−10, 10], X ∼ N(2(θ + 2)θ(θ − 2), 0.1 + θ2)

ρ(D,X ) = |D − X |, D = 2



ε = 1
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Rejection ABC

If the data are too high dimensional we never observe simulations that are ‘close’ to the field
data - curse of dimensionality

Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(S(D), S(X )) < ε

If S is sufficient this is equivalent to the previous algorithm.

Simple → Popular with non-statisticians
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Key challenges for ABC

Scoring θ

The tolerance ε, distance ρ, summary S(D) (or variations thereof) determine the
theoretical ‘accuracy’ of the approximation

Computing acceptable θ

Computing the approximate posterior for any given score is usually hard.

There is a trade-off between accuracy achievable in the approximation (size of ε), and the
information loss incurred when summarizing



Efficient Algorithms

References:

Marjoram et al. 2003

Sisson et al. 2007

Beaumont et al. 2008

Toni et al. 2009

Del Moral et al. 2011

Drovandi et al. 2011



ABCifying Monte Carlo methods

Rejection ABC is inefficient as it repeatedly samples from prior

More efficient sampling algorithms allow us to make better use of the available computational
resource: spend more time in regions of parameter space likely to lead to accepted values.

allows us to use smaller values of ε

Most Monte Carlo algorithms now have ABC versions for when we don’t know the likelihood:
IS, MCMC, SMC (×n), EM, EP etc



MCMC-ABC
Marjoram et al. 2003, Sisson and Fan 2011, Lee 2012, W. 2013 . . .

We are targeting the joint distribution

πABC (θ, x |D) ∝ Iρ(D,x)≤επ(x |θ)π(θ)

To explore the (θ, x) space, proposals of the form

Q((θ, x), (θ′, x ′)) = q(θ, θ′)π(x ′|θ′)
seem to be inevitable. The Metropolis-Hastings (MH) acceptance probability is then

r =
πABC (θ′, x ′|D)Q((θ′, x ′), (θ, x))

πABC (θ, x |D)Q((θ, x), (θ′, x ′))

=
Iρ(D,x ′)≤επ(x ′|θ′)π(θ′)q(θ′, θ)π(x |θ)

Iρ(D,x)≤επ(x |θ)π(θ)q(θ, θ′)π(x ′|θ′)

=
Iρ(D,x ′)≤εq(θ′, θ)π(θ′)

Iρ(D,x)≤εq(θ, θ′)π(θ)

NB: HMC is not possible (w/o a surrogate)
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Sequential ABC algorithms
Sisson et al. 2007, Toni et al. 2008, Beaumont et al. 2009, Del Moral et al. 2011, Drovandi et al. 2011, ...

Choose a sequence of tolerances ε1 > ε2 > . . . > εT and let πt be the ABC approximation
when using tolerance εt .
We aim to sample N particles successively from

π1(θ), . . . , πT (θ) = target

ABC SMC (Toni et al., 2009)

(a) As in ABC rejection, we define a prior
distribution P (✓) and we would like to approxi-
mate a posterior distribution P (✓|D0). In ABC
SMC we do this sequentially by constructing
intermediate distributions, which converge
to the posterior distribution. We define a
tolerance schedule ✏1 > ✏2 > . . . ✏T � 0.

(b) We sample particles from a prior distribu-
tion until N particles have been accepted (have
reached the distance smaller than ✏1). For all
accepted particles we calculate weights (see
[4] for formulas and derivation). We call the
sample of all accepted particles ”Population
1”.

(c) We then sample a particle ✓⇤ from popu-
lation 1 and perturb it to obtain a perturbed
particle ✓⇤⇤ ⇠ K(✓|✓⇤), where K is a per-
turbation kernel (for example a Gaussian
random walk). We then simulate a dataset
D⇤ ⇠ f(D|✓⇤⇤) and accept the particle ✓⇤⇤

if d(D0, D
⇤⇤)  ✏2. We repeat this until we

have accepted N particles in population 2. We
calculate weights for all accepted particles.

(d) We repeat the same procedure for the
following populations, until we have accepted
N particles of the last population T and
calculated their weights. Population T is a
sample of particles that approximates the
posterior distribution.

ABC SMC is computationally much more
e�cient than ABC rejection (see [4] for
comparison).

ABC SMC (Sequential Monte Carlo)

Intermediate DistributionsPrior Posterior

✏1 ✏2 . . . ✏T�1 ✏T

Population 1 Population 2 Population T

Tina Toni, Michael Stumpf ABC dynamical systems 03/07/08 1 / 1

(a)

(b)

(c)

(d)

Figure 2: Schematic representation of ABC
SMC.
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At each stage t, we aim to construct a weighted sample of particles that approximates πt(θ, x).
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Model selection
W. 2007, Grelaud et al. 2009

Often we want to compare models → Bayes factors

B12 =
π(D|M1)

π(D|M2)

where π(D|Mi ) =
∫
Iρ(D,X )≤επ(x |θ,Mi )π(θ)dxdθ.

For rejection ABC

π(D|M) ≈ 1

N

∑
Iρ(D,Xi )≤ε

where Xi ∼ M(θi ) with θi ∼ π(θ).
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Summary Statistics

References:

Blum, Nunes, Prangle and Sisson 2012

Joyce and Marjoram 2008

Nunes and Balding 2010

Fearnhead and Prangle 2012

Robert et al. 2011

.

.

.

SOMETHING ABOUT ML APPROACHES MMD and Neural Nets...



Choosing summary statistics
Blum, Nunes, Prangle, Fearnhead 2012

If S(D) = sobs is sufficient for θ, i.e., sobs contains all the information contained in D about θ

π(θ|sobs) = π(θ|D),

then using summaries has no detrimental effect

But if we know of a sufficient summary, then inference with S(D) can be much quicker when
dimS(D)� dimD.

However, low-dimensional sufficient statistics are rarely available.
Instead, we focus on choosing low dimensional summaries that are good enough.
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Error trade-off
Fearnhead and Prangle 2012

The error in the ABC approximation can be broken into two parts

1 Choice of summary:

π(θ|D)
?≈ π(θ|sobs)

2 Use of ABC acceptance kernel:

π(θ|sobs)
?≈ πABC (θ|sobs)

The first approximation allows the matching between sobs = S(D) and S(X ) to be done in a
lower dimension. There is a trade-off

dim(S) small: π(θ|sobs) ≈ πABC (θ|sobs), but π(θ|sobs) 6≈ π(θ|D)

dim(S) large: π(θ|sobs) ≈ π(θ|D) but π(θ|sobs) 6≈ πABC (θ|sobs)
as curse of dimensionality forces us to use larger ε

Optimal (in some sense) to choose dim(s) = dim(θ)
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Machine learning approaches

1 Automated summaries: Use random forests, NNs etc to generate a summary (see Raynal
et al. 2019 etc)

1 Train a ML model, m(X ), to predict θ from D using a large number of simulator runs {θi ,Xi}
2 ABC then simulates θ from the prior and X from the simulator, and accepts θ if

m(X ) ≈ m(Dobs)

2 Generative Adversarial Networks (GANs, Mohamed et al. 2017 etc) play a game between
a generator and a discriminative classifier. The classifier tries to distinguish between data
and simulation, and the generator tries to trick the classifier.

3 Kernel methods: e.g. use kernel mean embedding of the distribution (MMD) to avoid the
need to summarize - inference is then simply projection in the RKHS.

4 A variety of neural network approaches to directly approximate the posterior, see e.g.
normalizing flows (Papamakarios et al. 2021).

NB: beware of all automated summary selection approaches if misspecified
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Accelerating ABC
with surrogates

References:

W. 2014

Meeds and Welling 2014

Gutmann and Corander 2015

Strathmann, Sejdinovic, Livingstone, Szabo, Gretton 2015

ELFI and BOLFI software

.

.

.

Plus obvious influence from the emulator community (e.g. Sacks, Welch, Mitchell, and Wynn 1989, Kennedy and O’Hagan 2001)



Limitations of Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them for long enough.

This guarantee is costly and can require more simulation than is possible.

However,

Most methods sample naively - they don’t learn from previous simulations.

They don’t exploit known properties of the likelihood function, such as continuity

They sample randomly, rather than using careful design.

We can use methods that don’t suffer in this way, but at the cost of losing the guarantee of
success.
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Surrogate ABC
If the simulator f is computationally expensive, we can build a surrogate/emulator f̃ .
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We can then perform inference with the emulator, accounting for the approximation error.

Constituent elements:

Target of approximation

Aim of inference and inference scheme

Choice of surrogate/emulator - see Athénais Gautier

Training/acquisition rule



Target of approximation for the surrogate

Simulator output within synthetic likelihood (Meeds et al 2014) e.g.

µθ = Ef (θ) and Σθ = Varf (θ)

(ABC) Likelihood type function (W. 2014)

LABC (θ) = EX |θKε[ρ(S(D), S(X ))] ≡ EX |θπε(D|X )

≈ 1

N

N∑
i=1

πε(D|Xi = f (θ,Ui ))

Discrepancy function (Gutmann and Corander, 2015), for example

J(θ) = Eρ(S(D), S(X ))

Gradients (Strathmann et al 2015)

The difficulty of each approach depends on smoothness, dimension, focus etc.



S ∼ N(2(θ + 2)θ(θ − 2), 0.1 + θ
2)

Synthetic likelihood:

ABC likelihood and
discrepancy:
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Inference

Directly use the surrogate to calculate the posterior (Kennedy and O’Hagan 2001 etc) -
over-utilizes the surrogate, sacrificing exact sampling.

Correct for the use of a surrogate, e.g., using a Metropolis step (Rasmussen 2003,
Sherlock et al. 2015, etc), which requires simulator evaluations at every stage -
under-utilizes the surrogate, sacrificing speed-up.

Instead, Conrad et al. 2015 and others have developed intermediate approaches that
asymptotically sample from the exact posterior.

proposes new θ - if uncertainty in surrogate prediction is such that it is unclear whether to
accept or reject, then rerun simulator, else trust surrogate.

It is inappropriate to be concerned about mice when there are tigers abroad (Box
1976)

Model discrepancy, ABC approximations, sampling errors etc may mean it is not worth
worrying...
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Acquisition rules

The key determinant of emulator accuracy is the design used to train the GP

Dn = {θi , f (θi )}Ni=1

Usual design choices are space-filling designs

Maximin latin hypercubes, Sobol sequences

Calibration doesn’t need a global approximation to the simulator - this is wasteful.

Instead build a sequential design θ1, θ2, . . . using our current surrogate model to guide the
choice of design points according to some acquisition rule.
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Function approximation where it matters
W. 2014

The log-likelihood l(θ) = log L(θ) can vary over several orders of magnitude, and thus many
surrogate models can struggle to accurately approximate it.

But we only need good predictions near θ̂

Introduce waves of history matching/ sequential batch design.

In each wave, build a GP model that can rule out regions of space as implausible.

We decide that θ is implausible if

P(l̃(θ) > max
θi

l(θi )− T ) ≤ 0.001

where l̃(θ) is the GP model of log π(D|θ)

Choose T so that if l(θ̂)− l(θ) > T then π(θ|y) ≈ 0.

Ruling θ to be implausible is to set π(θ|y) = 0

Choice of T is problem specific; start conservatively with T large and decrease
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Example: Ricker Model
The Ricker model is one of the prototypic ecological models.

used to model the fluctuation of the observed number of animals in some population over
time

It has complex dynamics and likelihood, despite its simple mathematical form.

Ricker Model

Let Nt denote the number of animals at time t.

Nt+1 = rNte
−Nt+er

where et are independent N(0, σ2
e ) process noise

Assume we observe counts yt where

yt ∼ Po(φNt)

Used in Wood to demonstrate the synthetic likelihood approach.



Results - Design 1 - 128 pts



Diagnostics for GP 1 - threshold = 5.6



Results - Design 2 - 314 pts - 38% of space implausible



Diagnostics for GP 2 - threshold = -21.8



Design 3 - 149 pts - 62% of space implausible



Diagnostics for GP 3 - threshold = -20.7



Design 4 - 400 pts - 95% of space implausible



Diagnostics for GP 4 - threshold = -16.4



MCMC Results
Comparison with Wood 2010, synthetic likelihood approach
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Computational details

The Wood MCMC method used 105 × 500 simulator runs

The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator runs
I 1/100th of the number used by Wood’s method.

By the final iteration, the Gaussian processes had ruled out over 98% of the original input
space as implausible,

the MCMC sampler did not need to waste time exploring those regions.



Conclusions

ABC allows inference in models for which it would otherwise be impossible.

not a silver bullet - if likelihood methods possible, use them instead

Algorithms and post-hoc regression can greatly improve computational efficiency, but
computation is still usually the limiting factor.

May need to go further and use surrogate models...

For misspecified models, focusing on doing approximate Bayesian inference with a small
approximation error may not be a good use of resource.

Thank you for listening!
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