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Talk plan
Yesterday

Approximate Bayesian computation (ABC) for complex models

Accelerating ABC

Surrogate models for ABC

Today

Inference for misspecified models

Generalized Variational Inference



Mechanistic models
Models describe hypothesised relationships between variables.

Mechanistic model

e.g. ODE/PDE models

explains how/why the variables interact the way they do.

parameters may have a physical meaning

often imperfect representations of reality, but may be the only link
between the quantity of interest and the data

e.g. Atrial fibrillation

http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg
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UQ in Patient Specific Cardiac Models
With Sam Coveney, Richard Clayton, Steve Neiderer, Jeremy Oakley, . . .

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.

Affects around 610,000 people in UK.

Catheter ablation removes/isolates pathological tissue that
sustain/initiate AF.

40% of patients subsequently experience atrial tachycardia (AT).

Aim: predict which AF patients will develop AT following ablation, and
then treat for both in a single procedure.
We use complex electrophysiology simulations, combine these with sparse
and noisy clinical data, to

Infer tissues properties, including regions of fibrotic material

Predict AT pathways

Aid clinical decision making (accounting for uncertainty)

However, our simulator is imperfect. How should we proceed?
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Inference under discrepancy

How should we do inference if the model is imperfect?

Data generating process
y ∼ G

Model (complex simulator, finite dimensional parameter)

F = {Fθ : θ ∈ Θ}

If G = Fθ0 ∈ F then we know what to do.

How should we proceed if
G 6∈ F
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Maximum likelihood
Maximum likelihood estimator

θ̂n = arg max
θ

log Fθ(y1:n)

If G = Fθ0 ∈ F , then (under some conditions)

θ̂n → θ0 almost surely as n→∞
√
n(θ̂n − θ0)

d
=⇒ N(0, I−1(θ0))

Asymptotic consistency, efficiency, normality.
If G 6∈ F

θ̂n → θ∗ = arg min
θ

DKL(G ,Fθ) a.s.

= arg min
θ

∫
log

dG

dFθ
dG

√
n(θ̂n − θ∗)

d
=⇒ N(0,V−1)
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Bayes

Bayesian posterior
π(θ|y) ∝ Fθ(y)π(θ)

If G = Fθ0 ∈ F

π(θ|y1:n)
d
=⇒ N(θ0, I−1(θ0)) as n→∞

Bernstein-von Mises theorem1: we forget the prior, and get asymptotic
concentration and normality.

If G 6∈ F , we still get asymptotic concentration (and possibly normality)
but to θ∗ (the pseudo-true value).

there is no obvious meaning for Bayesian analysis in this case

Often with non-parametric models (eg GPs), we don’t even get this
convergence to the pseudo-true value due to lack of identifiability.

1This also requires (a long list of) identifiability conditions to hold.
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Different dataset, different posterior

This discrepancy often materializes when we fit a model to two different
datasets.
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For example, when estimating climate sensitivity from modern vs palaeo or
Antarctic vs African data etc.



Inferential aims

How should we proceed when we have a misspecified model?

The approach should depend upon our goals:

Calibrated prediction:

π(y ′ | y) =

∫
Fθ(y ′)π(θ | y)dθ

Inference:
π(θ|y)

Decision making

If the aim is prediction, perhaps we only need to statistically ‘correct’ the
model....?
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Option 1: Fix the model

Assume the simulator is perfect

Fit the simulator to data

Look to falsify the simulator, and then improve it.

Problems with this approach include

hard to improve simulator

hard to spot what is wrong with a simulator even when we know it is
misspecified

In flexible models, errors can cancel to produce excellent fits to data.
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Ion channel model, Lei et al. 2020
Two models of the action potential in human ventricular cells

Generate data from model T, fit modified model F to the data.
Test on a held-out validation set (double pacing frequency).
Predict under an inhibited hERG channel (e.g. a common side effect
and antitarget during drug development)



Option 2: probabilistic model of the discrepancy
Kennedy and O’Hagan 2001

Can we model our way out of trouble by expanding F into a
non-parametric world?

Grey-box models

One way to expand the class of models is by
adding a Gaussian process (GP) to the simu-
lator.

If fθ(x) is our simulator, y the observation,
then perhaps we can correct f using the
model

y = fθ∗(x) + δ(x) where δ(·) ∼ GP

and jointly infer θ∗ and δ(·)
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An appealing, but flawed, idea
Kennedy and O’Hagan 2001, Brynjarsdottir and O’Hagan 2014

Simulator Reality

fθ(x) = θx g(x) =
θx

1 + x
a

θ = 0.65, a = 20

x is a control input

1 2 3 4

0.
5

1.
0

1.
5

2.
0

2.
5

Solid=model with true theta, dashed=truth

x

y

●

●

●

●

●

●

●

●

●

●

●



An appealing, but flawed, idea
Bolting on a GP can correct your predictions2, but won’t necessarily fix
your inference:

No discrepancy:

y = fθ(x) + N(0, σ2),

θ ∼ N(0,100), σ2 ∼ Γ−1(0.001, 0.001)

GP discrepancy:

y = fθ(x) + δ(x) + N(0, σ2),

δ(·) ∼ GP(·, ·) with objective priors
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2as long as you are not extrapolating



Dangers of non-parametric model extensions

There are (at least) two problems with this approach:

We may still find G 6∈ F
Identifiability

I GPs are complex infinite dimensional models, & are not necessarily
identified even asymptotically. The posterior can concentrate not on a
point, but on some sub manifold of parameter space, and the
projection of the prior on this space continues to impact the posterior
even as more and more data are collected.

ie We never forget the prior, but the prior is too complex to understand
GP samples...

I Brynjarsdottir and O’Hagan 2014 try to model their way out of trouble
with prior information:

δ(0) = 0 δ′(x) ≥ 0.

Great if you have this information.
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Option 3: Minimal specification of the discrepancy
Cf: Bissiri et al. 2016

Can we get away with a less complete description of the discrepancy, i.e.,
not a fully probabilistic model?

Rejection ABC

Draw θ from π(θ)

Simulate Y ′ ∼ Fθ(·)
Accept θ if ρ(Y ,Y ′) ≤ ε
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ABC as a probability model
W. 2013

We wanted to solve the inverse problem

Y = f (θ)

but instead ABC solves
Y = f (θ) + e.

ABC gives ‘exact’ inference under a different model!

Proposition

If ρ(Y ,Y ′) = |Y − Y ′|, then ABC samples from the posterior distribution
π(θ|Y ) where we assume Y = f (θ) + e and that

e ∼ U[−ε, ε]

Further, we can generallze from a uniform distribution to any other
distribution by introducing a random acceptance in the final ABC step.
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History matching and ABC
Craig et al. 1999, 2001

History matching is an inferential approach designed for misspecified
models. It seeks to find a (not ruled out yet) NROY set

Pθ = {θ : SHM(F̂θ, y) ≤ 3}

where

SHM(Fθ, y) =
|EFθ

(Y )− y |√
VarFθ

(Y )

ABC approximates the posterior as

πε(θ|y) ∝ π(θ)E(IS(F̂θ,y)≤ε)

for some choice of S and ε.

Typically S(F̂θ, y) = ρ(η(y), η(y ′)) where y ′ ∼ Fθ

They have thresholding of a score in common and are algorithmically
comparable.
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History matching and ABC

These methods (anecdotally) seem to work better in mis-specified
situations.

Why?

Both approaches also allow the user to focus on aspects/summaries
of the simulator output that either are of interest, or for which we
believe the simulator is better specified.

I We discard information by only using some aspects of the simulator
output, but perhaps to benefit of the inference

Potentially use generalised scores/loss-functions
I Potentially results in a form of robustness

The thresholding type nature potentially makes them somewhat
conservative and ensures we don’t get asymptotic concentration.

I Allow for crude/simple discrepancy characterization.
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Brynjarsdottir et al. revisited

Simulator Reality
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Option 4: changes to the inference process
Variational formulation of Bayesian inference

We can view Bayes inference as an optimization problem.
Write the log-likelihood as `(θ, y). Then

π(θ|y) = arg min
q∈Q

Eθ∼q`(θ, y) + DKL(q||π)

where Q the set of all probability measures on Θ, and π is the prior for θ.

Proof:

RHS = arg min

∫ (
log exp(`(θ, y)) + log

q(θ)

π(θ)

)
q(θ)dθ

= arg min

∫
log

(
q(θ)

exp(−`(θ, y))π(θ)

)
q(θ)dθ

= arg min

∫
log

q(θ)

π(θ|x)
q(θ)dθ

= arg minKLD(q||π(θ|y))

which is achieved uniquely at q = π(θ|y) = qB(θ) as required.
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Generalized Variational Inference
Knoblauch et al. 2019

π(θ|y) = arg min
q∈Π

Eθ∼q`(θ, y) + D(q||π)

By changing

the loss `(θ, y)
the prior-posterior divergence D(q||π)
restricting q ∈ Π ⊂ Q

we generate other learning algorithms that are Bayesian in flavour but
which may have nice properties - “GVI”
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History matching as GVI

HM and ABC can be written as GVI approaches.

E.g., Define the history matching loss to be

`HM(θ, y) = − log IS(θ,y)<c

=

{
0 if S(θ, y) < c

∞ otherwise

Denote the not ruled out yet (NROY) set by

N = {θ ∈ Θ : S(θ, y) < c}.

If we use the KL divergence and set Π = Q, then

qHM(θ) =
π(θ)Iθ∈N∫
N π(θ)dθ

is the solution to the GVI problem.
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Variational inference: computation
Cf Eliane’s and Shiran’s talks

Typically we’ll restrict the family of target posteriors to Π ⊂ Q, e.g.,

qψ(θ) = N(θ;ψ1, ψ2)

VI then involves optimizing for ψ.

There are many blackbox inference
approaches, e.g., VAE (Kingma and Welling 2013).

The approximate posterior qψ(θ) used as the encoder
The simulator f (θ,U) used as the decoder.

Requires us to write the simulator in an autodiff language and to explicitly
control the random variables U.
Trying to develop an amortized version qψ(θ|y) = N(θ;ψ1(y), ψ2(y)) for
in-procedure calibration.
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Discussion: What makes a good inferential approach?

Do any of these approaches have favourable properties/characteristics for
inference under discrepancy? Particularly when the discrepancy model is
crude?

Consistency?

I I don’t want inconsistency.

Frequency properties?

I I wouldn’t object but seems impossible for subjective priors.

Coherence?

Robustness to small mis-specifications?
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Conclusions
Given a useful misspecified simulator, how should make good inferences,
and what justifiable(?) short-cuts can we take to accelerate inference?

Summaries - only use simulator outputs we trust.

Include a (potentially crude) discrepancy model

Abandon complex likelihood functions to avoid extreme sensitivity.
Choose loss functions that are robust to misspecification of the
discrepancy model!

Thresholding of the score for crude UQ?

Key problems:

How do we relate the level of simulator discrepancy to the decision
about the posterior approximation accuracy required?

How do we learn the simulator discrepancy?

What properties do we want our inference scheme to possess?
I Is coherence the best we can hope for or is there a form of robustness

that is achievable and useful for slightly mis-specified models?

Thank you for listening!
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