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A model of an individual, informed by data, that influences decisions.




Motivating example: Cardiac physiology
Figures by Marina Strocchi, Steve Niederer, Richard Clayton
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Guidelines

Current treatment guidelines rely on statistics from
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Precision medicine

Genetic information and data from one individual patient are
analyzed to decide the best course of treatment




Clinical data

Pressure measurements
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Cardiac Digital Twins

Clinical data from a specific patient | Patient-specific anatomical model

How do we analyze and combine all
this information? )

Cardiac digital twin

- Global sensitivity analysis
Important parameters identification
» » ?
Parameter fitting
To replicate patient's clinical data




Cardiac digital twin

Population prior knowledge
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Physics and Physiology
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But how confident are we in our prediction



Atrial fibrillation

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.


http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg

Atrial fibrillation

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.

@ Affects around 1,000,000 people in UK.

e Catheter ablation removes/isolates pathological tissue that
sustain/initiate AF.

@ 40% of patients subsequently experience atrial tachycardia (AT).


http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg

Patient Specific Cardiac Models

Aim: predict whether an AF patient will develop AT following ablation,
infer the reentry pathways, and then guide the surgical ablation to treat
for both in a single procedure.

@ Each intervention: 6% risk of major complication; cost ~£8000.
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Statistical challenges

For a given patient, we want to select a model from our class of models
f(6,w) where

@ w are directly observable parameters specific to the patient such as
geometry (ie for the computational mesh)

@ 0 are patient specific model parameters, eg diffusion parameters,
which may be spatially varying (6(x) for x € w).



Statistical challenges

For a given patient, we want to select a model from our class of models
f(6,w) where

@ w are directly observable parameters specific to the patient such as
geometry (ie for the computational mesh)

@ 0 are patient specific model parameters, eg diffusion parameters,
which may be spatially varying (6(x) for x € w).
Given data D we want to solve the inverse problem

D=f(f,w)+e
to estimate

w(0,w | D) x w(0,w)m(D | 6,w)



Statistical challenges

In practice we need to be pragmatic
o Complex simulator and limited computational resource
@ Large number of unknowns 6, w, f
@ Sparse noisy data

e Misspecification/discrepancy
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Statistical challenges

In practice we need to be pragmatic
o Complex simulator and limited computational resource
@ Large number of unknowns 6, w, f
@ Sparse noisy data
°

Misspecification /discrepancy
P(Event|D) = /IF’(EH.;Q. f)m(0,w, f|D)d0dwdf

where
(0, w, fID) « 7(D|0,w, f)m(0)r(w)m(f)
We need to characterize variability at the
@ population level 7(0), m(w) etc

e individual level 7(0,w, f,...|D) — may need to be partially done in
real time

@ and the physics/simulator 7(D|0, w, )
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which are trained on a small ensemble of simulator evaluations
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£4-16k per patient.

We can then use the surrogate to estimate parameters etc



Surrogate models

If f is slow/costly to evaluate standard methods such as MCMC are
impracticable. We can use surrogate models/emulators of f, e.g.

f(-,w) ~ GP(m(-), k(-,-))
which are trained on a small ensemble of simulator evaluations
C = {9,’, f(9,-,w) ;7:1
@ Currently run ~1000 simulations for each new patient. Cost of
£4-16k per patient.

We can then use the surrogate to estimate parameters etc
Note that this adds an additional uncertainty

m(f]C)

Other methods: NNs (e.g. PINNs), polynomial chaos, ROM, POD etc.



Compact representation

If 6 is high dimensional, we need to find a subset or transformation of the
parameters Af that we can estimate

@ mesh used to simulate atrial electro-physiology has ~ 30,000 nodes,
with 5 spatially varying parameters



Compact representation

If 6 is high dimensional, we need to find a subset or transformation of the
parameters Af that we can estimate

@ mesh used to simulate atrial electro-physiology has ~ 30,000 nodes,
with 5 spatially varying parameters

Typical methods

@ Global sensitivity analysis: select a subset of the most important
parameters (re contribution to variance).

@ Basis expansions
k
0="> zii
i=1

where k < dim(6) and 1); are basis vectors to be chosen
» Imaging data, random projection, PCA /KL, active subspace methods...



Non-identifiability

The huge number of parameters, sparse data, and limited computational
power mean we can't hope to estimate everything.
How can we identify non-identifiabilities?



Non-identifiability

The huge number of parameters, sparse data, and limited computational
power mean we can't hope to estimate everything.
How can we identify non-identifiabilities?

o Difference between training and prediction tasks. We use data D
D= hf(f,w)+e

to estimate Af.
But suppose our prediction task is then

hZf(ev OJ)

How should we choose projection A?



Fast and/or cheap inference

We want to calibrate in real time
@ Catheter ablation: every additional 10mins of surgery increases
stroke risk by x%

Even using a surrogate, MCMC is too expensive to use in-procedure, but
we can pre-compute.



Fast and/or cheap inference

We want to calibrate in real time

@ Catheter ablation: every additional 10mins of surgery increases
stroke risk by x%
Even using a surrogate, MCMC is too expensive to use in-procedure, but
we can pre-compute.
Approximate inference methods
@ Kalman inversion methods - estimate mean and variance of Gaussian
approximation.

@ Variational inference: instead of sampling, find variational
approximation to the posterior

argmin KL(q4(6)I[p(6|D))



Fast and/or cheap inference

@ Amortized methods...
q(0|D) = N(mg(D),s3(D))

where my and 535 are pre-trained neural networks.

@ Neural posteriors. Eg use a normalizing flow to model
q(¢ | D)

directly.



Scalable DTs

At the moment, we create a new surrogate model for each new patient,
e.g. estimating w from imaging data

f(-,w) ~ GP(m(-), k(-,-)) trained with C = {6;, f(0;,w)}7;

How can we reduce this cost?



Scalable DTs

At the moment, we create a new surrogate model for each new patient,
e.g. estimating w from imaging data

f(-,w) ~ GP(m(-), k(-,-)) trained with C = {0;, f(0;,w)}/—
How can we reduce this cost?

@ Learn a statistical shape model w = z;¢; e.g. via PCA and include
z in the inputs to the surrogate.
@ Learn the discrepancy from a set of reference heart simulations to
the new heart
F(w') = f(-,w") + ()

@ Learn diffeomorphism: hearts are topologically equivalent. If
w'= Tw", can we learn a T’ from T such that f(-,w') = T'f(-,w")?



Networked Digital Twins

Suppose we have DTs of 1000s of patients.
@ How we we learn informative priors?
@ How do we transfer knowledge through the network?

@ How do we cheaply initialize new twins?



Physics informed models

How can we incorporate relatively simple physics into data-models?
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Suppose we want to infer forcing function g in the system

Lu = g given observations z; = (h;, u) + e i=1,...,n
for example by solving constrained optimization problem

min(z — Hu) " (z — Hu) subject to Lu = g
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Introduce n adjoint systems
LYv; = h;

then
(hiyu) = (L7vi,u) = (vi, Lu) = (v, g)

If g is a linear model (e.g. a RFF expansion of a GP) we can now do
exact inference for g at zero additional cost.



Other topics

@ Geometric uncertainty
» Heart is never still, segmentation of MRI/CT image imperfect, images
are obtained in unnatural situations.
» Data are collected from an uncertain geometric location.
» Need manifold valued models etc.
@ Model discrepancy
» How can we use the network of DTs to learn the model error?
e Multi-fidelity/multi-level methods
» If we have models fi, f>, ..., of varying costs and accuracies, how do

we make the most accurate predictions we can within some given
computational budget?
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Digital twins provide a fundable framework to work on many of the key
mathematical /statistical challenges arising in UQ.
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» We can currently build DTs for a single patient, but at great expense
> Need to scale and speed up this process
@ The huge number of uncertain parameters and cost of the
simulations will mean we need to compromise:

» find regularities in the problem to allow us to reduce dimension
sufficiently in order to make inference possible

> learn strong population structured prior distributions

» develop fast method to approximately infer parameters.
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Thank you for listening!



