
Statistical Challenges of Digital Twins

Richard Wilkinson

University of Nottingham



Digital twins

A set of virtual information constructs that mimics the
structure, context and behaviour of an individual or unique
physical asset, that is dynamically updated with data from its
physical twin throughout its life-cycle that informs decisions that
realise value.

A model of an individual, informed by data, that influences decisions.



Motivating example: Cardiac physiology
Figures by Marina Strocchi, Steve Niederer, Richard Clayton





Clinical data



Cardiac Digital Twins
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But how confident are we in our predictions?



Atrial fibrillation

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.

Affects around 1,000,000 people in UK.

Catheter ablation removes/isolates pathological tissue that
sustain/initiate AF.

40% of patients subsequently experience atrial tachycardia (AT).

http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg
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Patient Specific Cardiac Models

Aim: predict whether an AF patient will develop AT following ablation,
infer the reentry pathways, and then guide the surgical ablation to treat
for both in a single procedure.

Each intervention: 6% risk of major complication; cost ∼£8000.

Cardiac models at forefront of personalised modelling

Models are deterministic but clinical diagnosis is rarely definitive
▶ uncertainty quantification/statistics challenge

aim to consider costs and benefits across all potential outcomes
weighted by their probability.
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Statistical challenges

For a given patient, we want to select a model from our class of models
f (θ, ω) where

ω are directly observable parameters specific to the patient such as
geometry (ie for the computational mesh)

θ are patient specific model parameters, eg diffusion parameters,
which may be spatially varying (θ(x) for x ∈ ω).

Given data D we want to solve the inverse problem

D = f (θ, ω) + e

to estimate
π(θ, ω | D) ∝ π(θ, ω)π(D | θ, ω)
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Statistical challenges

In practice we need to be pragmatic

Complex simulator and limited computational resource

Large number of unknowns θ, ω, f

Sparse noisy data

Misspecification/discrepancy

P(Event|D) =

∫
P(E |θ, ω, f )π(θ, ω, f |D)dθdωdf

where
π(θ, ω, f |D) ∝ π(D|θ, ω, f )π(θ)π(ω)π(f )

We need to characterize variability at the

population level π(θ), π(ω) etc

individual level π(θ, ω, f , ...|D) – may need to be partially done in
real time

and the physics/simulator π(D|θ, ω, f )
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Surrogate models

If f is slow/costly to evaluate standard methods such as MCMC are
impracticable.

We can use surrogate models/emulators of f , e.g.

f (·, ω) ∼ GP(m(·), k(·, ·))

which are trained on a small ensemble of simulator evaluations
C = {θi , f (θi , ω)}ni=1

Currently run ∼1000 simulations for each new patient. Cost of
£4-16k per patient.

We can then use the surrogate to estimate parameters etc
Note that this adds an additional uncertainty

π(f |C )

Other methods: NNs (e.g. PINNs), polynomial chaos, ROM, POD etc.
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Compact representation

If θ is high dimensional, we need to find a subset or transformation of the
parameters Aθ that we can estimate

mesh used to simulate atrial electro-physiology has ∼ 30, 000 nodes,
with 5 spatially varying parameters

Typical methods

Global sensitivity analysis: select a subset of the most important
parameters (re contribution to variance).

Basis expansions

θ =
k∑

i=1

ziψi

where k ≪ dim(θ) and ψi are basis vectors to be chosen
▶ Imaging data, random projection, PCA/KL, active subspace methods...
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Non-identifiability

The huge number of parameters, sparse data, and limited computational
power mean we can’t hope to estimate everything.
How can we identify non-identifiabilities?

Difference between training and prediction tasks. We use data D

D = h1f (θ, ω) + e

to estimate Aθ.
But suppose our prediction task is then

h2f (θ, ω)

How should we choose projection A?
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Fast and/or cheap inference

We want to calibrate in real time

Catheter ablation: every additional 10mins of surgery increases
stroke risk by x%

Even using a surrogate, MCMC is too expensive to use in-procedure, but
we can pre-compute.

Approximate inference methods

Kalman inversion methods - estimate mean and variance of Gaussian
approximation.

Variational inference: instead of sampling, find variational
approximation to the posterior

argmin
ϕ

KL(qϕ(θ)||p(θ|D))
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Fast and/or cheap inference

Amortized methods...

q(θ|D) = N(mϕ(D), s2ϕ(D))

where mϕ and s2ϕ are pre-trained neural networks.

Neural posteriors. Eg use a normalizing flow to model

q(θ | D)

directly.



Scalable DTs

At the moment, we create a new surrogate model for each new patient,
e.g. estimating ω from imaging data

f (·, ω) ∼ GP(m(·), k(·, ·)) trained with C = {θi , f (θi , ω)}ni=1

How can we reduce this cost?

Learn a statistical shape model ω =
∑

ziϕi e.g. via PCA and include
z in the inputs to the surrogate.

Learn the discrepancy from a set of reference heart simulations to
the new heart

f (·, ω′) = f (·, ωr ) + δ(·)

Learn diffeomorphism: hearts are topologically equivalent. If
ω′ = Tωr , can we learn a T ′ from T such that f (·, ω′) = T ′f (·, ωr )?
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Networked Digital Twins

Suppose we have DTs of 1000s of patients.

How we we learn informative priors?

How do we transfer knowledge through the network?

How do we cheaply initialize new twins?



Physics informed models

How can we incorporate relatively simple physics into data-models?

Suppose we want to infer forcing function g in the system

Lu = g given observations zi = ⟨hi , u⟩+ e i = 1, . . . , n

for example by solving constrained optimization problem

min
g

(z − Hu)⊤(z − Hu) subject to Lu = g

Introduce n adjoint systems

L∗vi = hi

then
⟨hi , u⟩ = ⟨L∗vi , u⟩ = ⟨vi ,Lu⟩ = ⟨vi , g⟩

If g is a linear model (e.g. a RFF expansion of a GP) we can now do
exact inference for g at zero additional cost.
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Other topics

Geometric uncertainty
▶ Heart is never still, segmentation of MRI/CT image imperfect, images

are obtained in unnatural situations.
▶ Data are collected from an uncertain geometric location.
▶ Need manifold valued models etc.

Model discrepancy
▶ How can we use the network of DTs to learn the model error?

Multi-fidelity/multi-level methods
▶ If we have models f1, f2, . . ., of varying costs and accuracies, how do

we make the most accurate predictions we can within some given
computational budget?



Conclusions

Digital twins provide a fundable framework to work on many of the key
mathematical/statistical challenges arising in UQ.

At present, DTs aren’t used to guide therapy.
▶ We can currently build DTs for a single patient, but at great expense
▶ Need to scale and speed up this process

The huge number of uncertain parameters and cost of the
simulations will mean we need to compromise:

▶ find regularities in the problem to allow us to reduce dimension
sufficiently in order to make inference possible

▶ learn strong population structured prior distributions
▶ develop fast method to approximately infer parameters.

Thank you for listening!
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