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Learning Pθ(x)

Learning Probabilistic Models 

𝑃	
𝑄	

𝒫	

Assump'ons	on	P:	
	
•  tractable	sampling	
•  tractable	parameter	gradient	with	respect	to	sample	
•  tractable	likelihood	func'on	



Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators (ML: ‘learning generative models’) in a Bayesian
manner.

they do not require explicit knowledge of the likelihood function
Pθ(x)

inference is done using simulation from the model (they are
‘likelihood-free’).

They are (were)

Simple to implement

Intuitive

Embarrassingly parallelizable

and can usually be applied

Originated in Genetics 1990s, studied by statistics in 2000s, and more
recently in ML.
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Learning Pθ(x)

Learning Probabilistic Models 

•  P: Expectation 

•  Q: Expectation 

•  Structure in ℱ 

•  Examples: 
‑  Energy statistic [Szekely, 1997] 
‑  Kernel MMD  [Gretton et al., 2012], 

[Smola et al., 2007] 

‑  Wasserstein distance [Cuturi, 2013] 
‑  DISCO Nets 

[Bouchacourt et al., 2016] 

Integral	Probability	Metrics	
[Müller,	1997]	

[Sriperumbudur	et	al.,	2010]	
𝛾↓ℱ (𝑃,𝑄)= sup┬𝑓∈ℱ  |∫↑▒𝑓d𝑃 

−∫↑▒𝑓d𝑄 | 	

Proper	scoring	rules	
[GneiBng	and	RaDery,	2007]	

	
𝑆(𝑃,𝑄)=∫↑▒𝑆(𝑃,𝑥)d𝑄(𝑥) 	

•  P:	DistribuBon	
•  Q:	ExpectaBon	
•  Examples:	

•  Log-likelihood	
[Fisher,	1922],	[Good,	1952]	

•  QuadraBc	score	
[Bernardo,	1979]	

f-divergences	
[Ali	and	Silvey,	1966]	

	
𝐷↓𝑓 (𝑃∥𝑄)=∫↑▒𝑞(𝑥)𝑓(𝑝(𝑥)/𝑞(𝑥) ) 

d𝑥	

•  P:	DistribuBon	
•  Q:	DistribuBon	
•  Examples:	

•  Kullback-Leibler	divergence	
[Kullback	and	Leibler,	1952]	

•  Jensen-Shannon	divergence	
•  Total	variaBon	

•  Pearson	 𝜒↑2 	

These approaches generally require tractable likelihoods, and focus is not
necessarily on uncertainty.
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Uncertainty

Proper score S(Pθ, x) e.g.

S(Pθ, x) = logPθ(x) = `(θ)

I θ̂ = arg max S(Pθ, x) is consistent etc
I We can construct CIs

{θ : 2(`(θ̂)− `(θ)) ≤ χ2
p,1−α}

I Dawid et al. 2014 and others derive CIs for general proper scores.
I Why use other scores? Tractability, robustness, etc.
I Any kernel k leads to a proper scoring rule (Zawadzki and Lahaie

2015)

If we’re fitting using integral probability metrics, e.g.

θ̂ = arg min
θ

M̂MD(Pθ,Q)

or generative adversarial networks, can we calculate uncertainty
about θ?



Uncertainty

Proper score S(Pθ, x) e.g.

S(Pθ, x) = logPθ(x) = `(θ)

I θ̂ = arg max S(Pθ, x) is consistent etc
I We can construct CIs

{θ : 2(`(θ̂)− `(θ)) ≤ χ2
p,1−α}

I Dawid et al. 2014 and others derive CIs for general proper scores.
I Why use other scores? Tractability, robustness, etc.
I Any kernel k leads to a proper scoring rule (Zawadzki and Lahaie

2015)

If we’re fitting using integral probability metrics, e.g.

θ̂ = arg min
θ

M̂MD(Pθ,Q)

or generative adversarial networks, can we calculate uncertainty
about θ?



Bayesian type approaches

π(θ|D) ∝ π(D|θ)π(θ)

for some ‘likelihood’ function π(D|θ) (not necessarily Pθ(D))
Why the different focus?

Working with probabilities is preferable
Small n, large uncertainty problems are interesting! The uncertainty
can matter.



Rejection ABC

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).

Rejection sampling is inefficient, but we can adapt other MC samplers
such as MCMC and SMC.

Simple → Popular with non-statisticians



Rejection ABC

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).

Rejection sampling is inefficient, but we can adapt other MC samplers
such as MCMC and SMC.

Simple → Popular with non-statisticians



ε = 10
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ε = 7.5
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ε = 2.5
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ε = 1
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The ABC target

Uniform ABC is doing ‘exact’ inference for the posterior

π(θ|D) ∝
∫

Iρ(D,X )≤εPθ(X )π(θ)dX

which is the likelihood for D = X + e where e ∼ U[−ε, ε] if
ρ(D,X ) = |D − X |

For dim(X ) large, often use ρ(T (D),T (X ))

Or use any general distribution π(D|X )

Or a scoring rule S(Pθ,D) and assume, e.g.,

π(D|X ) ∝ exp(−S(P̂θ,D))

KDEs, . . .

Some scores are more robust to model discrepancy than log-likelihood.
Some approaches, such as history matching, are explicitly conservative
methods that seek to rule out implausible θ rather than find good θ.
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Approaches from ML: Choice of summaries

Many attempts (following Beaumont et al. 2003, Fearnhead and
Prangle 2012) to build models to predict θ from X , and then use this
in the acceptance kernel, e.g.

g : X → θ ρ(D,X ) = ‖g(D)− g(X )‖

using linear regression, RFs, (C)NN, etc

Park et al. 2016 use the MMD in place of choosing a vector of
summaries T (X ).

I Some evidence it can work for non-exchangeable samples.

Note that these approaches are used to define a ’likelihood’ for use within
a Bayesian analysis.
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Approaches developed by ML: surrogate modelling
Wood 2010 introduced a synthetic likelihood

π(D|θ) = N (θ|µθ,Σθ)

where µθ and Σθ are the mean and covariance of the simulator output
when run at θ, and plugged this into an MCMC sampler.

This suggested modelling dependence on θ to mitigate the cost

[...] the forward model may exhibit regularity in its dependence on
the parameters of interest[...]. Replacing the forward model with an
approximation or “surrogate” decouples the required number of
forward model evaluations from the length of the MCMC chain, and
thus can vastly reduce the overall cost of interence. Conrad et al. 2015

Monte Carlo is dumb (which is its strength).
I We have to learn continuity, and smoothness of the likelihood function.

Instead fit a GP (to something) and use this in the inference
I develop a single good MCMC sampler.
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Surrogate ABC

Wilkinson 2014

Meeds and Welling 2014

Gutmann and Corander 2015

Strathmann, Sejdinovic, Livingstone, Szabo, Gretton 2015
...

With obvious influence from emulator community (e.g. Sacks, Welch,
Mitchell, and Wynn 1989, Kennedy and O’Hagan 2001)

Constituent elements:

Target of approximation

Aim of inference and inference scheme

Choice of surrogate/emulator

Training/acquisition rule

∃ a relationship to probabilistic numerics



Target of approximation for the surrogate

Simulator output within synthetic likelihood (Meeds et al 2014) e.g.

µθ = Ef (θ) and Σθ = Varf (θ)

(ABC) Likelihood type function (Wilkinson 2014)

LABC (θ) = EX |θKε[ρ(T (D),T (X ))] ≡ EX |θπε(D|X )

Discrepancy function (Gutmann and Corander, 2015), for example

J(θ) = Eρ(S(D),S(X ))

Gradients (Strathmann et al 2015)

The difficulty of each approach depends on smoothness, dimension, focus
etc.



S ∼ N(2(θ + 2)θ(θ − 2), 0.1 + θ
2)

Synthetic likelihood:

ABC likelihood and
discrepancy:
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Inference
Directly use the surrogate to calculate the posterior (Kennedy and
O’Hagan 2001 etc) - over-utilizes the surrogate, sacrificing exact
sampling.
Correct for the use of a surrogate, e.g., using a Metropolis step
(Rasmussen 2003, Sherlock et al. 2015, etc), which requires
simulator evaluations at every stage - under-utilizes the surrogate,
sacrificing speed-up.

Instead, Conrad et al. 2015 developed an intermediate approach that
asymptotically samples from the exact posterior.

proposes new θ - if uncertainty in surrogate prediction is such that it
is unclear whether to accept or reject, then rerun simulator, else trust
surrogate.

It is inappropriate to be concerned about mice when there
are tigers abroad (Box 1976)

Model discrepancy, ABC approximations, sampling errors etc may mean it
is not worth worrying...
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Acquisition rules

The key determinant of emulator accuracy is the design used to train the
GP

Dn = {θi , f (θi )}Ni=1

Usual design choices are space-filling designs

Maximin latin hypercubes, Sobol sequences

Calibration doesn’t need a global approximation to the simulator - this is
wasteful.

Instead build a sequential design θ1, θ2, . . . using our current surrogate
model to guide the choice of design points according to some acquisition
rule.
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History matching waves
The ABC log-likelihood l(θ) = log L(θ) typical ranges across a wide range
of values, consequently, most models struggle to accurately approximate
the log-likelihood across the entire parameter space.

But we only need to make good predictions near θ̂

Introduce waves of history matching.

In each wave, build a GP model that can rule out regions of space as
implausible.

We decide that θ is implausible if

P(l̃(θ) > max
θi

l(θi )− T ) ≤ 0.001

where l̃(θ) is the GP model of log π(D|θ)

Choose T so that if l(θ̂)− l(θ) > T then π(θ|y) ≈ 0.

Ruling θ to be implausible is to set π(θ|y) = 0

Equivalent to doing inference with log-likelihood L(θ)Il(θ̂)−l(θ)<T

Choice of T is problem specific; start conservatively with T large and
decrease
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Conclusion

ML can improve existing ABC approaches

Finding low dimensional representations of complex objects

Optimization of inference/search for good parameters
I Can we combine these ideas?

...

ABC should also be part of ML toolbox

Intractable likelihood models

Probabilistic programming

Computer vision problems.


