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The heart is an electrical-mechanical pump, which contracts under
electrical potential.
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Atrial fibrillation

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.

Affects around 610,000 people in UK.

Catheter ablation removes/isolates pathological tissue that
sustain/initiate AF.

40% of patients subsequently experience atrial tachycardia (AT).

http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg
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Patient Specific Cardiac Models

Aim: predict the probability an AF patient will develop AT following
ablation, and then treat for both in a single procedure.

Each intervention carries a 6% risk of a major complication, and
costs ∼£8000.

Personalised biophysical models have the ability to predict patient
response to treatment

cardiac models at forefront of personalised modelling

models are currently deterministic - simulating a single outcome.

clinical diagnosis is rarely definitive - we need to account for
uncertainties.

I decisions are not always made on basis of most likely outcome:
consider costs and benefits across all potential outcomes weighted by
their probability.
e.g. if patient has 30% chance of complication - this should influence
decision making.
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Tissue electrophysiology simulation
Our primary measurements are surface measurements of electrophysiology.

We model tissue electrical
activation using the
monodomain equation on a
shell model of LA with local
activation given by the
Mitchell-Schaeffer ionic model.

Accurate predictions require patient specific models, but clinical data is
sparse and noisy.
We need to

Estimate conduction velocity on the atrium using ECG measurements

Infer tissues properties, including regions of fibrotic material

Predict AT pathways

Aid clinical decision making (accounting for uncertainty)
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Uncertainty Quantification (UQ) for patient specific models
If personalised cardiac models are to be used to guide clinical decision
making, we need quantification of the uncertainties and probabilities of
likely outcomes.

Sources of uncertainty:

Inferring activation time from ECGs

Shape of left atrium

Location of electrodes

Estimation of local tissue properties (5
parameters per mesh point)

Inference of AT pathways

Effect of any interventions

. . .

Do the data contain enough info to allow us to make informative robust
predictions? How big an effect does source of uncertainty have, i.e.,
which matter? Do we need to model them all? Can some be ignored?
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What is Uncertainty Quantification (UQ)
Uncertainty Quantification (UQ) ≡ statistics with complex models

A ’complex model’ is one that is expensive to evaluate.

Typical tasks

Uncertainty propagation

θ ∼ π(·), and Y = f (θ), then Y ∼?

Parameter estimation

ObserveY = f (θ) + ε, then θ =?

Sensitivity analysis: θ = (θ1, . . . θp)> ∼ π(·). If we can measure one
component of θ, which should we choose to minimize Var(Y )?

Decision making: my model is uncertain, the parameters are
uncertain, the data is noisy, but I need to make a decision...

UQ should be a synergy between statistics, applied mathematics and
domain sciences
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Tools

The Bayesian approach to the inverse problem: represent all uncertainties
as probability distributions

π(θ|D) =
π(D|θ)π(θ)

π(D)

Primary methodological tools

Gaussian process interpolation

Approximate Bayesian Computation (ABC) - ’likelihood-free’
inference

Machine learning models (deep neural nets etc)

Basis function expansions, dimension reduction, reduced order
models etc.
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Gaussian processes
Primarily based around the use of Gaussian processes

Think of these as probabilistic models of functions.

A GP is a random process indexed by x ∈ X say, such that for every finite
set of indices, x1, . . . , xn,

f = (f (x1), . . . , f (xn))

has a multivariate Gaussian distribution.
Key choice is the covariance/kernel function k(x , x ′) = Cov(f (x), f (x ′))
Why would we want to use this very restricted model?
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Answer 1
Class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If L is a linear operator, then

Lf ∼ GP(Lm,LkL>)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs. Can also analytically condition on

Lf = 0, e.g. incompressible flow ∇ · ∇f = 0
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Answer 2: non-parametric/kernel regression
Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= (X>X + σ2I )X>y

= X>(XX> + σ2I )−1y (the dual form)

We know that we can replace x by a feature vector in linear
regression, e.g., φ(x) = (1 x x2 cos(x))> etc.

For some features, inner product is equivalent to evaluating a kernel

φ(x)>φ(x ′) ≡ k(x , x ′)

where k : X × X → R is a semi-positive definite function.
Kernel trick: lift x into infinite dimensional feature space by
replacing inner products x>x ′ by k(x , x ′), but never evaluate these
features, only the n × n kernel matrix.

ŷ ′ = m(x ′) =
n∑

i=1

αik(x , xi )
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Generally, we don’t think about features, we just choose a kernel. But
choosing a kernel is implicitly choosing features, and our model only
includes functions that are linear combinations of this set of features (the
Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN )2

2λ2 )

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the simulator than any class of models that
contains only a finite number of features.
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Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods1.
If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It can been shown, that the best second-order inference we can do to
update our beliefs about X given Y is

E(X |Y ) = E(X ) + Cov(X ,Y )Var(Y )−1(Y − E(Y ))

which is exactly the Gaussian process update for the posterior mean.

So GPs are in some sense very natural approaches.

1

statistics without probability
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Work flow

MRI to build patient specific left atrium mesh, segmented to identify
regions of fibrosis.

Electrophysiology study to learn local activation map,

Interpolate to entire LA, allowing conduction velocity and restitution
curves to be calculated

Local tissue properties estimated giving personalized probabilistic
model

Predict AT pathways

Clinical decision support



Local activation time

Picture of electrical wave spiraling around ventricle (fibrilation).
Red: ’active’ cardiac tissue Blue: ’inactive’ cardiac tissue

We want to know the time of arrival of the ’electrical wave front’.
We call this the Local Activation Time (LAT).

An electrophysiology (EP) study performed by inserting catheters
and electrodes on LA surface, to measure electrical activity.



Local activation time

The literature is unclear about how LAT should be inferred from a
bipoloar electrogram.
Some methods more robust than others, and few include uncertainty.
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LAT uncertainty from ECG

LAT: t50 : 50% of cumulative area under rectified (green) curve

fit GP
Impute missing values
Estimate t50, or maximum, or steepest gradient (f ∼ GP then
f ′ ∼ GP)....



Estimate uncertainty

2σEGM = (t75 − t25)/2



This electrogram is noisy and the signal unclear, but it is often all we
have at some location.

It tells us something, but precision is low.



Interpolation
Typically, only able to measure LAT a small number (∼10s) of locations
on the atrium.

How can we interpolate to other locations?

t50(x) = LAT(x) + εEGM + εposition

εEGM ∼ N (0, σ2
EGM)

εposition ∼ N (0, σ2
position)
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GP interpolations

We want to model

LAT (x) ∼ GP(m(x), k(x , x ′))

but standard approaches to Gaussian process interpolation won’t work on
complex manifolds such as the atrium

Typically we define covariance function to be a function of the
Euclidean distance between two points i.e. k(x , x ′) ≡ k(‖x − x ′‖2),

We want the interpolation to take into account distance on the manifold
travelled by electrical wave.

Defining a valid positive definite covariance function on the manifold
is hard!



INLA-SPDE approach: Lindgren, Rue, Lindstrom (2011)
Coveney et al 2019

Instead of a GP model (formulated in terms of a covariance function) we
use a Gaussian Markov random field (GMRF) which allows the model to
be specified via a sparse precision matrix (allows solution in O(n3/2)
instead of O(n3)).

GPs with a Matern covariance function are stationary solutions to
explicit linear stochastic partial differential equation.
Allows us to solve GPs using the machinery of finite element methods
Makes it easy to work on irregular domains - we now only need to
solve a SPDE on a particular triangular mesh for any given problem.

LAT (x) =
n∑

k=1

wkψk(x)

with wk ∼ N(0, Q̃−1) where Q̃ is sparse. Note

LAT (·) ∼ GP(0,Q−1)

for some Q
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Results - mean



Results - standard deviation



S1-S2 interpolation
The electrical restitution curve describes the recovery of action
potential duration as a function of the interbeat interval (the diastolic
interval).

During an EP study the heart is ’paced’ at a regular S1 interval.

Premature interbeats introduced at interval S2

As the S2 interval shortens the heart tissue will eventually cease to
recover in time to activate for both beats



S1-S2 interpolation

The EP study measures activation time at ∼30 locations and ∼ 10 S2
intervals. Can use INLA-SPDE approach to interpolate LAT at the
locations for a given S2 value.

How can we borrow strength from different S2 intervals to improve the
interpolation?

Simplest way is to add S2 as an input, and assume an AR(1) relationship
between LAT (x ,S2i+1) and LAT (x ,S2i )

LAT (x ,S2i+1) ∼ N(ρLAT (x ,S2i ), (1− ρ2)Q−1)

or more precisely

LAT (x ,S2) ∼ GP(0,Q−1
S2 ⊗ Q−1)
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interpolation?

Simplest way is to add S2 as an input, and assume an AR(1) relationship
between LAT (x , S2i+1) and LAT (x ,S2i )

LAT (x , S2i+1) ∼ N(ρLAT (x ,S2i ), (1− ρ2)Q−1)

or more precisely

LAT (x ,S2) ∼ GP(0,Q−1
S2 ⊗ Q−1)



Results: Cross validation



Random samples

Unfortunately random samples produce unphysical (non-monotonic)
patterns...
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Random samples

Unfortunately random samples produce unphysical (non-monotonic)
patterns...



Manifold uncertainty



Model data comparison - decorrelating results



Model calibration

Mitchell-Schaeffer model has 5 parameters, θ ∈ R5, at every node on
mesh (∼10000 locations).
Want to infer these by comparison of measured restitution curve to
simulated value:



Bayesian inference of parameters

The Bayesian approach is to find the posterior distribution

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝ prior× likelihood

usual intractability in Bayesian inference is not knowing π(D).

a problem is doubly intractable if π(D|θ) = cθp(D|θ) with cθ
unknown (cf Murray, Ghahramani and MacKay 2006)

a problem is completely intractable if π(D|θ) is unknown and can’t
be evaluated (unknown is subjective). I.e., if the analytic distribution
of the simulator, f (θ), run at θ is unknown.

Completely intractable models are where we need to resort to ABC
methods



‘Likelihood-Free’ Inference

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).

If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate X ∼ f (θ) from the computer model

Accept θ if D = X , i.e., if computer output equals observation

The acceptance rate is
∫
P(D|θ)π(θ)dθ = P(D).
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any θ. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).
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ε = 2.5
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ε = 1
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θ ∼ U[−10, 10], X ∼ N(2(θ + 2)θ(θ − 2), 0.1 + θ2)

ρ(D,X ) = |D − X |, D = 2



We need to do this for every location (∼10000) on our mesh. We create
a large look up table of {θ, f (θ)} pairs allowing rapid inference of
approximate posteriors at every location.



Use these posteriors to produce stochastic predictions of atrium wide
activation patterns and estimate probability of atrial fibrillation.



Conclusions

Huge number of uncertain quantities. We need to find some
regularity in the problem to allow us to reduce dimension sufficiently
in order to make inference possible

Unclear what best approach is?
I Interpolate LAT smoothly and fit simulator to the interpolation?
I Assume smoothness (perhaps with irregularities) in the parameter

distribution?

θ(x) =

O(10)∑
i=1

λiφi (x)

and learn simulator response wrt λi?

Can we guide data collection protocols?
I More measurement locations and fewer S1-S2 intervals, or fewer

locations and more S1-S2

Can we learn with sufficient confidence to improve clinical
procedures?

Thank you for listening!



Conclusions

Huge number of uncertain quantities. We need to find some
regularity in the problem to allow us to reduce dimension sufficiently
in order to make inference possible

Unclear what best approach is?
I Interpolate LAT smoothly and fit simulator to the interpolation?
I Assume smoothness (perhaps with irregularities) in the parameter

distribution?

θ(x) =

O(10)∑
i=1

λiφi (x)

and learn simulator response wrt λi?

Can we guide data collection protocols?
I More measurement locations and fewer S1-S2 intervals, or fewer

locations and more S1-S2

Can we learn with sufficient confidence to improve clinical
procedures?

Thank you for listening!


